Articles | Volume 14, issue 10
https://doi.org/10.5194/gmd-14-6177-2021
https://doi.org/10.5194/gmd-14-6177-2021
Model description paper
 | 
15 Oct 2021
Model description paper |  | 15 Oct 2021

S2P3-R v2.0: computationally efficient modelling of shelf seas on regional to global scales

Paul R. Halloran, Jennifer K. McWhorter, Beatriz Arellano Nava, Robert Marsh, and William Skirving

Related authors

Global analysis of the controls on seawater dimethylsulfide spatial variability
George Manville, Thomas G. Bell, Jane P. Mulcahy, Rafel Simó, Martí Galí, Anoop S. Mahajan, Shrivardhan Hulswar, and Paul R. Halloran
Biogeosciences, 20, 1813–1828, https://doi.org/10.5194/bg-20-1813-2023,https://doi.org/10.5194/bg-20-1813-2023, 2023
Short summary
Third revision of the global surface seawater dimethyl sulfide climatology (DMS-Rev3)
Shrivardhan Hulswar, Rafel Simó, Martí Galí, Thomas G. Bell, Arancha Lana, Swaleha Inamdar, Paul R. Halloran, George Manville, and Anoop Sharad Mahajan
Earth Syst. Sci. Data, 14, 2963–2987, https://doi.org/10.5194/essd-14-2963-2022,https://doi.org/10.5194/essd-14-2963-2022, 2022
Short summary
Drivers of 21st Century carbon cycle variability in the North Atlantic Ocean
Matthew P. Couldrey, Kevin I. C. Oliver, Andrew Yool, Paul R. Halloran, and Eric P. Achterberg
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-16,https://doi.org/10.5194/bg-2019-16, 2019
Revised manuscript not accepted
Short summary
Inconsistent strategies to spin up models in CMIP5: implications for ocean biogeochemical model performance assessment
Roland Séférian, Marion Gehlen, Laurent Bopp, Laure Resplandy, James C. Orr, Olivier Marti, John P. Dunne, James R. Christian, Scott C. Doney, Tatiana Ilyina, Keith Lindsay, Paul R. Halloran, Christoph Heinze, Joachim Segschneider, Jerry Tjiputra, Olivier Aumont, and Anastasia Romanou
Geosci. Model Dev., 9, 1827–1851, https://doi.org/10.5194/gmd-9-1827-2016,https://doi.org/10.5194/gmd-9-1827-2016, 2016
Short summary
The mechanisms of North Atlantic CO2 uptake in a large Earth System Model ensemble
P. R. Halloran, B. B. B. Booth, C. D. Jones, F. H. Lambert, D. J. McNeall, I. J. Totterdell, and C. Völker
Biogeosciences, 12, 4497–4508, https://doi.org/10.5194/bg-12-4497-2015,https://doi.org/10.5194/bg-12-4497-2015, 2015
Short summary

Related subject area

Oceanography
Global seamless tidal simulation using a 3D unstructured-grid model (SCHISM v5.10.0)
Y. Joseph Zhang, Tomas Fernandez-Montblanc, William Pringle, Hao-Cheng Yu, Linlin Cui, and Saeed Moghimi
Geosci. Model Dev., 16, 2565–2581, https://doi.org/10.5194/gmd-16-2565-2023,https://doi.org/10.5194/gmd-16-2565-2023, 2023
Short summary
Arctic Ocean simulations in the CMIP6 Ocean Model Intercomparison Project (OMIP)
Qi Shu, Qiang Wang, Chuncheng Guo, Zhenya Song, Shizhu Wang, Yan He, and Fangli Qiao
Geosci. Model Dev., 16, 2539–2563, https://doi.org/10.5194/gmd-16-2539-2023,https://doi.org/10.5194/gmd-16-2539-2023, 2023
Short summary
ChemicalDrift 1.0: an open-source Lagrangian chemical-fate and transport model for organic aquatic pollutants
Manuel Aghito, Loris Calgaro, Knut-Frode Dagestad, Christian Ferrarin, Antonio Marcomini, Øyvind Breivik, and Lars Robert Hole
Geosci. Model Dev., 16, 2477–2494, https://doi.org/10.5194/gmd-16-2477-2023,https://doi.org/10.5194/gmd-16-2477-2023, 2023
Short summary
The Met Office operational wave forecasting system: the evolution of the regional and global models
Nieves G. Valiente, Andrew Saulter, Breogan Gomez, Christopher Bunney, Jian-Guo Li, Tamzin Palmer, and Christine Pequignet
Geosci. Model Dev., 16, 2515–2538, https://doi.org/10.5194/gmd-16-2515-2023,https://doi.org/10.5194/gmd-16-2515-2023, 2023
Short summary
4DVarNet-SSH: end-to-end learning of variational interpolation schemes for nadir and wide-swath satellite altimetry
Maxime Beauchamp, Quentin Febvre, Hugo Georgenthum, and Ronan Fablet
Geosci. Model Dev., 16, 2119–2147, https://doi.org/10.5194/gmd-16-2119-2023,https://doi.org/10.5194/gmd-16-2119-2023, 2023
Short summary

Cited articles

Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Tech. Memo., NESDIS NGDC-24, https://doi.org/10.1594/PANGAEA.769615, 2009. 
Australian Institute of Marine Science (AIMS): NRSYON: Northern Australia Automated Marine Weather and Oceanographic Stations, Sites: [Yongala], https://doi.org/10.25845/5c09bf93f315d, 2020. 
Bahamondes Dominguez, A. A., Hickman, A. E., Marsh, R., and Moore, C. M.: Constraining the response of phytoplankton to zooplankton grazing and photo-acclimation in a temperate shelf sea with a 1-D model – towards S2P3 v8.0, Geosci. Model Dev., 13, 4019–4040, https://doi.org/10.5194/gmd-13-4019-2020, 2020. 
Barnes, M. K., Tilstone, G. H., Suggett, D. J., Widdicombe, C. E., Bruun, J., Martinez-Vicente, V., and Smyth, T. J.: Temporal variability in total, micro- and nano-phytoplankton primary production at a coastal site in the Western English Channel, Prog. Oceanogr., 137 (Part B), 470–483​​​​​​​, https://doi.org/10.1016/j.pocean.2015.04.017, 2015. 
Beaman, R.: Project 3DGBR: a high-resolution depth model for the Great Barrier Reef and Coral Sea, MTSRF Final Report Project 2.5i.1a, Reef and Rainforest Research Centre MTSRF Final Report Marine and Tropical Sciences Research Facility, James Cook University, available at: https://www.deepreef.org/images/stories/publications/reports/Project3DGBRFinal_RRRC2010.pdf (last access: 1 July 2021), ​​​​​​​2010. 
Download
Short summary
This paper describes the latest version of a simple model for simulating coastal oceanography in response to changes in weather and climate. The latest revision of this model makes scientific improvements but focuses on improvements that allow the model to be run simply at large scales and for long periods of time to explore the implications of (for example) future climate change along large areas of coastline.