Articles | Volume 14, issue 7
https://doi.org/10.5194/gmd-14-4225-2021
https://doi.org/10.5194/gmd-14-4225-2021
Development and technical paper
 | 
06 Jul 2021
Development and technical paper |  | 06 Jul 2021

SolveSAPHE-r2 (v2.0.1): revisiting and extending the Solver Suite for Alkalinity-PH Equations for usage with CO2, HCO3 or CO32− input data

Guy Munhoven

Related authors

FESOM2.1-REcoM3-MEDUSA2: an ocean-sea ice-biogeochemistry model coupled to a sediment model
Ying Ye, Guy Munhoven, Peter Köhler, Martin Butzin, Judith Hauck, Özgür Gürses, and Christoph Völker
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-181,https://doi.org/10.5194/gmd-2023-181, 2023
Preprint under review for GMD
Short summary
Implementing a coral reef CaCO3 production module in the iLOVECLIM climate model
Nathaelle Bouttes, Lester Kwiatkowski, Manon Berger, Victor Brovkin, and Guy Munhoven
EGUsphere, https://doi.org/10.5194/egusphere-2023-1162,https://doi.org/10.5194/egusphere-2023-1162, 2023
Short summary
The Earth system model CLIMBER-X v1.0 – Part 2: The global carbon cycle
Matteo Willeit, Tatiana Ilyina, Bo Liu, Christoph Heinze, Mahé Perrette, Malte Heinemann, Daniela Dalmonech, Victor Brovkin, Guy Munhoven, Janine Börker, Jens Hartmann, Gibran Romero-Mujalli, and Andrey Ganopolski
Geosci. Model Dev., 16, 3501–3534, https://doi.org/10.5194/gmd-16-3501-2023,https://doi.org/10.5194/gmd-16-3501-2023, 2023
Short summary
Model of Early Diagenesis in the Upper Sediment with Adaptable complexity – MEDUSA (v. 2): a time-dependent biogeochemical sediment module for Earth system models, process analysis and teaching
Guy Munhoven
Geosci. Model Dev., 14, 3603–3631, https://doi.org/10.5194/gmd-14-3603-2021,https://doi.org/10.5194/gmd-14-3603-2021, 2021
Short summary
Coupling of a sediment diagenesis model (MEDUSA) and an Earth system model (CESM1.2): a contribution toward enhanced marine biogeochemical modelling and long-term climate simulations
Takasumi Kurahashi-Nakamura, André Paul, Guy Munhoven, Ute Merkel, and Michael Schulz
Geosci. Model Dev., 13, 825–840, https://doi.org/10.5194/gmd-13-825-2020,https://doi.org/10.5194/gmd-13-825-2020, 2020
Short summary

Related subject area

Biogeosciences
Dynamic ecosystem assembly and escaping the “fire trap” in the tropics: insights from FATES_15.0.0
Jacquelyn K. Shuman, Rosie A. Fisher, Charles Koven, Ryan Knox, Lara Kueppers, and Chonggang Xu
Geosci. Model Dev., 17, 4643–4671, https://doi.org/10.5194/gmd-17-4643-2024,https://doi.org/10.5194/gmd-17-4643-2024, 2024
Short summary
In silico calculation of soil pH by SCEPTER v1.0
Yoshiki Kanzaki, Isabella Chiaravalloti, Shuang Zhang, Noah J. Planavsky, and Christopher T. Reinhard
Geosci. Model Dev., 17, 4515–4532, https://doi.org/10.5194/gmd-17-4515-2024,https://doi.org/10.5194/gmd-17-4515-2024, 2024
Short summary
Simple process-led algorithms for simulating habitats (SPLASH v.2.0): robust calculations of water and energy fluxes
David Sandoval, Iain Colin Prentice, and Rodolfo L. B. Nóbrega
Geosci. Model Dev., 17, 4229–4309, https://doi.org/10.5194/gmd-17-4229-2024,https://doi.org/10.5194/gmd-17-4229-2024, 2024
Short summary
A global behavioural model of human fire use and management: WHAM! v1.0
Oliver Perkins, Matthew Kasoar, Apostolos Voulgarakis, Cathy Smith, Jay Mistry, and James D. A. Millington
Geosci. Model Dev., 17, 3993–4016, https://doi.org/10.5194/gmd-17-3993-2024,https://doi.org/10.5194/gmd-17-3993-2024, 2024
Short summary
Terrestrial Ecosystem Model in R (TEMIR) version 1.0: simulating ecophysiological responses of vegetation to atmospheric chemical and meteorological changes
Amos P. K. Tai, David H. Y. Yung, and Timothy Lam
Geosci. Model Dev., 17, 3733–3764, https://doi.org/10.5194/gmd-17-3733-2024,https://doi.org/10.5194/gmd-17-3733-2024, 2024
Short summary

Cited articles

Brent, R. P.: Algorithms for minimization without derivatives, Prentice-Hall, Englewood Cliffs, NJ, 1973. a, b
Byrne, R. H. and Yao, W.: Procedures for measurement of carbonate ion concentrations in seawater by direct spectrophotometric observations of Pb(II) complexation, Mar. Chem., 112, 128–135, https://doi.org/10.1016/j.marchem.2008.07.009, 2008. a
Deffeyes, K. S.: Carbonate Equilibria : A Graphic and Algebraic Approach, Limnol. Oceanogr., 10, 412–426, https://doi.org/10.4319/lo.1965.10.3.0412, 1965. a, b
Dickson, A. G., Sabine, C. L., and Christian, J. R. (Eds.): Guide to Best Practices for Ocean CO2 Measurements, vol. 3, in: PICES Special Publication, Carbon Dioxide Information and Analysis Center, Oak Ridge (TN), available at: https://cdiac.ess-dive.lbl.gov/ftp/oceans/Handbook_2007/Guide_all_in_one.pdf (last access: 24 June 2021), 2007. a, b, c, d
Epitalon, J.-M., Gattuso, J.-P., and Munhoven, G.: SolveSAPHE: Solver Suite for Alkalinity-PH Equations, available at: https://CRAN.R-project.org/package=SolveSAPHE, last access: 24 June 2021. a
Short summary
SolveSAPHE (Munhoven, 2013) was the first package to calculate pH reliably from any physically sensible pair of total alkalinity (AlkT) and dissolved inorganic carbon (CT) data and to do so in an autonomous and efficient way. Here, we extend it to use CO2, HCO3 or CO3 instead of CT. For each one of these pairs, the new SolveSAPHE calculates all of the possible pH values (0, 1, or 2), again without any prior knowledge of the solutions.