Articles | Volume 14, issue 7
https://doi.org/10.5194/gmd-14-4225-2021
https://doi.org/10.5194/gmd-14-4225-2021
Development and technical paper
 | 
06 Jul 2021
Development and technical paper |  | 06 Jul 2021

SolveSAPHE-r2 (v2.0.1): revisiting and extending the Solver Suite for Alkalinity-PH Equations for usage with CO2, HCO3 or CO32− input data

Guy Munhoven

Related authors

Implementing the iCORAL (version 1.0) coral reef CaCO3 production module in the iLOVECLIM climate model
Nathaelle Bouttes, Lester Kwiatkowski, Manon Berger, Victor Brovkin, and Guy Munhoven
Geosci. Model Dev., 17, 6513–6528, https://doi.org/10.5194/gmd-17-6513-2024,https://doi.org/10.5194/gmd-17-6513-2024, 2024
Short summary
FESOM2.1-REcoM3-MEDUSA2: an ocean-sea ice-biogeochemistry model coupled to a sediment model
Ying Ye, Guy Munhoven, Peter Köhler, Martin Butzin, Judith Hauck, Özgür Gürses, and Christoph Völker
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-181,https://doi.org/10.5194/gmd-2023-181, 2023
Revised manuscript under review for GMD
Short summary
The Earth system model CLIMBER-X v1.0 – Part 2: The global carbon cycle
Matteo Willeit, Tatiana Ilyina, Bo Liu, Christoph Heinze, Mahé Perrette, Malte Heinemann, Daniela Dalmonech, Victor Brovkin, Guy Munhoven, Janine Börker, Jens Hartmann, Gibran Romero-Mujalli, and Andrey Ganopolski
Geosci. Model Dev., 16, 3501–3534, https://doi.org/10.5194/gmd-16-3501-2023,https://doi.org/10.5194/gmd-16-3501-2023, 2023
Short summary
Model of Early Diagenesis in the Upper Sediment with Adaptable complexity – MEDUSA (v. 2): a time-dependent biogeochemical sediment module for Earth system models, process analysis and teaching
Guy Munhoven
Geosci. Model Dev., 14, 3603–3631, https://doi.org/10.5194/gmd-14-3603-2021,https://doi.org/10.5194/gmd-14-3603-2021, 2021
Short summary
Coupling of a sediment diagenesis model (MEDUSA) and an Earth system model (CESM1.2): a contribution toward enhanced marine biogeochemical modelling and long-term climate simulations
Takasumi Kurahashi-Nakamura, André Paul, Guy Munhoven, Ute Merkel, and Michael Schulz
Geosci. Model Dev., 13, 825–840, https://doi.org/10.5194/gmd-13-825-2020,https://doi.org/10.5194/gmd-13-825-2020, 2020
Short summary

Related subject area

Biogeosciences
Simulating Ips typographus L. outbreak dynamics and their influence on carbon balance estimates with ORCHIDEE r8627
Guillaume Marie, Jina Jeong, Hervé Jactel, Gunnar Petter, Maxime Cailleret, Matthew J. McGrath, Vladislav Bastrikov, Josefine Ghattas, Bertrand Guenet, Anne Sofie Lansø, Kim Naudts, Aude Valade, Chao Yue, and Sebastiaan Luyssaert
Geosci. Model Dev., 17, 8023–8047, https://doi.org/10.5194/gmd-17-8023-2024,https://doi.org/10.5194/gmd-17-8023-2024, 2024
Short summary
Biological nitrogen fixation of natural and agricultural vegetation simulated with LPJmL 5.7.9
Stephen Björn Wirth, Johanna Braun, Jens Heinke, Sebastian Ostberg, Susanne Rolinski, Sibyll Schaphoff, Fabian Stenzel, Werner von Bloh, Friedhelm Taube, and Christoph Müller
Geosci. Model Dev., 17, 7889–7914, https://doi.org/10.5194/gmd-17-7889-2024,https://doi.org/10.5194/gmd-17-7889-2024, 2024
Short summary
Learning from conceptual models – a study of the emergence of cooperation towards resource protection in a social–ecological system
Saeed Harati-Asl, Liliana Perez, and Roberto Molowny-Horas
Geosci. Model Dev., 17, 7423–7443, https://doi.org/10.5194/gmd-17-7423-2024,https://doi.org/10.5194/gmd-17-7423-2024, 2024
Short summary
The biogeochemical model Biome-BGCMuSo v6.2 provides plausible and accurate simulations of the carbon cycle in central European beech forests
Katarína Merganičová, Ján Merganič, Laura Dobor, Roland Hollós, Zoltán Barcza, Dóra Hidy, Zuzana Sitková, Pavel Pavlenda, Hrvoje Marjanovic, Daniel Kurjak, Michal Bošel'a, Doroteja Bitunjac, Maša Zorana Ostrogović Sever, Jiří Novák, Peter Fleischer, and Tomáš Hlásny
Geosci. Model Dev., 17, 7317–7346, https://doi.org/10.5194/gmd-17-7317-2024,https://doi.org/10.5194/gmd-17-7317-2024, 2024
Short summary
DeepPhenoMem V1.0: deep learning modelling of canopy greenness dynamics accounting for multi-variate meteorological memory effects on vegetation phenology
Guohua Liu, Mirco Migliavacca, Christian Reimers, Basil Kraft, Markus Reichstein, Andrew D. Richardson, Lisa Wingate, Nicolas Delpierre, Hui Yang, and Alexander J. Winkler
Geosci. Model Dev., 17, 6683–6701, https://doi.org/10.5194/gmd-17-6683-2024,https://doi.org/10.5194/gmd-17-6683-2024, 2024
Short summary

Cited articles

Brent, R. P.: Algorithms for minimization without derivatives, Prentice-Hall, Englewood Cliffs, NJ, 1973. a, b
Byrne, R. H. and Yao, W.: Procedures for measurement of carbonate ion concentrations in seawater by direct spectrophotometric observations of Pb(II) complexation, Mar. Chem., 112, 128–135, https://doi.org/10.1016/j.marchem.2008.07.009, 2008. a
Deffeyes, K. S.: Carbonate Equilibria : A Graphic and Algebraic Approach, Limnol. Oceanogr., 10, 412–426, https://doi.org/10.4319/lo.1965.10.3.0412, 1965. a, b
Dickson, A. G., Sabine, C. L., and Christian, J. R. (Eds.): Guide to Best Practices for Ocean CO2 Measurements, vol. 3, in: PICES Special Publication, Carbon Dioxide Information and Analysis Center, Oak Ridge (TN), available at: https://cdiac.ess-dive.lbl.gov/ftp/oceans/Handbook_2007/Guide_all_in_one.pdf (last access: 24 June 2021), 2007. a, b, c, d
Epitalon, J.-M., Gattuso, J.-P., and Munhoven, G.: SolveSAPHE: Solver Suite for Alkalinity-PH Equations, available at: https://CRAN.R-project.org/package=SolveSAPHE, last access: 24 June 2021. a
Short summary
SolveSAPHE (Munhoven, 2013) was the first package to calculate pH reliably from any physically sensible pair of total alkalinity (AlkT) and dissolved inorganic carbon (CT) data and to do so in an autonomous and efficient way. Here, we extend it to use CO2, HCO3 or CO3 instead of CT. For each one of these pairs, the new SolveSAPHE calculates all of the possible pH values (0, 1, or 2), again without any prior knowledge of the solutions.