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Abstract. The successful and efficient approach at the
basis of the Solver Suite for Alkalinity-PH Equations
(SolveSAPHE) (Munhoven, 2013), which determines the
carbonate system speciation by calculating pH from total
alkalinity (AlkT) and dissolved inorganic carbon (CT), and
which converges for any physically sensible pair of such
data, has been adapted and further developed to work with
AlkT–CO2, AlkT–HCO−3 , and AlkT–CO2−

3 . The mathemati-
cal properties of the three modified alkalinity–pH equations
are explored. It is shown that the AlkT–CO2, and AlkT–
HCO−3 problems have one and only one positive root for any
physically sensible pair of data (i.e. such that [CO2]> 0 and
[HCO−3 ]> 0). The space of AlkT–CO2−

3 pairs is partitioned
into regions where there is either no solution, one solution
or where there are two. The numerical solution of the modi-
fied alkalinity–pH equations is far more demanding than that
for the original AlkT–CT pair as they exhibit strong gradi-
ents and are not always monotonous. The two main algo-
rithms used in SolveSAPHE v1 have been revised in depth
to reliably process the three additional data input pairs. The
AlkT–CO2 pair is numerically the most challenging. With
the Newton–Raphson-based solver, it takes about 5 times as
long to solve as the companion AlkT–CT pair; the AlkT–
CO2−

3 pair requires on average about 4 times as much time
as the AlkT–CT pair. All in all, the secant-based solver offers
the best performance. It outperforms the Newton–Raphson-
based one by up to a factor of 4 in terms of average num-
bers of iterations and execution time and yet reaches equa-
tion residuals that are up to 7 orders of magnitude lower. Just
like the pH solvers from the v1 series, SolveSAPHE-r2 in-
cludes automatic root bracketing and efficient initialisation

schemes for the iterative solvers. For AlkT–CO2−
3 data pairs,

it also determines the number of roots and calculates non-
overlapping bracketing intervals. An open-source reference
implementation of the new algorithms in Fortran 90 is made
publicly available for usage under the GNU Lesser General
Public Licence version 3 (LGPLv3) or later.

1 Introduction

Among all the aspects of the ongoing global environmen-
tal changes (climate change, ocean acidification, etc.), the
solution chemistry of carbon dioxide (CO2) is one of the
best known. The related chemistry of the carbonate system
in the oceans and other aqueous environments is well under-
stood and routinely monitored and modelled. The equilib-
ria between the carbonate system species involves four vari-
ables: [CO2] (or equivalently the partial pressure of CO2,
pCO2, or its fugacity, fCO2), [HCO−3 ], [CO2−

3 ] and [H+]
(or equivalently pH). The speciation, i.e. the determination
of the concentrations of the individual species, therefore
also requires four constraints. Two of these are given by the
equilibrium relationships that characterise the equilibria be-
tween dissolved CO2 and HCO−3 on one hand, and between
HCO−3 and CO2−

3 on the other hand, assuming that the re-
spective equilibrium constants are known or can be calcu-
lated. Two more independent constraints are thus required
to completely characterise the system. These two additional
constraints are generally chosen among the four traditional
measurables of the system (see, e.g. Dickson et al., 2007): (1)
the total concentration of dissolved inorganic carbon (DIC),
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CT = [CO2] + [HCO−3 ] + [CO2−
3 ]; (2) total alkalinity, AlkT;

(3) pH and (4) pCO2 or fCO2. Recently, a procedure to mea-
sure [CO2−

3 ] has been developed as well, thus increasing the
number of measurables to five (Byrne and Yao, 2008; Pat-
savas et al., 2015; Sharp and Byrne, 2019). This latter has,
however, not yet been widely adopted. With these two ad-
ditional constraints, the concentrations of all the individual
species as well as CT and AlkT can then be calculated.

There are 10 different data pairs that can be composed
from the set of five independent measurable variables of the
carbonate system; there are 15 if we further include HCO−3
as a sixth independent variable, although currently not (yet)
measurable. Most modellers will call upon CT and AlkT
which, besides being measurable, are also conservative and
thus convenient for a budgeting approach. Experimentalists
will use the pair that best suits their analytical equipment
and expertise. Depending on the study requirements, not all
pairs are equally attractive though. The analysis of Sharp and
Byrne (2019) reveals that it is always advisable to measure
pCO2 directly if that variable is required: the uncertainty of
calculated pCO2 is always 5 to 10 times as large as that of
the directly measured one. [CO2−

3 ] can be calculated with
lower uncertainty from AlkT–CT data than it can be directly
measured; calculating it from other data pairs always bears
greater uncertainty than directly measuring it. The most pe-
culiar combination of uncertainties affects the results derived
from paired measurements of pCO2 and CO2−

3 : they allow
to calculate pH with the same uncertainty as if directly mea-
sured, thus providing nearly optimal values for the three indi-
vidually measurable species. The uncertainties of the AlkT–
CT calculated from it are, however, about 20 times as large
as those directly measured. The currently most attractive
pairs are AlkT–pCO2 and CT–pCO2, both of which allow
to calculate pH with better and [CO2−

3 ] with only slightly
larger but still acceptable uncertainty than the direct mea-
surement would offer. Direct [CO2−

3 ] measurements, which
might be most advisable for tracing carbonate mineral sat-
uration states, are best paired with AlkT or CT (Sharp and
Byrne, 2019). It can nevertheless be expected that, once it be-
comes more widely used, the measurement uncertainty cur-
rently affecting that still young measurable can be reduced
and eventually become better than that of [CO2−

3 ] calculated
from AlkT–CT, which is currently the best option (Sharp and
Byrne, 2019).

Overall, 11 out of these 15 possible pairs of independent
parameters of the carbonate system can be directly solved
or require at most the resolution of a quadratic equation.
The remaining four pairs require iterative procedures. Be-
sides the AlkT–CT pair which was addressed in full detail
by Munhoven (2013) these are (1) AlkT–CO2, (2) AlkT–
HCO−3 and (3) AlkT–CO2−

3 . Such calculations are performed
to an advanced level of detail with dedicated and highly spe-
cialised packages. The review of Orr et al. (2015) offers a
systematic analysis of subsisting uncertainties and inconsis-
tencies between 10 such packages, focusing on the sets of

equilibrium constants adopted, pressure corrections applied,
etc. Here, we do not focus on these aspects but on the de-
sign of algorithms that can solve the underlying mathemati-
cal problem with as little user input as possible. The aim is
to reduce user input to the bare essentials: besides the funda-
mental information about temperature, salinity, pressure and
the thermodynamic data, this ideally had to be any physically
meaningful data pair only; the algorithm should be able to
derive any other auxiliary information, such as root brackets
or starting values for iterations, on its own.

In the companion paper (Munhoven, 2013), such au-
tonomous algorithms with robust convergence properties for
a wide range of environmental conditions are presented for
usage with the AlkT–CT pair. Here, we are revisiting that
approach, extending and adapting it so that the AlkT–CO2,
AlkT–HCO−3 , and AlkT–CO2−

3 pairs can be processed with
the same ease and reliability. For the sake of completeness
– and with minimal details only – “recipes” for solving the
other 11 explicit cases are provided in the Appendix. Alter-
native approaches can be found in the literature, such as in
Zeebe and Wolf-Gladrow (2001) or Dickson et al. (2007).
Dickson et al. (2007) also provide pathways for using triplets
or quartets of input data, which only require the knowledge
of one of the two dissociation constants or of their ratio, or
none of them. That kind of approach is, however, not consid-
ered in this study.

2 Theoretical considerations

In the following, it is assumed that the temperature T , salinity
S and applied pressure P are given and that adequate values
for all the required stoichiometric equilibrium constants are
available. It is furthermore assumed that the total concentra-
tions of all the other relevant acid systems (borate, hydrogen
sulfate, phosphate, silicate, etc.) are known.

2.1 Revisiting the mathematics of the alkalinity–pH
equation

Cornerstone to the speciation calculation is the resolution of
the following equation, which I call the “alkalinity–pH equa-
tion”, as it derives from the definition of total alkalinity:

RT([H+])≡ AlknW([H+])+
KW

[H+]
−
[H+]
s
−AlkT = 0, (1)

i.e. Eq. (21) from Munhoven (2013). In this equation, [H+]
is the proton concentration expressed on one of the com-
monly used pH scales (total, seawater) and s is a factor to
convert from that scale to the free scale. s depends on tem-
perature, pressure and salinity of the sample and its value
is close to 1 (typically between 1.0 and 1.3). The first term
on the right-hand side is that part of the total alkalinity that
is not related to the water self-ionisation: AlknW([H+])=∑
iAlkA[i]([H

+
]), where i denumbers the acid systems re-

sulting from the dissolution of acids A[i] whose dissolution
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products contribute to total alkalinity. For the purpose of this
study, AlknW([H+]) is partitioned into carbonate alkalinity,
AlkC([H+]), and non-carbonate alkalinity, AlknWC([H+]),
since the relevant carbonate system parameters (the concen-
trations of CO2, HCO−3 and CO2−

3 and their sum, CT) are
all directly related to AlkC: AlknW([H+])= AlkC([H+])+
AlknWC([H+]). Similarly to AlknW, AlknWC admits an infi-
mum and a supremum which can both be derived from the
total concentrations of all the acid–base systems considered.
We denote these two by AlknWCinf and AlknWCsup, respec-
tively. Equation (1) is thus formally rewritten as

RT([H+])≡ AlkC([H+])+AlknWC([H+])

+
KW

[H+]
−
[H+]
s
−AlkT = 0. (2)

The carbonate alkalinity term writes, as a function of CT

AlkC([H+])=
K1[H+] + 2K1K2

[H+]2+K1[H+] +K1K2
CT (3)

where K1 and K2 are the first and second stoichiometric dis-
sociation constants of carbonic acid. The individual carbon-
ate species fractions of CT can be expressed as a function of
[H+]:

[CO2] =
[H+]2

[H+]2+K1[H+] +K1K2
CT (4)

[HCO−3 ] =
K1[H+]

[H+]2+K1[H+] +K1K2
CT (5)

[CO2−
3 ] =

K1K2

[H+]2+K1[H+] +K1K2
CT. (6)

Accordingly, AlkC([H+]) may be rewritten in one of the fol-
lowing forms:

AlkC([H+])=
K1[H+] + 2K1K2

[H+]2
[CO2] (7)

AlkC([H+])=
K1[H+] + 2K1K2

K1[H+]
[HCO−3 ] (8)

AlkC([H+])=
K1[H+] + 2K1K2

K1K2
[CO2−

3 ]. (9)

In order to get a first idea about the complications that
we might encounter for the solution of the three new data
pairs, we start with an exploratory analysis using the Solver
Suite for Alkalinity-PH Equations (SolveSAPHE) version
1.0.3 (Munhoven, 2013–2021). The three panels in the up-
per row of Fig. 1 show the pH and the HCO−3 and CO2−

3
concentration distributions for a reduced SW3 test case from
Munhoven (2013), with the CT range extending from 0 to
4 mmolkg−1 and the AlkT range from −1 to 3 mmolkg−1

only. The pH distribution from Fig. 1a is then used to de-
rive the corresponding CO2 (not shown), HCO−3 and CO2−

3
concentration distributions (Fig. 1b and c). Since we intend

to solve the alkalinity–pH equation for given AlkT, and ei-
ther of [CO2], [HCO−3 ] or [CO2−

3 ], we furthermore produce
the concentration isolines for the three species on a pH–AlkT
graph (Fig. 1d, e and f). For the three latter, we first calcu-
lated AlkC from AlkT by using Eq. (2). Positive AlkC values
were then used with Eqs. (7), (8) and (9) to derive the cor-
responding [CO2], [HCO−3 ] and [CO2−

3 ], respectively. Blank
areas represent the pH–AlkT combinations that lead to nega-
tive AlkC.

The V- or U-shaped isolines for HCO−3 on the CT–AlkT

graph and for CO2−
3 on the CT–AlkT and on the pH–AlkT

graphs show that the CT–HCO−3 and the AlkT–CO2−
3 pairs

will not always provide unambiguous results. This is illus-
trated by the blue and black stars in Fig. 1c and f: they both
lie on the 100 µmolkg−1

[CO2−
3 ] isoline and on the hori-

zontal line drawn through AlkT = 2.3 mmolkg−1. For that
pair of data values, there are thus two compatible CT and
correspondingly two possible pH values. On the other hand,
with the same AlkT, a [CO2−

3 ] of 1 mmolkg−1 would not
provide any solution as the 1 mmolkg−1 isoline has its min-
imum at AlkT = 2.63 mmolkg−1. Similarly, there are pairs
of CT and [HCO−3 ] values that are compatible with two
AlkT values and thus two pH values, and others with none:
a vertical line drawn through CT = 2.2 mmolkg−1 crosses
the 2.0 mmolkg−1 isoline for [HCO−3 ] twice and so that
pair of data values leads to two pH solutions; a vertical
line drawn through CT = 2.05 mmolkg−1 does not cross that
2.0 mmolkg−1 isoline for [HCO−3 ] at all, and that pair of data
values does not have any pH solution.

As will be shown below, the SolveSAPHE approach of
Munhoven (2013), which is based upon the use of a hybrid
iterative solver safeguarded by intrinsic brackets that can be
calculated a priori, can be easily adapted for the AlkT–CO2
and AlkT–HCO−3 pairs. According to the outcome of our pre-
liminary analysis above, the AlkT–CO2−

3 pair requires a more
in-depth analysis. We show that it is nevertheless possible to
diagnose the different cases that can theoretically be encoun-
tered and, in case there are two solutions, to derive bracketing
intervals for each of the two and to isolate them efficiently.
For each pair, we (1) establish the analytical properties of the
modified alkalinity–pH equation; (2) derive brackets for the
root(s); (3) develop a reliable and safe algorithm to solve the
problem; (4) design an efficient initialisation scheme. The
CT–HCO−3 pair, which requires only a quadratic equation to
be solved, is straightforward to diagnose a priori (see the cor-
responding recipe in the Appendix).

We will now in turn analyse the mathematical properties of
the alkalinity–pH equation that results from the substitution
of CT by the concentration of one of its individual species.
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Figure 1. (a) pH; (b) HCO−3 and (c) CO2−
3 concentration isolines inCT–AlkT space; (d) CO2, (e) HCO−3 and (f) CO2−

3 concentration isolines
in pH–AlkT space. Blank areas in panels (d), (e) and (f) represent the pH–AlkT combinations that lead to negative AlkC. The blue and black
stars in panels (c) and (f) locate the two possible CT and pH roots for a sample with AlkT = 2.3mmolkg−1 and [CO2−

3 ] = 0.1mmolkg−1

(one of the dashed isolines, as indicated by the open star symbol in the colour scale). Figure 3 in Deffeyes (1965) is similar to panel (c).

2.2 The AlkT–CO2 problem

2.2.1 Mathematical analysis

The AlkT–CO2 pair can be dealt with in a similar way to the
AlkT–CT pair in the original SolveSAPHE. The AlkC([H+])
term in Eq. (2) is written as in Eq. (7). Equation (2) then
becomes(
K1

[H+]
+

2K1K2

[H+]2

)
[CO2] +AlknWC([H+])

+
KW

[H+]
−
[H+]
s
−AlkT = 0. (10)

Just like the AlkC([H+]) expression from Eq. (3) is
monotonously decreasing with [H+] for CT fixed, that from
Eq. (7) is monotonously decreasing with [H+] for [CO2]
fixed. The expression on the left-hand side of Eq. (10) de-
creases from +∞ to −∞ for [CO2]> 0 as [H+] varies from
0+ to +∞. Equation (10) thus always has exactly one posi-
tive solution.

2.2.2 Root bracketing

Intrinsic brackets for the solution of Eq. (10) can be derived
similarly to what is done in Sect. 5.1 in Munhoven (2013).
The lower bound Hinf can be chosen such that(
K1

Hinf
+

2K1K2

H 2
inf

)
[CO2]+

KW

Hinf
−
Hinf

s
= AlkT−AlknWCinf,

i.e. as the positive root of the cubic equation:

H 3

s
+ (AlkT−AlknWCinf)H

2
− (K1[CO2] +KW)H

− 2K1K2[CO2] = 0.

Let us denote this cubic by P(H). It is important to notice
that P(0)=−2K1K2[CO2]< 0 and P ′(0)=−(K1[CO2] +

KW) < 0. The equation P(H)= 0 has therefore one and
only one positive root.

Similarly, the upper bound Hsup can be chosen such that(
K1

Hsup
+

2K1K2

H 2
sup

)
[CO2] +

KW

Hsup
−
Hsup

s

= AlkT−AlknWCsup,

i.e. as the positive root of the cubic equation

H 3

s
+ (AlkT−AlknWCsup)H

2
− (K1[CO2] +KW)H

− 2K1K2[CO2] = 0,

which also has one and only one positive root for the same
reasons as above.

The positive roots of these cubic equations can be found by
adopting a strategy similar to that used for the cubic initial-
isation of the iterative solution in SolveSAPHE (Munhoven,
2013, Sect. 3.2.2):

1. locate the local minimum of the cubic, in Hmin > 0;
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2. develop the cubic as a quadratic Taylor expansion,
Q(H), around that minimum;

3. solve Q(H)= 0 which has two roots and choose the
one that is greater than Hmin.

In this particular case, it is, however, not necessary to solve
these equations exactly as we only need approximate bounds
of the root for safeguarding the iterations while solving
Eq. (2). ForHinf, we may actually choose theHmin of the first
cubic which is lower than the positive root and thus sufficient.
Regarding Hsup, it should be noticed that P(H)=Q(H)+
(H −Hmin)

3/s. Accordingly, P(H) >Q(H) for H >Hmin
and therefore the greater root of Q(H) for the second cubic
is greater than the positive root of that cubic. The greater of
the two roots of Q(H) is therefore a sufficient upper bracket
and may be used instead of the exact Hsup.

Any bracketing root-finding algorithm can then be used to
solve the modified alkalinity pH equation (Eq. 10).

2.3 The AlkT–HCO−3 problem

2.3.1 Mathematical analysis

For the AlkT–HCO−3 pair, the AlkC([H+]) term in Eq. (2) is
written as in Eq. (8):(

1+
2K2

[H+]

)
[HCO−3 ] +AlknWC([H+])

+
KW

[H+]
−
[H+]
s
−AlkT = 0. (11)

The expression on the left-hand side of Eq. (11) decreases
monotonously from +∞ to −∞ for [HCO−3 ]> 0 fixed as
[H+] varies from 0+ to +∞. Equation (11) thus always has
exactly one positive solution.

2.3.2 Root bracketing

The lower bound Hinf can be chosen such that(
1+

2K2

Hinf

)
[HCO−3 ] +

KW

Hinf
−
Hinf

s
= AlkT−AlknWCinf,

i.e. as the positive root of the quadratic equation

H 2

s
+ (AlkT−AlknWCinf− [HCO−3 ])H

− (2K2[HCO−3 ] +KW)= 0.

Similarly, the upper bound Hsup can be chosen such that(
1+

2K2

Hsup

)
[HCO+3 ] +

KW

Hsup
−
Hsup

s
= AlkT−AlknWCsup,

i.e. as the positive root of the quadratic equation

H 2

s
+ (AlkT−AlknWCsup− [HCO−3 ])H

− (2K2[HCO−3 ] +KW)= 0.

Both equations always have two roots: one positive and one
negative; their product is negative as indicated by the con-
stant term. With the respective positive roots, we have again
bounds for the solution of the modified alkalinity–pH equa-
tion and any bracketing root-finding algorithm can be used to
solve it.

2.4 The AlkT–CO2−
3 problem

Whereas any physically meaningful AlkT–[CO2] or AlkT–
[HCO−3 ] concentration pairs will always provide one and
only one [H+] (or equivalently pH) value as demonstrated
above, this cannot be the case for every AlkT–[CO−3 ] pair, as
can be deduced from Fig. 1c and f. On one hand, there are
two compatible CT values, and equivalently two pH values,
for most AlkT–[CO2−

3 ] pairs. This little-known fact was al-
ready documented in the 1960s (see, e.g. Deffeyes, 1965)1.
On the other hand, there are also AlkT–[CO2−

3 ] pairs that do
not allow for any solution, as they lead to negative carbon-
ate alkalinity. To our best knowledge, none of the currently
available carbonate system speciation programmes take this
possibility into account.

2.4.1 Mathematical analysis and root bracketing

The solution of the AlkT–CO2−
3 problem thus requires a

more in-depth mathematical analysis. To start, we write out
Eq. (2) with the AlkC expression for [CO2−

3 ] (Eq. 9):

K1[H+] + 2K1K2

K1K2
[CO2−

3 ] +AlknWC([H+])

+
KW

[H+]
−
[H+]
s
−AlkT = 0.

Let us collect all the terms that are related to carbonate or wa-
ter self-ionisation alkalinity on the left-hand side, introduce

the shorthand γ = [CO2−
3 ]

K2
−

1
s

and rewrite the equation as

γ [H+] +
KW

[H+]
+ 2[CO2−

3 ] = AlkT−AlknWC([H+]). (12)

The value of γ is one of the main controls on the number of
roots that this equation has.

1. If γ < 0, the equation has similar mathematical charac-
teristics to the usual alkalinity–pH equation (Eq. 1). It

1Zeebe and Wolf-Gladrow (2001) appear to be aware of it. In
their recipe for given AlkT and [CO2−

3 ] (on pp. 276–277), they in-
dicate that the quintic equation to solve with their practical alkalin-
ity approximation has two positive and three negative roots and that
the larger positive one should be used (without any further justifica-
tion, though). As shown here, this statement is not universally true
– there are instances where that equation has only one positive or
no positive roots. It is nevertheless true for typical seawater and the
lower of the two positive roots actually implies unrealistically low,
yet physically sensible, CT (see discussion in Sect. 2.4.2 below).

https://doi.org/10.5194/gmd-14-4225-2021 Geosci. Model Dev., 14, 4225–4240, 2021
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has exactly one root which can be calculated using sim-
ilar procedures as in the original SolveSAPHE. Please
note though that this means that [CO2−

3 ]<
K2
s

. Since
K2 is of the order of 10−9 mol (kgSW)−1 and s is of the
order of 1, this case is only relevant for CO2−

3 concen-
trations of the order of 1 nmol (kgSW)−1 and less.

2. If γ = 0 (i.e. if [CO2−
3 ] =

K2
s

), the equation has exactly
one root if AlkT−2[CO2−

3 ]−AlknWCinf > 0, and no root
otherwise.

3. If γ > 0, the left-hand side is not monotonous: it de-
creases from +∞ in [H+] = 0+ to a minimum (see be-
low) and then increases back to +∞ as [H+] →+∞.
The right-hand side is bounded and strictly increasing
over the same interval (Munhoven, 2013). As a result,
the equation has no root if the right-hand side is too low,
exactly one if the two curves become tangent and two
roots if the right-hand side is great enough.

To alleviate notation let us define the two parametric func-
tions:

L([H+];γ )= γ [H+] +
KW

[H+]
+ 2[CO2−

3 ] (13)

R([H+];A)= A−AlknWC([H+]), (14)

where [H+] is the independent variable and γ and A (alka-
linity) are parameters. With these two function definitions,
Eq. (12) is then rewritten as L([H+];γ )= R([H+];AlkT).
Schematic representations of the three γ cases and of the L
and R functions are shown in Fig. 2.

Case γ < 0

The first case can be handled similarly to the AlkT–CO2 and
AlkT–HCO−3 pairs. Equation (12) always has exactly one
root with γ < 0 as the equation function is monotonous and
strictly decreasing with [H+]. Upper and lower bounds for
that root can be derived by solving the (quadratic) equations:

γHinf+
KW

Hinf
+ 2[CO2−

3 ] = AlkT−AlknWCinf (15)

for Hinf and

γHsup+
KW

Hsup
+ 2[CO2−

3 ] = AlkT−AlknWCsup (16)

for Hsup, and retaining the respective positive roots of each.

Case γ = 0

The second case might be considered to be only mathemati-
cally of importance as it only applies for one exact (and thus
improbable) CO2−

3 concentration value. For the sake of com-
pleteness, I nevertheless solve it.

Figure 2. Schematic representation of the general characteristics
of the L([H+];γ ) and R([H+];A) components of the alkalinity–
pH equation for the AlkT−CO2−

3 pair. The grey band delimits
the (monotonous) variations of R([H+];A) for a given alkalin-
ity A. The band moves up and down without being distorted as
A is increased, respectively, decreased. For a given pair of AlkT–
CO2−

3 concentrations, the actual equation to solve is L([H+];γ )=

R([H+];AlkT), where γ =
[CO2−

3 ]

K2
−

1
s . γ = 0 thus corresponds to

[CO2−
3 ] =

K2
s .

As mentioned above, if γ = 0, Eq. (12) has one solution
if and only if AlkT−AlknWCinf > 2[CO2−

3 ], and no solution
otherwise. The root can be easily bracketed from below. It is
sufficient to choose Hinf such that

KW

Hinf
= AlkT− 2[CO2−

3 ] −AlknWCinf

leading to L(Hinf;γ )−R(Hinf;AlkT) > 0. The analogue
equation for Hsup, with AlknWCinf replaced by AlknWCsup
(cf. Eqs. 15 and 16) does not work if AlkT−AlknWCsup ≤

2[CO2−
3 ]. The newly derived asymptotic approximation for

AlknWC([H+]) as [H+] →+∞ (see the “Mathematical and
Technical Details” report in the Supplement) nevertheless
provides a means to derive an upper bound. It is sufficient
to choose Hsup such that

KW

Hsup
= AlkT− 2[CO2−

3 ] −AlknWCinf−

∑
i[6A[i]]K1,[i]

Hsup
,
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where i denumbers the acid systems considered, except for
the carbonate system, [6A[i]] is the total amount of the acid
i dissolved and K1,[i] is the first dissociation constant of the
acid system i. This equation always has a solution and, taking
into account that

AlknWC([H+]) < AlknWCinf+

∑
i[6A[i]]K1,[i]

[H+]
,

which is valid for [H+]> 0, it is straightforward to show
that L(Hsup;γ )−R(Hsup;AlkT) < 0 with this choice. Equa-
tion (12), which is equivalent to L(H ;γ )−R(H ;AlkT)= 0
thus has a single root between Hinf and Hsup.

Case γ > 0

The third case is the most commonly encountered and the
most challenging. With γ > 0, L([H+];γ ) has a minimum
and the location of that minimum is a critical parameter in
the analysis of this case. Let us denote the location of that
minimum by Hmin and the value that L takes there by Lmin:

Hmin =

√
KW

γ
and Lmin = 2

√
γKW+ 2[CO2−

3 ].

There are two ranges of AlkT values where firm conclusions
can be drawn right away.

1. If R(Hmin;AlkT) > Lmin, i.e. if AlkT > Lmin+

AlknWC(Hmin), Eq. (12) has two distinct roots, since
R(H ;AlkT) is bounded. Furthermore, the roots –
let us provisionally denote the lower one H1 and
the greater one H2 – are such that H1 <Hmin and
H2 >Hmin. Hmin can thus be used as an upper bracket
for H1 and as a lower bracket for H2. However, if
AlkT−AlknWCsup > Lmin, the abscissae of the inter-
section points PLL and PLR (see Fig. 2), which are
solutions of

γH +
KW

H
= AlkT− 2[CO2−

3 ] −AlknWCsup,

provide tighter brackets than Hmin.

2. If AlkT−AlknWCinf ≤ Lmin, i.e. if AlkT ≤ Lmin+

AlknWCinf, Eq. (12) does not have any roots.

For intermediate values of AlkT, no firm quantitative state-
ment regarding the root(s) of Eq. (12) can be made a pri-
ori. As AlkT decreases from Lmin+AlknWC(Hmin) to Lmin+

AlknWCinf, Eq. (12) will at first still have two roots, but
both are greater than or equal to Hmin. At some intermedi-
ate value, L([H+];γ ) and R([H+];AlkT) become tangent.
At this point, Eq. (12) has one double root, which is the ab-
scissa of that tangent point, Htan. Htan is actually a univer-
sally valid separation limit between two roots, if there are
any. For lower values of AlkT, the problem does not have
any solutions.

Figure 3. Determination of the A value for which the L([H+];γ )
and R([H+];A) curves become tangent, or, equivalently, the lowest
AlkT value for which the equation L([H+];γ )−R([H+];AlkT)=
0 has a solution. Panel (a) shows how relevant characteristic points
can be derived by considering the particular R([H+];A) curve that
intersects L([H+];γ ) at its minimum. Panel (b) shows the locus
of the solutions of L([H+];γ )−R([H+];AlkT)= 0 in an [H+] −
AlkT) graph, i.e. the curve AlkT)= L([H+];γ )+AlkncW([H+]).
Please notice that Amin = Lmin+AlkncW(Hmin) denotes the alka-
linity value obtained for [H+] =Hmin, and not the minimum value
of the curve shown in panel (b). See text for details.

The limiting AlkT value for which the two curves are tan-
gential and the corresponding Htan value can be calculated
with a common algorithm to characterise a bracketed local
minimum, such as Brent’s algorithm (Brent, 1973). To start,
we reconsider L([H+];γ )−R([H+];A)= 0 not as an equa-
tion in [H+] for given parameter values γ (or, equivalently,
[CO2−

3 ]) and A, but rather as an implicit definition for A as
a function of [H+], for a given γ (here γ > 0). This implicit
function definition can actually be solved explicitly here:

A([H+])= L([H+];γ )+AlkncW([H+]).

Figure 3 shows how the two problems are related and which
information can be derived from the analysis of L([H+];γ )
and R([H+];A) to contribute to the solution of the minimi-
sation of A([H+]). The determination of Htan is costly, gen-
erally more costly than the subsequent resolution of the pH
equation itself. As mentioned right at the beginning of this
section, there are extended ranges of AlkT values for which
the exact knowledge of Htan is not indispensable. In these
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situations Hmin may be a sub-optimal but nevertheless suf-
ficient separation limit for the roots (or equal to the double
root itself) and cheap to calculate. If available, Htan can be
used as an upper bound for the lower and as a lower bound
for the greater of the two roots. To start the minimisation
algorithm to derive Htan, we can use the three characteris-
tic [H+] values from Fig. 3 as initial conditions. These are
Hmin together with the abscissae HL and HR of the inter-
section points between L([H+];γ ) and the horizontal line at
Alkmin−AlknWCinf, which are the roots of

γH 2
− (Alkmin− 2[CO2−

3 ] −AlknWCinf)H +KW = 0.

By construction, Alkmin−AlknWCinf > Lmin = 2
√
γKW+

2[CO2−
3 ]. The discriminant of this quadratic equation is

therefore strictly positive and the equation has two positive
roots (their sum and their product are positive) as required. It
is possible to show that the second derivative of R([H+];A)
with respect to [H+] is positive provided that the succes-
sive dissociation constants Kj,[i] of the different acid sys-
tems (denumbered by i) resulting from the dissociation of an
acid Hn[i]A[i] are such that Kj,[i] < 1

2Kj−1,[i],j = 2, . . .,n[i]
– a very weak constraint as these constants generally differ
by a few orders of magnitude. This has been verified to be
the case for acid systems with n[i] = 1, . . .,12. The under-
lying technical developments can be found in the “Math-
ematical and Technical Details” report in the Supplement.
R([H+];A) is thus concave, while L([H+];γ ) is convex for
γ > 0. A([H+]) thus has only a single local minimum com-
prised between HL and HR.

OnceHtan is known, the root brackets can be completed by
the intersection points between L([H+];γ ) and the horizon-
tal line at AlkT−AlknWCinf – corresponding to the PUL and
PUR points in Fig. 2 with the grey band shifted down to in-
clude the minimum – i.e. by solving the same quadratic equa-
tion than for HL and HR, with Alkmin replaced by AlkT. We
have again AlkT−AlknWCinf > Lmin, and the equation has
two positive roots. With these brackets on the two roots, any
safeguarded iterative procedure, such as those implemented
in SolveSAPHE, can be used to find the two roots in a con-
trolled way.

2.4.2 Two roots: which one to choose?

Since every physical aqueous sample has a pH, the case with-
out roots is essentially a theoretical one: it can actually arise
only if the adopted alkalinity composition is not appropriate
or if measurement errors are large. The case where an AlkT–
CO2−

3 data pair is compatible with two different pH values
is, on the contrary, the most common one. SolveSAPHE-r2
has been designed as a universal pH solver and as such re-
turns all the roots that a data pair may offer, since there is
no universal criterion to decide which one of the two roots is
preferable over the other.

However, at the end of the calculations, one of the two has
to be chosen. Additional information, qualitative or quantita-

tive, is required to make that decision. This could be a third
measurable, but often even qualitative information about,
say, the expected pH or the CT range might be sufficient. For
typical seawater samples, the greater of the two [H+] solu-
tions will typically be the adequate one, following the “use
the larger one” advice of Zeebe and Wolf-Gladrow (2001).

In the analysis of the AlkT–CO2−
3 problem above, we de-

termined the AlkT ranges that would, respectively, lead to
two, one or no roots, for a given γ , i.e. [CO2−

3 ]. To better un-
derstand the reasons why and when there are two, one or no
roots and what other implications the individual roots have,
it is instructive to perform the analysis the other way around:
figure out how [CO2−

3 ] evolves as a function of pH for a given
value of AlkT, and determine the [CO2−

3 ] ranges that would,
respectively, lead to two, one or no roots. Such an analysis is
presented in Fig. 4. For that figure, we have reconsidered the
sample composition previously used in Fig. 1c and f. We thus
start with AlkT fixed at 2.3 mmolkg−1 and draw the evolu-
tion of [CO2−

3 ] as a function of pH following

CO3([H+];AlkT)=
AlkT−AlknWC([H+])− KW

[H+] +
[H+]
s

[H+]
K2
+ 2

,

(17)

obtained by first using Eq. (9) to express [CO2−
3 ] as a func-

tion of AlkC and [H+], and then Eq. (2) to calculate AlkC
as a function of AlkT and [H+] (and the total concentrations
of all the other contributing acid–base systems, which we as-
sume to be known, as stated initially). CO2 and HCO−3 evo-
lution curves can be derived similarly, by using Eqs. (7) and
(8), respectively, instead of Eq. (9). The concentration evo-
lution for the other AlkT contributors can be calculated from
their species fraction equations (see, e.g. Munhoven, 2013).
Figure 4a shows the concentration curves for all the species
contributing to total alkalinity and dissolved inorganic car-
bon, for pH values ranging from 3 to 12, and for AlkT =

2.3 mmol kg−1; Fig. 4b shows the [CO2−
3 ] evolution curves

for different AlkT values, ranging from 0.5 to 2.5 mmolkg−1.
Solving the AlkT–CO2−

3 problem for our showcase sample
where [CO2−

3 ] = 0.1 mmolkg−1 thus means drawing a hor-
izontal line through the 0.1 mmolkg−1 concentration level
and locating the intersection points with the CO2−

3 curve, if
any. There are actually two of them, located at pH= 8.03
and pH= 11.43. With increasing target values for [CO2−

3 ],
i.e. moving the horizontal line upward, the two pH roots
will move closer and closer together, until the maximum of
the CO3 curve is touched, at CO3 max = 841.7 µmolkg−1. At
this exact value, there will only be one root: pH= 10.1943.
Positioning the line higher up does not allow any intersec-
tion with the CO3 curve any more: there are no roots for
[CO2−

3 ]> CO3 max. As illustrated in Fig. 4b, the value of
CO3 max grows as AlkT increases, thus extending the range
of [CO2−

3 ] that allows for roots. Another noteworthy fact in
Fig. 4b is that all the displayed CO2−

3 curves increase to a
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Figure 4. (a) Evolution of the concentrations of the different species composing AlkT–CT, as a function of pH, for AlkT = 2.3 mmol kg−1.
CT and the concentrations all of its components reduce to 0 at pH= 11.48 (marked by the long-dashed vertical black line) in this example. The
dashed orange line represents the joint contribution of B(OH)−4 and OH− which are the dominant AlkT contributors at high pH. (b) [CO2−

3 ]

as a function of pH for different AlkT values (indicated in mmol kg−1 for each curve). Each curve represents a horizontal cross-section at
the corresponding AlkT level through the [CO2−

3 ] distribution depicted in Fig. 1e.

maximum before declining and reducing to zero at some fi-
nite pH. While not all possible curves have that shape (it
is possible to show that curves for AlkT < AlknWCinf+ 2K2

s
are monotonously decreasing), all of them nevertheless go
to zero. The equation CO3([H+];AlkT)= 0 actually always
has exactly one root, for any given AlkT, since this simply
requires that the numerator on the right-hand side of Eq. 17)
is 0, i.e. that [H+] is the solution of a standard alkalinity–pH
equation where CT = 0. Such an equation always has exactly
one positive solution, for any physically meaningful set of to-
tal concentrations of the different acid–base systems at play
and any AlkT value (Munhoven, 2013). The pH value at that
zero-crossing point is furthermore the maximum possible
pH for the given AlkT: beyond that value, the ever-growing
[OH+] would inevitably make AlkT increase above the fixed
value, thus requiring AlkC to become negative, which is not
possible.

As can be seen in Fig. 4a, the high-pH solution goes
together with CT ' [CO2−

3 ]: CO2−
3 represents only 4.6 %

of the CT at pH= 8.03, typical for seawater, but 99.2 %
at pH= 11.43. Accordingly CT = 0.1008 mmolkg−1 at the
high-pH root, which is unrealistically low for many natural
samples. In the marine realm, this observation regarding the
high-pH root is actually correct in general. CO2−

3 represents
more than 80 % of DIC for pH > 10, and more than 90 % for
pH > 10.3, as can be calculated from Eq. (6). In Fig. 4b, one
can see that the maxima of the CO3 curves are greater than
0.47 mmolkg−1 for AlkT ≥ 1.5 mmolkg−1 and that they are
located at pH > 10. Since the larger of the two solutions
is always at a pH greater than or equal to the maximum of
the curve that it must intersect, we may conclude that for
[CO2−

3 ]< 0.47 mmolkg−1 and AlkT ≥ 1.5 mmolkg−1, the
greater of the two pH roots always implies that CO2−

3 repre-
sents more than 80% of CT. Accordingly, even a rough esti-
mate of one of the other relevant parameters of the carbonate
system might be sufficient to reject one of the two roots.

2.5 Initialisation: rationale

Since we have bracketing intervals for each diagnosed
root, we may always use the fall-back initial value H0 =√
HinfHsup. This value is, however, often far from optimal.

The efficient initialisation strategy of Munhoven (2013) can
be generalised and adapted to each of the three pairs. For
each case, we choose the most complex AlkT approximation
that leads to a cubic equation. If the cubic polynomial be-
hind that equation does not have a local minimum and a local
maximum, we use the fall-back value. If such a local mini-
mum and maximum exist, we use the quadratic Taylor expan-
sion around the relevant extremum – this will normally be the
maximum if the coefficient of the cubic term is negative, and
the minimum if that coefficient is positive. If that quadratic
does not have any positive roots, the fall-back initial value is
used. The roots for that quadratic are then determined. For
problems that have only one positive [H+] solution (AlkT–
CO2, AlkT–HCO−3 and AlkT–CO2−

3 with γ < 0), we con-
sider that root of the quadratic expansion that is greater than
the greatest location of the two extrema: if that root is lower
than Hinf, we use H0 =Hinf; if it is greater than Hsup, we set
H0 =Hinf. For problems that have two positive [H+] solu-
tions (AlkT–CO2−

3 with γ > 0 and sufficiently great AlkT),
the initial value for determining the greater of the two [H+]
solutions can be chosen exactly the same way; the initial
value required to calculate the lower of the two [H+] solu-
tions may be more tricky. If the location of the right-hand
side extremum is too close to 0, the estimated root of the cu-
bic may be negative. In this case, the quadratic fitted to left-
hand extremum should be considered as well and the greater
of its roots tested. Because of the symmetries of a cubic, that
root can be calculated with a few extra additions only.

The developments for each of the three input pairs are pre-
sented in full detail in the “Mathematical and Technical De-
tails” report in the Supplement.
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3 Numerical experiments

3.1 Reference Fortran 90 implementation

The SolveSAPHE Fortran 90 library from Munhoven
(2013) – hereafter SolveSAPHE v1 – has been re-
vised, cleaned up and upgraded to allow the process-
ing of the additional three pairs. For the purpose of
this paper, only the two main solvers have been kept:
these are solve_at_general, which uses a Newton–
Raphson method, and solve_at_general_sec, which
uses the secant method. Both can be still be used with
the same application programming interface (API) as
in v1. The instances in SolveSAPHE-r2 are, however,
only wrappers to the newly added Newton–Raphson-based
solve_at_general2 and secant (or more precisely
regula falsi) based solve_at_general2_sec both of
which are able to process problems that have two roots. They
return the number of roots of the problem, as well as their
actual values, if any.

In the course of the developments related to the AlkT–CO2
pair, the Newton–Raphson-based algorithm showed a few
weaknesses. With the AlkT–CT pair that SolveSAPHE v1
had been designed for, each non-water alkalinity term was
bounded, just like its derivative. Once CO2 takes the role of
CT these favourable properties are lost: with [CO2] fixed, the
carbonate alkalinity term and its derivative with respect to
[H+] become unbounded. Newton iterates can then change
by large amounts and floating point over- and underflow er-
rors on the exponential correction became common. The rate
of change for Newton–Raphson iterates during each step was
therefore limited to a factor of 100. With high CO2 concen-
tration values prescribed, there was another loss of control on
the iteration sequence that had not been encountered before.
At some iterations, most often at the first one, it happened
that one of the two root brackets, say the upper one, was re-
duced to the iteration value. In the next iteration, that same
bound was exceeded by the trial Newton–Raphson iterate,
which was then rejected and replaced by a bisection iterate
on the interval delimited by the previous iterate and the upper
bracket. Since both were identical, the bisection actually pro-
duced no variation and falsely led to convergence diagnosis.
This has been fixed by changing the interval whereon the bi-
section step is performed to that delimited by the lower and
the upper brackets of the root, which are always different.2

The unbounded variations of the carbonate alkalinity term
when one of the individual species was used instead of CT
furthermore required to modify the stopping criterion for the
iterations: in SolveSAPHE v1, iterations are stopped as soon
as the relative difference between successive iterates falls be-
low a set tolerance ε (ε = 10−8 by default). However, itera-

2Both corrections have been backported to the version 1 branch
of SolveSAPHE and are included in v1.1 in the SolveSAPHE
archive on Zenodo (Munhoven, 2013–2021).

tions for AlkT–CO2 and for the greater root of AlkT–CO2−
3

were prone to early termination with that stopping criterion,
as iterates only slowly changed due to the extreme gradients
in the AlkC term of the equation. The stopping criterion is
therefore now based upon the width of the bracketing inter-
val, and iterations are stopped as soon as (Hmax−Hmin) <

ε 1
2 (Hmax+Hmin), where Hmax and Hmin are, respectively,

the upper and lower brackets of the root, which are contin-
uously updated as iterations progress. As a consequence of
this change, the number of bisection steps considerably in-
creased. In order to speed up convergence, most bisection
steps were replaced by regula falsi steps on [Hmin,Hmax].
Bisection steps are only used occasionally when either the
minimum or maximum root bracket gets updated too often in
a row (three times by default) which indicates that the equa-
tion values at Hmax and Hmin have strongly different mag-
nitudes. Unfortunately, the number of iterations required for
the original SolveSAPHE pair AlkT–CT increases with this
stopping criterion, without any appreciable gain in precision
(compare, e.g. the number of iterations from Fig. 3b and the
residuals from Fig. 1d in Munhoven (2013), with the num-
ber of iterations required here as reported in Fig. 6 for SW3
and the synthetic overview of the equation residuals reported
in Tables S4 and S5 in the “Additional Results” section in
the Supplement). For modelling purposes, where AlkT–CT is
generally the relevant pair of data, SolveSAPHE v1 remains
the most efficient choice. Tests have shown that the two safe-
guarded algorithms from SolveSAPHE v1 typically require
40 %–45 % less computing time than their SolveSAPHE-r2
counterparts.

Finally, as explained above, some AlkT–CO2−
3 combina-

tions require the solution of an auxiliary minimisation prob-
lem. For this purpose, Brent’s algorithm was implemented
into SolveSAPHE (translated to Fortran 90 from the Algol
60 version in Brent (1973, Sect. 5.8), taking into account
the author’s errata reported on https://maths-people.anu.edu.
au/~brent/pub/pub011.html (last access: 24 June 2021) and
his modifications to the original algorithm as implemented in
https://www.netlib.org/go/fmin.f (last access: 24 June 2021).

3.2 Results and discussion

3.2.1 Test case definitions

Results from the three test cases (SW1, SW2 and SW3) from
Munhoven (2013) were used as starting points to define sets
of AlkT–CO2, AlkT–HCO−3 and AlkT–CO2−

3 concentration
pairs to drive the test case experiments. Two supplementary
cases were added here: BW4 for surface brackish water with
S = 3.5 and ABW5 (based upon the data of Yao and Millero
(1995) for the Framvaren Fjord, Norway) for anoxic brack-
ish water with AlkT and CT values 7 to 9 times higher than
in the open ocean, as well as comparatively high alkalinity
contributions from phosphates, silicates, sulfides, phosphates
and ammonium. For CO2 and CO2−

3 , which are most conve-
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Table 1. Ranges of variation for the input variables for the five test cases. Experiments always considered AlkT and either one of CT, [CO2],
[HCO−3 ] or [CO2−

3 ].

SW1 SW2 SW3 BW4 ABW5

scale min max min max min max min max min max

AlkT/[mmolkg−1] linear 2.20 2.50 2.20 3.50 −1.0 5.0 0.0 1.5 17.0 20.0
CT/[mmolkg−1] linear 1.85 2.45 1.85 3.35 0.0 6.0 0.0 1.2 15.0 17.5
[CO2]/[molkg−1] log. 10−6 10−3 10−7 10−3 10−14 10−2 10−12 10−3 10−4 10−2

[HCO−3 ]/[mmolkg−1] linear 1.20 2.40 0.60 3.20 0.0 5.0 0.0 1.0 13.0 17.0
[CO2−

3 ]/[molkg−1] log. 10−5 10−3 10−6 10−3 10−14 10−2 10−9 10−3 10−5 10−3

niently handled on a logarithmic concentration scale, the rep-
resentative ranges were adapted so that the range endpoints
are integer powers of 10. The adopted ranges and scales are
reported in Table 1. Each of the SW1, SW2 and SW3 test
cases is complemented with three sets of temperature, salin-
ity and pressure conditions for typical environments (surface
cold, surface warm and deep cold seawater); for BW4, only
one such set for cold surface dilute or brackish water is used
(T = 275.15 K, S = 3.5) and for ABW5 one set for subsur-
face brackish water (P = 13.5 bar, S = 22.82).

For the comparison of the computational requirements for
the processing of each set of samples, the adopted [CO2],
[HCO−3 ] or [CO2−

3 ] distributions are adapted. Although the
[CO2], [HCO−3 ] and [CO2−

3 ] ranges for each test case re-
ported on Table 1 have been defined on the basis of their
respective distributions calculated from the AlkT–CT results
and although the adopted grids have the same dimensions,
they do not cover exactly the same “samples” in any given
test case. To overcome that inconsistency, each test exper-
iment for the intercomparison is first carried out with the
AlkT–CT pair and the results stored. For the other three pairs,
the pH distribution obtained with the AlkT–CT pair for the
corresponding set of temperature, salinity and pressure is first
read in and the corresponding [CO2], [HCO−3 ] or [CO2−

3 ] dis-
tribution calculated on the underlying CT–AlkT grid. The so-
obtained arrays of species concentrations are then used to de-
fine the set of AlkT–CO2, AlkT–HCO−3 and AlkT–CO2−

3 data
pairs for the benchmark calculations. This way, the test case
experiments for the four different characteristic carbonate
system concentrations cover exactly the same set of samples
in each test case. These sample sets cannot be represented
on rectangular [CO2]–AlkT, [HCO−3 ]–AlkT or [CO2−

3 ]–AlkT
grids, respectively, which is nevertheless irrelevant for the
histogram syntheses presented in Figs. 6 and 7. These vari-
ants of the test cases are denoted SW1CT, SW2CT, SW3CT,
BW4CT and ABW5CT.

3.2.2 Results

While all the test cases have their specific relevance, we are
going to focus on SW2 for most of our discussion here. SW2
covers currently observed seawater samples, thus encom-

passing SW1, and conditions expected to occur over the next
50 000 years as derived from simulation experiments carried
out with MBM-MEDUSA (Munhoven, 2009). A wider se-
lection of results also for the other cases is presented in the
“Additional Results” in the Supplement. pH distributions for
the SW2 test case are shown in Fig. 5.

The difficulties posed by AlkT–CO2 that were at the
origin of most of the amendments to the solver algo-
rithms show up in the histograms for the number of it-
erations required to reach convergence shown in Fig. 6
for solve_at_general which uses the hybrid Newton–
Raphson–regula falsi–bisection scheme and in Fig. 7 for
solve_at_general_sec which uses the hybrid secant–
regula falsi–bisection scheme. With each one of the two
solvers, AlkT–CO2 problems require in general more iter-
ations to conclude than the other three pairs. This is es-
pecially pronounced with solve_at_general (Fig. 6),
where a considerable fraction of the AlkT–CO2 samples re-
quires 45 to 55 and more iterations. In comparison, AlkT–
CT samples typically require about four to eight iterations
for naturally occurring compositions, and only in some
rare instances more than 20 for the extreme SW3. The
other pairs range between these two, AlkT–HCO−3 com-
ing closest to AlkT–CT. ABW5 shows a few deviations
from the other tests cases. Here, solving the AlkT–CO2
problem with solve_at_general nearly always takes
more than 50 iterations, with solve_at_general al-
most always nine. The solution of AlkT–CT for ABW5 with
solve_at_general_sec takes considerably more itera-
tions than AlkT–CO2−

3 (the fastest), and AlkT–CO2 (the sec-
ond fastest).

Finally, Figs. 6 and 7 demonstrate the superiority of
solve_at_general_sec over solve_at_general.
All in all, the former requires only one-fourth to one-half of
the number of iterations than the latter, and it produces root
approximations characterised by equation residuals that are
up to 7 orders of magnitude lower than those obtained with
the former (see Tables S4 and S5 in the “Additional Results”
section in the Supplement). ABW5 again presents an excep-
tion to this general pattern: solve_at_general_sec re-
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Figure 5. pH distributions for the SW2-sc test case (SW2 under cold surface conditions, where T = 273.15 K, S = 35 and P = 0 bar),
obtained with solve_at_general2_sec: (a) AlkT–CO2; (b) AlkT–HCO−3 ; (c) the lower [H+] root (higher pH root) of AlkT–CO2−

3 ;

(d) the greater [H+] root (lower pH root) of AlkT–CO2−
3 . The thick dashed grey line in panels (c) and (d) shows the critical limit above

which the AlkT–CO2−
3 always has two roots. Below this limit, further calculations are required to determine the number of solutions. More

details are given in the text and in the Supplement. Please notice the different scales on the horizontal axes and for the pH colour coding in
the four panels.

quires typically about twice as many iterations to solve the
AlkT–CT problem than solve_at_general.

All these observations are also reflected in the execution
times of the two solvers. The Newton–Raphson-based solver
takes more than 5 times as much time for the SW2 test
case with AlkT–CO2 than with AlkT–CT; for AlkT–CO2−

3 ,
it takes 4 times as much (for both roots though, including
the solution of the minimisation problem for part of the do-
main). For AlkT–HCO−3 , the difference is only 20 %. With
the secant-based method, the picture is completely different:
AlkT–CO2 takes only about 30 % more time than AlkT–CT,
AlkT–CO2−

3 twice as much, whereas AlkT–HCO−3 executes
even about 5 % faster. For the AlkT–CO2 pair of input data,
the difference between the two solvers is greatest: the secant-
based one takes less than one-fourth of the time taken by the
Newton–Raphson-based one.

Another key factor that influences the execution times is
the initialisation scheme, although the comparisons are not
as clear cut as in Munhoven (2013). Safe initialisation with
the geometric mean of the root brackets (the fall-back initial-
isation value mentioned in Sect. 2.5) results in 40 %–60 % in-
creases of the execution times for the AlkT–CT and the AlkT–
HCO−3 input pairs, compared to the standard cubic polyno-

mial one. Similar increases are obtained with a constant uni-
form pH= 8 initialisation. For AlkT–CO2, and AlkT–CO2−

3 ,
the differences are much smaller and range between a de-
crease or an increase of up to 5 %. With these two, the quality
of the root brackets seems to be more critical than the initial
value.

In the analysis in Sect. 2.4.1, two characteristic thresh-
olds for AlkT have been made out for γ > 0: an upper one
at Lmin+AlknWC(Hmin), above which the problem always
has two [H+] solutions, and a lower one at Lmin+AlknWCinf,
below which the problem does not have any solution at all.
For intermediate values of AlkT, it is necessary to determine
Htan and Alktan to find out how many roots the problem has,
and, in case there are two, where the separation between
them lies. The minimisation procedure required to determine
Htan is computationally expensive as can be seen in Fig. 8
(for SW2-sc). The most probable number of iterations is in
all experiments between 21 and 25; the median number is
each time 0.9± 0.5 higher than the most probable number,
due to the skew-symmetric nature of the distribution of the
number of iterates, as illustrated in the insert in Fig. 8 (see
also Fig. S23 in the “Additional Results” section in the Sup-
plement). The subsequent computation of the roots is much
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Figure 6. Number of iterations to convergence required by the various data pairs (separately for the lower and the greater [H+] roots of
the AlkT–CO2−

3 problem), for each of the four test cases, carried out with solve_at_general (using a hybrid Newton–Raphson–regula
falsi–bisection method). The absolute maximum numbers of iterations were 58, 67, 64 and 56, for SW2, SW3, BW4 and ABW5, respectively,
and 58 for SW1 (not shown).

Figure 7. Number of iterations to convergence required by the various data pairs (separately for the lower and the greater [H+] roots of the
AlkT–CO2−

3 problem), for each of the four test cases, carried out with solve_at_general_sec (using a hybrid secant–regula falsi–
bisection method). The absolute maximum numbers of iterations were respectively 20, 21, 29 and 27, for SW2, SW3, BW4 and ABW5,
respectively, and 20 for SW1 (not shown).
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Figure 8. Number of iterations required by Brent’s algorithm in the
SW2 test case to solve the auxiliary minimisation problem whose
solution determines the number of roots of the AlkT–CO2−

3 pair and
also provides the separation between the two roots. The white area
covers the region where the solution of the minimisation problems
is not required as AlkT is sufficiently high so that there were two
roots. The insert shows the frequency distribution of the number
of iterations required. The black line in the lower right corner traces
the limit between regions with two roots and without roots (compare
with Fig. 5c and d).

cheaper: for the lower root, the secant-based algorithm most
probably takes five iterations, and only occasionally 15–16,
and for the greater root, most probably four and only rarely
more than nine. The total number of samples in the SW2
test case is 1.95 million. Overall, 10 500 (0.54 %) of these do
not have any root for the AlkT–CO2−

3 pair and the solution
of the minimisation problem is required for 173 445 samples
(8.89 %), because Htan is required to separate the two roots.
The lower threshold essentially turns out as useless: it ranges
at about −28 mmol kg−1. This is due to the hydrogen sulfate
acid system which strongly dominates the AlknWC minimum
in seawater, because of the high total sulfate concentration
in seawater (ST ' 28mmolkg−1). For carbonate ion concen-
trations below 400 µmolkg−1, i.e. for most of the naturally
occurring waters, the AlkT–CO2−

3 problem will always have
two roots and the solution of the auxiliary minimisation prob-
lem is not required to characterise them.

4 Conclusions

The approach adopted in SolveSAPHE (Munhoven, 2013)
to safely determine carbonate speciation in particular, and
speciation calculations of mixtures of acids in aqueous solu-
tion in general, knowing only the total concentrations of the
different acid systems and the total alkalinity of the system
was adapted and extended here to use [CO2], [HCO−3 ] and
[CO2−

3 ] instead of the total inorganic carbon concentration,
CT. The rationale can be entirely transposed to these three
pairs: (1) the amended alkalinity–pH equations for AlkT–
CO2 and for AlkT–HCO−3 still have one and only one pos-

itive solution, while AlkT–CO2−
3 may have no solution, or

one or two; (2) intrinsic brackets that only depend on a priori
available information can be derived for the root of the AlkT–
CO2 and AlkT–HCO−3 problems, as well as for the two roots
of AlkT–CO2−

3 problems that may have to be solved for nat-
urally occurring sample compositions. More uncommon but
physically realistic AlkT–CO2−

3 problems may additionally
require the solution of an auxiliary minimisation problem to
determine the threshold AlkT value below which the problem
does not have any roots and above which it has two of them.
The solution of this problem also provides a separation value
of the two roots. To our best knowledge, SolveSAPHE is the
first package to offer a complete solution of the AlkT–CO2−

3
problem, autonomous above all.

The two safeguarded numerical solvers from
SolveSAPHE v1 have been adapted to allow for the
solution of problems that may have up to two roots. The
Newton–Raphson–bisection-based solver required extensive
modifications for the reliable solution of the numerically
far more challenging AlkT–CO2, AlkT–HCO−3 , and AlkT–
CO2−

3 problems. Most bisection steps have been replaced
by regula falsi steps for increased convergence speed. The
secant–bisection solver only required minimal adaptations.
A Fortran 90 reference implementation, SolveSAPHE-r2,
was prepared and used to evaluate the performance of the
different methods for solving four benchmark problems.
While the secant–bisection method was already slightly
superior to the Newton–Raphson–bisection method in
SolveSAPHE v1, that advantage has now become over-
whelming: in SolveSAPHE-r2, it typically requires 2 to
4 times fewer iterations, and for the newly handled pairs,
the equation residuals are orders of magnitude lower
than the Newton–Raphson–regula falsi–bisection-based
solver (typically of the order of 10−19–10−18 compared to
10−13–10−12).

For carbonate speciation problems posed by AlkT and ei-
ther one of [CO2], [HCO−3 ] or [CO2−

3 ], the secant-based rou-
tine from SolveSAPHE-r2, solve_at_general2_sec,
is thus clearly the method of choice; for calculations
on the basis of AlkT–CT, both solve_at_general
and solve_at_general_sec from SolveSAPHE v1
will perform better, although the secant-based solver is
marginally faster once again.
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Appendix A: The direct cases

For the sake of completeness, I provide here succinct
“recipes” to calculate all the different carbonate system re-
lated variables, knowing two of them. Many of these were
already known in the 1960s (see, e.g. Park, 1969). The Guide
to Best Practices for Ocean CO2 Measurements (Dickson
et al., 2007) lists the most commonly used pairs and further-
more includes procedures for selected triplets and quartets,
for which not all of the equilibrium constants are required. In
the following, we assume that there are direct and invertible
relationships between [CO2] and the fugacity (fCO2) or the
partial pressure (pCO2) of CO2 and between pH and [H+]
on any chosen pH scale. We therefore restrict ourselves to
[CO2] and [H+].

The conditions for the existence of a solution are gener-
ally that the concentrations of H+ and of the DIC species are
strictly positive. In some instances, the input data must fulfil
additional constraints that are, however, not always straight-
forward to quantitatively state a priori.

CT and CO2, CT and CO2−
3 : (1) With these two pairs, the

[CO2]/CT fraction (the [CO2−
3 ]/CT fraction) is fixed

and Eq. (4) (Eq. 6) defines a quadratic equation in
[H+] that always allows for exactly one positive solu-
tion; (2) calculate the remaining two species concen-
trations from their respective species fraction; (3) AlkT
from Eq. (1). In addition to the positivity of the species
concentrations, the following constraints must be met:
[CO2]< CT and [CO2−

3 ]< CT.

CT and HCO−3 : With this pair, the [HCO−3 ]/CT fraction,
denoted by b hereafter, is fixed, and Eq. (5) becomes
a quadratic equation in [H+]. That equation has two
positive solutions if b < 1/(1+ 2

√
K2/K1), one dou-

ble root if b = 1/(1+ 2
√
K2/K1) and no real solu-

tions if b > 1/(1+ 2
√
K2/K1). This is well illustrated

in Fig. 1b above: there are CT–[HCO−3 ] combinations
that allow for two different AlkT values and, equiva-
lently, two pH values, and there are others that do not
allow for any. Please notice that the threshold fraction
1/(1+ 2

√
K2/K1) is always lower than 1 and the natu-

ral a priori constraint requiring that b < 1 is thus insuffi-
cient to guarantee a solution: for T = 275.15 K, S = 35
and P = 0 bar, the threshold ratio is 94.48 %.
When there are two roots, one faces a similar dilemma
as with the AlkT–CO2−

3 problem: which one to choose?
Most often, the lower of the two will again be the ap-
propriate one, as that one typically leads to AlkT > CT,
whereas the greater one leads to AlkT < CT. This crite-
rion might be sufficient to discriminate between the two
– in seawater it generally is – but in some instances ad-
ditional information, quantitative or qualitative, might
be in order.
In general, (1) solve the quadratic equation and choose
the appropriate of the two roots; (2) calculate [CO2] and

[CO2−
3 ] from their respective species fractions; (3) AlkT

from Eq. (1).

CO2 and HCO−3 : (1) [H+] from K1; (2) [CO2−
3 ] from

K2; (3) CT can be calculated from the three carbonate
species concentrations; (4) AlkT from Eq. (1).

CO2 and CO2−
3 : (1) [HCO−3 ] from [HCO−3 ]

2
=

K1/K2[CO2] [CO2−
3 ]; (2) CT from the three car-

bonate species concentrations; (3) [H+] fromK1 orK2;
(4) AlkT from Eq. (1).

HCO−3 and CO2−
3 : (1) calculate [H+] from K2; (2) [CO2]

from K1; (3) CT from the three carbonate species con-
centrations; (4) AlkT from Eq. (1).

CO2 and H+ : (1) calculate [HCO−3 ] from K1; (2) calcu-
late [CO2−

3 ] from K2; (3) CT from the three carbonate
species concentrations; (4) AlkT from Eq. (1).

HCO−3 and H+ : (1) calculate [CO2] from K1; (2) calcu-
late [CO2−

3 ] from K2; (3) CT from the three carbonate
species concentrations; (4) AlkT from Eq. (1).

CO2−
3 and H+ : (1) calculate [HCO−3 ] from K2; (2) calcu-

late [CO2] from K1; (3) CT from the three carbonate
species concentrations; (4) AlkT from Eq. (1).

AlkT and H+ : (1) CT from Eq. (2); (2) individual species
concentrations from the species fractions.
As illustrated in Fig. 1d–f above, there are AlkT–[H+]
combinations that lead to physically unrealistic negative
AlkC. Following Eq. (3), negative AlkC requires nega-
tive CT, and vice versa.
The shape of the blank area depends on the non-
carbonate contributors to the total alkalinity. In practice,
such incompatible combinations are unlikely to arise
from measurements, except if the adopted set of AlkT
contributors is inappropriate.

CT and H+ : individual species concentrations from the
species fractions; AlkT from Eq. (1).
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Code availability. All the Fortran 90 codes of SolveSAPHE ver-
sion 1 series (of which v1.0.3 was used to derive the results pre-
sented in Fig. 1) are available on Zenodo from Munhoven (2013–
2021) for use under the GNU Lesser General Public Licence version
3 (LGPLv3) or later. The codes for SolveSAPHE-r2 (v2.0.1) that are
described in this paper are included in the Supplement and made
available for use under the same licence. They are also archived on
Zenodo (Munhoven, 2021). Future bug-fix releases and updates will
also be archived there.

Epitalon et al. (2021) have ported SolveSAPHE-r2 to R (not used
here) for usage under the GNU General Public License version 2
(GPL-2) or 3 (GPL-3).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-14-4225-2021-supplement.
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