Articles | Volume 14, issue 5
Geosci. Model Dev., 14, 2939–2957, 2021
https://doi.org/10.5194/gmd-14-2939-2021
Geosci. Model Dev., 14, 2939–2957, 2021
https://doi.org/10.5194/gmd-14-2939-2021

Model description paper 26 May 2021

Model description paper | 26 May 2021

Variational regional inverse modeling of reactive species emissions with PYVAR-CHIMERE-v2019

Audrey Fortems-Cheiney et al.

Related authors

The Community Inversion Framework v1.0: a unified system for atmospheric inversion studies
Antoine Berchet, Espen Sollum, Rona L. Thompson, Isabelle Pison, Joël Thanwerdas, Grégoire Broquet, Frédéric Chevallier, Tuula Aalto, Peter Bergamaschi, Dominik Brunner, Richard Engelen, Audrey Fortems-Cheiney, Christoph Gerbig, Christine Groot Zwaaftink, Jean-Matthieu Haussaire, Stephan Henne, Sander Houweling, Ute Karstens, Werner L. Kutsch, Ingrid T. Luijkx, Guillaume Monteil, Paul I. Palmer, Jacob C. A. van Peet, Wouter Peters, Philippe Peylin, Elise Potier, Christian Rödenbeck, Marielle Saunois, Marko Scholze, Aki Tsuruta, and Yuanhong Zhao
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-407,https://doi.org/10.5194/gmd-2020-407, 2020
Revised manuscript accepted for GMD
Short summary
Do alternative inventories converge on the spatiotemporal representation of spring ammonia emissions in France?
Audrey Fortems-Cheiney, Gaëlle Dufour, Karine Dufossé, Florian Couvidat, Jean-Marc Gilliot, Guillaume Siour, Matthias Beekmann, Gilles Foret, Frederik Meleux, Lieven Clarisse, Pierre-François Coheur, Martin Van Damme, Cathy Clerbaux, and Sophie Génermont
Atmos. Chem. Phys., 20, 13481–13495, https://doi.org/10.5194/acp-20-13481-2020,https://doi.org/10.5194/acp-20-13481-2020, 2020
Short summary
Atmospheric ammonia (NH3) over the Paris megacity: 9 years of total column observations from ground-based infrared remote sensing
Benoît Tournadre, Pascale Chelin, Mokhtar Ray, Juan Cuesta, Rebecca D. Kutzner, Xavier Landsheere, Audrey Fortems-Cheiney, Jean-Marie Flaud, Frank Hase, Thomas Blumenstock, Johannes Orphal, Camille Viatte, and Claude Camy-Peyret
Atmos. Meas. Tech., 13, 3923–3937, https://doi.org/10.5194/amt-13-3923-2020,https://doi.org/10.5194/amt-13-3923-2020, 2020
Short summary
Global atmospheric carbon monoxide budget 2000–2017 inferred from multi-species atmospheric inversions
Bo Zheng, Frederic Chevallier, Yi Yin, Philippe Ciais, Audrey Fortems-Cheiney, Merritt N. Deeter, Robert J. Parker, Yilong Wang, Helen M. Worden, and Yuanhong Zhao
Earth Syst. Sci. Data, 11, 1411–1436, https://doi.org/10.5194/essd-11-1411-2019,https://doi.org/10.5194/essd-11-1411-2019, 2019
Short summary
The unintended consequence of SO2 and NO2 regulations over China: increase of ammonia levels and impact on PM2.5 concentrations
Mathieu Lachatre, Audrey Fortems-Cheiney, Gilles Foret, Guillaume Siour, Gaëlle Dufour, Lieven Clarisse, Cathy Clerbaux, Pierre-François Coheur, Martin Van Damme, and Matthias Beekmann
Atmos. Chem. Phys., 19, 6701–6716, https://doi.org/10.5194/acp-19-6701-2019,https://doi.org/10.5194/acp-19-6701-2019, 2019
Short summary

Related subject area

Atmospheric sciences
Data reduction for inverse modeling: an adaptive approach v1.0
Xiaoling Liu, August L. Weinbren, He Chang, Jovan M. Tadić, Marikate E. Mountain, Michael E. Trudeau, Arlyn E. Andrews, Zichong Chen, and Scot M. Miller
Geosci. Model Dev., 14, 4683–4696, https://doi.org/10.5194/gmd-14-4683-2021,https://doi.org/10.5194/gmd-14-4683-2021, 2021
Short summary
Comparison of source apportionment approaches and analysis of non-linearity in a real case model application
Claudio A. Belis, Guido Pirovano, Maria Gabriella Villani, Giuseppe Calori, Nicola Pepe, and Jean Philippe Putaud
Geosci. Model Dev., 14, 4731–4750, https://doi.org/10.5194/gmd-14-4731-2021,https://doi.org/10.5194/gmd-14-4731-2021, 2021
Short summary
APFoam 1.0: integrated computational fluid dynamics simulation of O3–NOx–volatile organic compound chemistry and pollutant dispersion in a typical street canyon
Luolin Wu, Jian Hang, Xuemei Wang, Min Shao, and Cheng Gong
Geosci. Model Dev., 14, 4655–4681, https://doi.org/10.5194/gmd-14-4655-2021,https://doi.org/10.5194/gmd-14-4655-2021, 2021
Short summary
Exploring deep learning for air pollutant emission estimation
Lin Huang, Song Liu, Zeyuan Yang, Jia Xing, Jia Zhang, Jiang Bian, Siwei Li, Shovan Kumar Sahu, Shuxiao Wang, and Tie-Yan Liu
Geosci. Model Dev., 14, 4641–4654, https://doi.org/10.5194/gmd-14-4641-2021,https://doi.org/10.5194/gmd-14-4641-2021, 2021
Short summary
Model intercomparison of COSMO 5.0 and IFS 45r1 at kilometer-scale grid spacing
Christian Zeman, Nils P. Wedi, Peter D. Dueben, Nikolina Ban, and Christoph Schär
Geosci. Model Dev., 14, 4617–4639, https://doi.org/10.5194/gmd-14-4617-2021,https://doi.org/10.5194/gmd-14-4617-2021, 2021
Short summary

Cited articles

Aumont, B., Chervier, F., and Laval, S.: Contribution of HONO sources to the NOx/HOx/O3 chemistry in the polluted boundary layer, Atmos. Environ., 37, 487–498, 2003. 
Belikov, D. A., Maksyutov, S., Yaremchuk, A., Ganshin, A., Kaminski, T., Blessing, S., Sasakawa, M., Gomez-Pelaez, A. J., and Starchenko, A.: Adjoint of the global Eulerian–Lagrangian coupled atmospheric transport model (A-GELCA v1.0): development and validation, Geosci. Model Dev., 9, 749–764, https://doi.org/10.5194/gmd-9-749-2016, 2016. 
Boersma, K. F., Vinken, G. C. M., and Eskes, H. J.: Representativeness errors in comparing chemistry transport and chemistry climate models with satellite UV–Vis tropospheric column retrievals, Geosci. Model Dev., 9, 875–898, https://doi.org/10.5194/gmd-9-875-2016, 2016. 
Boersma, K. F., Eskes, H., Richter, A., De Smedt, I., Lorente, A., Beirle, S., Van Geffen, J., Peters, E., Van Roozendael, M., and Wagner, T.: QA4ECV NO2 tropospheric and stratospheric vertical column data from OMI (Version 1.1) [Data set], Royal Netherlands Meteorological Institute (KNMI), https://doi.org/10.21944/qa4ecv-no2-omi-v1.1, 2017. 
Bousquet, P., Ciais, P., Peylin, P., Ramonet, M., and Monfray, P.: Inverse modeling of annual atmospheric CO2 sources and sinks: 1. Method and control inversion, J. Geophys. Res., 104, 26161–26178, https://doi.org/10.1029/1999JD900342, 1999. 
Download
Short summary
Up-to-date and accurate emission inventories for air pollutants are essential for understanding their role in the formation of tropospheric ozone and particulate matter, for anticipating pollution peaks and for identifying the key drivers that could help mitigate their emissions. Complementarily with bottom-up inventories, the system described here aims at updating and improving the knowledge on the high spatiotemporal variability of emissions of air pollutants.