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Abstract. Up-to-date and accurate emission inventories for
air pollutants are essential for understanding their role in
the formation of tropospheric ozone and particulate matter at
various temporal scales, for anticipating pollution peaks and
for identifying the key drivers that could help mitigate their
concentrations. This paper describes the Bayesian variational
inverse system PYVAR-CHIMERE, which is now adapted
to the inversion of reactive species. Complementarily with
bottom-up inventories, this system aims at updating and im-
proving the knowledge on the high spatiotemporal variabil-
ity of emissions of air pollutants and their precursors. The
system is designed to use any type of observations, such as
satellite observations or surface station measurements. The
potential of PYVAR-CHIMERE is illustrated with inversions
of both carbon monoxide (CO) and nitrogen oxides (NOx)
emissions in Europe, using the MOPITT and OMI satellite
observations, respectively. In these cases, local increments
on CO emissions can reach more than+50 %, with increases
located mainly over central and eastern Europe, except in the
south of Poland, and decreases located over Spain and Por-
tugal. The illustrative cases for NOx emissions also lead to
large local increments (> 50 %), for example over industrial
areas (e.g., over the Po Valley) and over the Netherlands. The
good behavior of the inversion is shown through statistics
on the concentrations: the mean bias, RMSE, standard de-
viation, and correlation between the simulated and observed
concentrations. For CO, the mean bias is reduced by about
27 % when using the posterior emissions, the RMSE and the
standard deviation are reduced by about 50 %, and the cor-

relation is strongly improved (0.74 when using the posterior
emissions against 0.02); for NOx , the mean bias is reduced
by about 24 % and the RMSE and the standard deviation are
reduced by about 7 %, but the correlation is not improved. We
reported strong non-linear relationships between NOx emis-
sions and satellite NO2 columns, now requiring a fully com-
prehensive scientific study.

1 Introduction

The degradation of air quality is a worldwide environmen-
tal problem: 91 % of the world’s population have breathed
polluted air in 2016 according to the World Health Orga-
nization (WHO), resulting in 4.2 million premature deaths
every year (WHO, 2016). The recent study of Lelieveld et
al. (2019) even suggests that the health impacts attributable
to outdoor air pollution are substantially higher than pre-
viously assumed (with 790 000 premature deaths in the 28
countries of the European Union against the previously
estimated 500 000; EEA, 2018). The main regulated pri-
mary (i.e., directly emitted in the atmosphere) anthropogenic
air pollutants are carbon monoxide (CO), nitrogen oxides
(NOx =NO+NO2), sulfur dioxide (SO2), ammonia (NH3),
volatile organic compounds (VOCs) and primary particles.
These primary air pollutants are precursors of secondary
(i.e., produced in the atmosphere through chemical reactions)
pollutants such as ozone (O3) and particulate matter (PM),
which are also threatening to both human health and ecosys-

Published by Copernicus Publications on behalf of the European Geosciences Union.



2940 A. Fortems-Cheiney: Variational regional inverse emission modeling with PYVAR-CHIMERE-v2019

tems. Monitoring concentrations and quantifying emissions
are still challenging and limit our capability to forecast air
quality to warn population and to assess (i) the exposure of
population to air pollution and (ii) the efficiency of mitiga-
tion policies.

Bottom-up (BU) inventories are built in the framework of
air quality policies such as The Convention on Long-Range
Transboundary Air Pollution (LRTAP, http://www.unece.org,
last access: March 2019) for air pollutants. Based on na-
tional annual inventories, research institutes compile gridded
global or regional monthly inventories (mainly for the US,
Europe and China) with a high spatial resolution (currently
regional- or city-scale inventories are typically finer than
0.1◦×0.1◦). These inventories are constructed by combining
available (economic) statistics data from different detailed
activity sectors with the most appropriate emission factors
(defined as the average emission rate of a given species for
a given source or process, relative to the unit of activity in a
given administrative area). It is important to note that the ac-
tivity data (often statistical data) have an inherent uncertainty
and that their reliability may vary between countries or re-
gions. In addition, the emission factors bear large uncertain-
ties in their quantification (Kuenen et al., 2014; EMEP/EEA,
2016; Kurokawa et al., 2013). Moreover, these inventories
are often provided at the annual or monthly scale with typ-
ical temporal profiles to build the weekly, daily and hourly
variability of the emissions. The combination of uncertain
activity data, emission factors and emission timing can be
a large source of uncertainties, if not errors, for forecasting
or analyzing air quality (Menut et al., 2012). Finally, since
updating the inventories and gathering the required data for
a given year is costly in time, manpower and money, only
a few institutes have offered estimates of the gaseous pollu-
tants for each year since 2011 (i.e, European Monitoring and
Evaluation Programme EMEP updated until the year 2017,
MEIC updated until the year 2017 to our knowledge). Nev-
ertheless, using knowledge from inventories and air quality
modeling, emissions have been mitigated. For example, from
2010 to nowadays, emissions in various countries have been
modified and/or regional trends have been reversed down-
wards (e.g., the decrease in NOx emissions over China since
2011; de Foy et al., 2016), leading to significant changes
in the atmospheric composition. Consequently, the knowl-
edge of precise and updated budgets, together with seasonal,
monthly, weekly and daily variations of gaseous pollutants
driven, amongst other processes, by the emissions are essen-
tial for understanding their role in the formation of tropo-
spheric ozone and PMs at various temporal scales, for antici-
pating pollution peaks and for identifying the key drivers that
could help mitigate these concentrations.

In this context, complementary methods have been devel-
oped for estimating emissions using atmospheric observa-
tions. They operate in synergy between a chemistry-transport
model (CTM) which links the emissions to the atmospheric
concentrations, atmospheric observations of the species of

interest and statistical inversion techniques. A number of
studies using inverse modeling were first carried out for long-
lived species such as greenhouses gases (GHGs) (e.g., carbon
dioxide CO2 or methane CH4) at the global or continental
scales (Hein et al., 1997; Bousquet et al., 1999), using surface
measurements. Later, following the development of moni-
toring station networks, the progress of computing power
and the use of inversion techniques more appropriate to non-
linear problems, these methods were applied to shorter-lived
molecules such as CO. For these various applications (e.g.,
for CO2, CH4, CO), the quantification of sources was solved
at the resolution of large regions (Pétron et al., 2002). Finally,
the growing availability and reliability of observations since
the early 2000s (in situ surface data, remote sensing data such
as satellite data) and the improvement of the global CTMs,
computational capacities and inversion techniques have in-
creased the achievable resolution of global inversions, up to
the global transport model grid cells, i.e., typically with a
spatial resolution of several hundreds of square kilometers
(Stavrakou and Müller, 2006; Pison et al., 2009; Fortems-
Cheiney et al., 2011; Hooghiemstra et al., 2012; Yin et al.,
2015; Miyazaki et al., 2017; Zheng et al., 2019).

Today, the scientific and societal issues require an up-to-
date quantification of pollutant emissions at a higher spatial
resolution than the global one, which will lead to a wide
use of regional inverse systems. However, although they are
suited to reactive species such as CO and NOx , and their very
large spatial and temporal variability, they have hardly been
used to quantify pollutant emissions. Some studies inferred
NOx (Pison et al., 2007; Tang et al., 2013) and VOC emis-
sions (Koohkan et al., 2013) from surface measurements.
Konovalov et al. (2006, 2008, 2010), Mijling et al. (2012,
2013), van der A et al. (2008), Lin et al. (2012) and Ding et
al. (2017) have also shown that satellite observations are a
suitable source of information to constrain NOx emissions.
These regional inversions using satellite observations were
often based on Kalman filter (KF) schemes (Mijling et al.,
2012, 2013; van der A et al., 2008; Lin et al., 2012; Ding et
al., 2017).

Variational inversion systems allow for the solving of
high-dimensional problems, typically solving for the fluxes
at high spatial and temporal resolution, which can be crit-
ical to fully exploit satellite images. Here, we present the
Bayesian variational atmospheric inversion system PYVAR-
CHIMERE for the monitoring of anthropogenic emissions
of reactive species at the regional scale. It is based on
the Bayesian variational assimilation code PYVAR (Cheval-
lier et al., 2005) and on the regional state-of-the-art CTM
CHIMERE (Menut et al., 2013; Mailler et al., 2017).
CHIMERE is dedicated to the study of regional atmospheric
pollution events (e.g., Ciarelli et al., 2019; Menut et al.,
2020), included in the operational ensemble of the Coper-
nicus Atmosphere Monitoring Service (CAMS) regional ser-
vices. The main strengths of PYVAR-CHIMERE come from
the strengths of CHIMERE and from its high modularity for
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the definition of the control vector. CHIMERE is indeed an
extremely flexible code, in particular for the definition of the
chemical scheme.

The PYVAR-CHIMERE system takes advantage of the
previous developments for the quantification of fluxes of
long-lived GHG species such as CO2 (Broquet et al., 2011)
and CH4 (Pison et al., 2018) at the regional to the local
scales, but it now solves for reactive species such as CO and
NOx . It has also a better level of robustness, clarity, portabil-
ity and modularity than these previous systems. Variational
techniques require the adjoint of the model to compute the
sensitivity of simulated atmospheric concentrations to cor-
rections of the fluxes. CHIMERE is one of the few CTMs
for which the adjoint has been coded. Global models include
GEOS-CHEM (Henze et al., 2007), IMAGES (Stavrakou and
Müller, 2006), TM5 (Krol et al., 2008), GELKA (Belikov
et al., 2016) and LMDz (Chevallier et al., 2005; Pison et
al., 2009); limited-area models include CMAQ (Hakami et
al., 2007), EURAD-IM (Elbern et al., 2007), RAMS/CTM-
4DVAR (Yumimoto and Uno, 2006) and WRF-CO2 4D-Var
(Zheng et al., 2018).

The principle of variational atmospheric inversion and
the configuration of PYVAR-CHIMERE are described in
Sects. 2 and 3, respectively. Details about the forward,
tangent-linear (TL) and adjoint codes of CHIMERE are also
given. Then, the potential of PYVAR-CHIMERE is illus-
trated in Sect. 4 with the optimization of European CO and
NOx emissions, constrained by observations from the Mea-
surement of Pollution in the Troposphere (MOPITT) and
from the Ozone Monitoring Instrument (OMI) satellite in-
struments, respectively.

2 Principle of Bayesian variational atmospheric
inversion

In what follows, we use the notations and equations used in
the inverse modeling community (Rayner et al., 2019). The
Bayesian variational atmospheric inversion method adjusts a
set of control parameters, including parameters related to the
emissions whose estimate is the primary target of the inver-
sion.

The prior information about the parameters x to be op-
timized during the inversion process is given by the vector
xb. The parameters to be optimized can be surface fluxes but
may also include initial or boundary conditions for example,
as explained in Sect. 3.4. The adjustments are applied to prior
values, usually taken, for the emissions, from pre-existing
BU inventories. The principle is to minimize, on the one
hand, the departures from the prior estimates of the control
parameters, which are weighted by the uncertainties in these
estimates (called hereafter “prior uncertainties”), and, on the
other hand, the differences between simulated and observed
concentrations, which are weighted by all other sources of
uncertainties explaining these differences (hereafter referred

to collectively as “observation errors”). In statistical terms,
the inversion searches for the most probable estimate of the
control parameters given their prior estimates, observations,
CTM and associated uncertainties. The solution, which will
be called posterior estimate, is found by the iterative mini-
mization of a cost function J (Talagrand, 1997), defined as
follows:

J (x)=(
x− xb

)T
B−1

(
x− xb

)
+ (H(x)− y)TR−1 (H(x)− y) .

(1)

H is the non-linear observation operator that projects the
control vector x onto the observation space. In most of the
variational atmospheric inversion cases (such as those de-
scribed in Sect. 4), the observation operator includes the op-
erations performed by the CTM in linking the emissions to
the concentrations and any other transformation to compute
the simulated equivalent of the observations such as an inter-
polation or an extraction and averaging of the simulated con-
centration fields (see Sect. 3.5). The observations in y could
be surface measurements and/or remote sensing data such as
satellite data. The prior uncertainties and the observation er-
rors are assumed to be unbiased and to have a Gaussian dis-
tribution. Consequently, the prior uncertainties are character-
ized by their covariance matrix B and the observation errors
are characterized by their covariance matrix R. By definition,
the observation errors combine errors in both the data and the
observation operator, in particular the following:

– measurement errors and errors in the conversion of
satellite measurement into concentration data,

– errors from the CTM,

– representativity errors due to the comparison between
point measurements and gridded models or due to the
representation of the fluxes as gridded maps at a given
spatial resolution, and

– aggregation errors associated with the optimization of
emissions at a given spatial and/or temporal resolution
(as specified in the control vector) that is different from
(usually coarser than) that of the CTM (Wang et al.,
2017).

For inversions with observation and control vectors with
a high dimension, the minimum of J cannot be found ana-
lytically due to computational limitations. It can be reached
iteratively with a descent algorithm. In this case, the itera-
tive minimization of J is based on a gradient method. J is
calculated with the forward observation operator (including
the CTM), and its gradient relative to the control parameters
x is provided by the adjoint of the observation operator (in-
cluding the adjoint of the CTM). The gradient is defined as
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Figure 1. Simplified scheme of the iterative minimization in PYVAR-CHIMERE. PYVAR, CHIMERE and text sources are displayed in
blue, in orange and in grey, respectively.

follows:

∇J (x)= B−1
(
x− xb

)
+H ∗R−1 (H(x)− y) , (2)

where H ∗ is the adjoint of the observation operator.
The high non-linearity of the chemistry for reactive

species makes it difficult to use its TL code to approxi-
mate the actual observation operator, and, more generally,
it makes the inversion problem highly non-linear. There-
fore, in PYVAR-CHIMERE, we use the M1QN3 limited-
memory quasi-Newton minimization algorithm (Gilbert and
Lemaréchal, 1989), which relies on the actual CHIMERE
non-linear model to compute J at each iteration of the min-
imization. As with most quasi-Newton methods, it requires
an initial regularization of x, the vector to be optimized, for
better efficiency. We adopt the most generally used regular-
ization, made by minimizing in the space defined by the fol-
lowing:

χ = B
1
2

(
x− xb

)
, (3)

instead of the control space defined by x. Although more ad-
vanced regularizations can be chosen, the minimization with
χ is preferred because it simplifies the equation to solve. In
the χ space, Eq. (2) can be re-written as follows:

∇Jχ = χ +B
1
2H ∗

(
R−1 (H(x)− y)

)
. (4)

The criterion for stopping the algorithm is based on a
threshold set on the ratio between the final and initial gradient
norms or on the maximum number of iterations to perform.
As shown in Fig. 1, the minimization algorithm repeats the
forward-adjoint cycle to get an estimate close to the optimal
solution of the inversion problem for the control parameters.

This approximation of the optimal estimate is found by satis-
fying the convergence criteria of the minimizer with a given
reduction of the norm of the gradient of J . Nevertheless, due
to the non-linearity of the problem, the minimization may
reach a local minimum only, instead of the global minimum.

Finally, the calculation of the uncertainty in the estimate
of emissions from the inversion, known as “posterior uncer-
tainty”, is challenging in a variational inverse system (Rayner
et al., 2019). Even though the posterior uncertainty can be
explicitly written in various analytical forms, it requires the
inversion of matrices that are too large to invert given the
current computational resources in our variational approach.
As a trade-off between computing resources and compre-
hensiveness, the analysis error may be evaluated by an ap-
proach based on a propagation of errors through sensitivity
tests (e.g., as in Fortems-Cheiney et al., 2012). It can also be
estimated through a Monte Carlo ensemble (Chevallier et al.,
2007), implemented in PYVAR. Nevertheless, it should be
noted that the cost of the Monte Carlo experiments used to
derive these posterior uncertainties is huge.

3 The PYVAR-CHIMERE configuration

3.1 PYVAR adapted to CHIMERE

The PYVAR-CHIMERE inverse modeling system is based
on the Bayesian variational assimilation code PYVAR
(Chevallier et al., 2005) and on a previous inversion system
coupled to CHIMERE (Pison et al., 2007). PYVAR is an en-
semble of Python scripts, which deals with preparing the vec-
tors and the matrices for the inversion, drives the required
Fortran codes of the transport model and computes the min-
imization of the cost function to solve the inversion. Previ-
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Figure 2. Simplified scheme of how PYVAR scripts are used to drive CHIMERE for an inversion using satellite observations. PYVAR,
CHIMERE and text sources are displayed in blue, in orange and in grey, respectively. “AK” refers to averaging kernels as detailed in
Sect. 3.5.

ously used for global inversions with the LMDz model (e.g.,
Pison et al., 2009; Chevallier et al., 2010; Fortems-Cheiney
et al., 2011; Yin et al., 2015; Locatelli et al., 2015; Zheng
et al., 2019), PYVAR has been adapted to CHIMERE with
an adjoint code without chemistry by Broquet et al. (2011).
In order to couple PYVAR to the new state-of-the-art ver-
sion of CHIMERE (see Sect. 3.2), to include chemistry and
to increase its modularity, flexibility and clarity, the new
system described here has been developed. It includes ele-
ments of the inversion system (coded in Fortran90) of Pison
et al. (2007).

3.2 Development and parallelization of the adjoint and
tangent-linear codes of CHIMERE

To compute the sensitivity of simulated atmospheric concen-
trations to corrections to the fluxes, the adjoint of CHIMERE
has been developed. Originally, the sequential adjoint was
coded (Menut et al., 2000; Menut, 2003; Pison et al., 2007).
The adjoint has been coded by hand line by line, follow-
ing the principles formulated by Talagrand (1997). It con-
tains exactly the same processes as the CHIMERE forward
model. The code has been parallelized, which required a
redesigning of the entire code, associated with a full test-
ing scheme (see Sect. 3.3). Furthermore, the TL code has
been developed and validated (see Sect. 3.3). Changes have
been implemented in the forward CHIMERE code embedded
in PYVAR-CHIMERE to match requirements of the studies
conducted with this system. These changes have been imple-
mented in both the adjoint and the TL codes. Compared to
the CHIMERE 2013 version (Menut et al., 2013), the most
important of these changes are, regarding geometry, the pos-

sibility of polar domains and the use of the coordinates of the
corners of the cells instead of only the centers, allowing the
use of irregular grids. Regarding transport, the non-uniform
Van Leer transport scheme on the horizontal has been imple-
mented, which is consistent with the use of irregular grids.
Finally, various switches have been added to keep the sys-
tem consistent for GHG studies. For example, we can avoid
going into the chemistry, deposition or wet deposition rou-
tines when the targeted species do not require them (e.g., no
chemistry for methane or carbon dioxide at a regional scale).

PYVAR-CHIMERE is currently implemented with a full
module of gaseous chemistry. As a compromise between the
robustness of the method for reactive species, the time re-
quired to code the adjoint and the computational cost with
a full chemical scheme, the aerosols modules of CHIMERE
have not been included in the adjoint of CHIMERE yet and
are therefore not available in PYVAR-CHIMERE. The devel-
opment and maintenance of the adjoint means that the ver-
sion used is necessarily one or two versions behind the dis-
tributed CHIMERE version (http://www.lmd.polytechnique.
fr/chimere/, last access: March 2019). It should also be noted
that PYVAR-CHIMERE only infers anthropogenic emis-
sions at this stage. The optimization of biogenic emissions,
which are linearly interpolated at the sub-hourly scale in
CHIMERE, is currently under development.

As an example, Fig. 2 presents a simplified scheme of how
PYVAR scripts are used to drive this version of CHIMERE
for forward simulations and inversions using satellite obser-
vations.
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Table 1. Examples for the definition of the control vector and for the construction of the B matrix, as illustrated in Sect. 4.

Constrained Correction Spatial Temporal B variance Decorrela- Decorrelation Decorrelation
species typea resolution resolution Input to constrainb coefficientc tion time length on land length on sea

(in hours) (in hours) (in km) (in km)

CO Add 0.5◦× 0.5◦ 168 Fluxes 100 % – – –
CO Add 0.5◦× 0.5◦ 1 Initial conditions 15 % – – –
CO Add 0.5◦× 0.5◦ 168 Lateral boundary conditions 15 % – – –
CO Add 0.5◦× 0.5◦ 168 Top boundary conditions 15 % – – –
NO Add 0.5◦× 0.5◦ 24 Fluxes 50 % – 50 50
NO Add 0.5◦× 0.5◦ 1 Initial conditions 15 % – – –
NO2 Add 0.5◦× 0.5◦ 24 Fluxes 50 % – 50 50
NO2 Add 0.5◦× 0.5◦ 24 Initial conditions 15 % – – –

a Add, mult or scale. b Fluxes, initial conditions, lateral boundary conditions or top boundary conditions. c Fixed values (fx) or percentages (%).

3.3 Accuracy of tangent-linear and adjoint codes

Different procedures have been implemented to test the ac-
curacy of the TL and adjoint codes. To test the linearity of
the TL code, we compute a Taylor diagnostic. It consists
of computing the TL code at x0 for given increments 1x,
dHx0 (1x), then the TL code at x0 for λ×1x with λ an
arbitrary small number, dHx0(λ1x). Theoretically, if the TL
code is well coded, λdHx0(1x)= dHx0(λ1x) by definition.
In practice, the difference must be lower than 10 times the
epsilon of the machine on which it is run.

The adjoint code is also tested, by verifying that
〈dHx0(1x)|dHx0(1x)〉 = 〈1x|H

∗(dHx0(1x))〉 where H ∗

stands for the adjoint at x. What is actually computed is the
ratio of the difference between the two scalar products to the
second one and the accuracy of the computation. The differ-
ence should be a few times greater than the epsilon of the
machine on which it is run.

3.4 Definition of the control vector

The control vector is specified by the user in a text file. This
file is formatted following Table 1. The parameters to be in-
verted may be fluxes and/or initial conditions and/or bound-
ary concentration conditions, at the grid-cell resolution or
for one region encompassing up to the whole domain. Sev-
eral types of corrections can be applied; they are defined in
the code as “add”, “mult” or “scale”. Both the corrections
“add” and “mult” are applied to gridded control variables.
For correction type “add”, the control variables are incre-
ments added to the corresponding components of the model
inputs. For correction type “mult”, the control variables are
scaling factors multiplying the corresponding components of
the model inputs. The difference between the two options
“add” and “mult” plays a role when inverting fluxes which
can switch from positive to negative values (like CO2 natu-
ral fluxes). For type “scale”, the control variables are scal-
ing factors applied to maps different from the maps of emis-
sions used as prior input of the forward model: for example,
activity maps can be used and scaled to get emissions; the

obtained values are then added to the corresponding com-
ponents of the model inputs. With these various types, it
is possible to define the control variables as the budgets of
emissions for different regions, types of activities and/or pro-
cesses, which can thus be directly rescaled by the inversions,
similarly to what is done in systems where the control vector
is not gridded (Wang et al., 2018).

Different simple but efficient ways of building the error co-
variance matrix B are implemented in PYVAR-CHIMERE.
The variances and correlations are defined independently.
The variances are specified by the user through the specifi-
cation of the values for the corresponding standard deviation
(i.e., the diagonal matrix of standard deviations

∑
; Table 1)

which can be made in terms of fixed values (“fx” in the code)
or percentages (%, “pc” in the code). For correction types
“mult” and “scale”, as well as for correction type “add” with
a fixed value, the value is directly used as the uncertainty
in the corresponding components of the control vector. For
correction type “add” with a percentage provided, maps of
standard deviation of uncertainty are built by applying this
percentage to the matching input fields (fluxes, initial con-
ditions, boundary conditions). The user may also provide a
script to build personalized maps of variances.

Potential correlations between uncertainties in different
types of control variables (e.g., between fluxes and bound-
ary conditions) and correlations between uncertainties in dif-
ferent species (e.g., between fluxes of CO and NOx) are not
coded yet. Such correlations increase the observation con-
straint on the emissions in the inversion process by transfer-
ring information from one species to the other. The level (and
sometimes the sign) and thus the impact on the inversion of
such correlations highly depend on the study cases and are
often debated due to the lack of precise characterization of
the uncertainties in inventories of anthropogenic emissions
of GHG and pollutants (Super et al., 2020). Only correlations
for a given type of control variable and a given species are so
far taken into account so that the B matrix is block diago-
nal. For a given type of control variable and a given species
(in the illustration in Sect. 4.2.2: CO, NO or NO2 fluxes),
spatial and temporal correlations can be defined using corre-
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lation lengths through time LT and space LS. Those lengths
are used to model temporal and/or spatial auto-correlations
using an exponentially decaying function: the correlation r
between parameters at a given location but separated by du-
ration d

(
xi,xj

)
or at a given time but distant by d

(
xi,xj

)
is

given by

r
(
xi,xj

)
= exp

(
−d

(
xi,xj

)
L

)
, (5)

where L is the corresponding correlation length. There is
no correlation between uncertainties in land and ocean flux.
Note that the spatial correlations are computed for each ver-
tical level independently when dealing with control variables
with vertical resolution (3D fields of fluxes when account-
ing for emission injection heights, or boundary/initial condi-
tions). Vertical correlations in the uncertainties in such vari-
ables have not been coded yet. Apart from this, the system
assumes that temporal correlations and spatial correlations
depend on the time lag and distance but not on the specific
time and location of the corresponding parameters. It also as-
sumes that the correlation between uncertainties at different
locations and different times can be derived from the product
of the corresponding autocorrelation in time and space.

Each block of B can thus be decomposed based on Kro-
necker products:

B=
∑

CT⊗CS
∑

, (6)

where ⊗ is the Kronecker product, and CT and CS are the
temporal and spatial correlations, respectively. The calcula-
tions involving B1/2 (in Eqs. 3, 4) are simplified in PYVAR-
CHIMERE using the eigendecomposition of CT and CS. Its
square root can be calculated according to the following:

C
1/2
T = VCT D1/2

CT
VT
CT

(7)

(and similarly for CS), where VCT is the matrix with the
eigenvectors as columns, and DCT is the diagonal matrix of
eigenvalues of CT. It is possible to choose a threshold under
which the eigenvalues are truncated when computing the spa-
tial correlations in order to save computation time and mem-
ory, but not when computing the temporal correlations.

3.5 Equivalents of the observations

During forward simulations, the equivalents of the compo-
nents of y (i.e, the equivalents of the individual data) are cal-
culated by PYVAR-CHIMERE. It includes the CTM and an
interpolation (see below the vertical interpolation from the
model’s grid to the satellite levels) or an extraction and aver-
aging (e.g., extracting the grid cell matching the geographical
coordinates of a surface station and averaging over 1 h). As
a compromise between technical issues such as the time re-
quired for reading and writing files, the observation operator
H that generates the equivalent of the observations by the

model (i.e., H(x)) has been so far partly embedded in the
code of CHIMERE. It makes it easier to use finer time inter-
vals than available in the usual hourly outputs of CHIMERE
to compute the required information (e.g., within the finer
CTM physical time steps).

To make comparisons between simulations and satellite
observations, the simulated vertical profiles are first interpo-
lated on the satellite’s levels (with a vertical interpolation on
pressure levels) in CHIMERE. Then, the averaging kernels
(AKs), when available, are applied to represent the vertical
sensitivity of the satellite retrieval. Two types of formula, de-
pending on the satellite observations used, have been detailed
in PYVAR-CHIMERE for the use of AKs:

cm =AK cm(o) (8)

or

cm = xa+AK
(
cm(o)− xa

)
, (9)

where cm is the modeled column, AK contains the averag-
ing kernels that can be provided in the form of a vector (e.g.,
OMI product) or matrix (e.g., MOPITT product), xa is the
prior state vector (provided together with the AKs when rel-
evant), and cm(o) is the vertical distribution of the original
model partial columns interpolated to the pressure grid of the
AKs.

3.6 Numerical language

The PYVAR code is in Python 2.7, the CHIMERE CTM
is coded in Fortran90. The CTM requires several numerical
tools, compilers and libraries. The PYVAR-CHIMERE sys-
tem was developed and tested using the software versions as
described in Table 2.

PYVAR-CHIMERE’s computation time for one node of
10 CPUs is about 4 h for 1 d of inversion (with ∼ 10 itera-
tions) for the European domain size of 101 (longitude)× 85
(latitude)× 17 (vertical levels) used in Sect. 4. As described
in Menut et al. (2013) for CHIMERE, the model paralleliza-
tion results from a Cartesian division of the main geograph-
ical domain into several sub-domains, each one being pro-
cessed by a worker process. To configure the parallel sub-
domains, the user has to specify two parameters in the model
parameter file: the number of sub-domains for the zonal and
meridian directions. The total number of CPUs used is there-
fore the product of these two numbers plus one for the master
process. The optimal number of CPUs for the parallelization
of the transport scheme depends on the size of the tiles and
also of the technical characteristics of the machine, because
of the time required to exchange halos.

4 Potential of PYVAR-CHIMERE for the inversion of
CO and NOx emissions

The potential of the PYVAR-CHIMERE system to invert
emissions of reactive species is illustrated with the inversion
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Table 2. URL addresses for the development and the use of the PYVAR-CHIMERE system and its modules.

URL Version

Software Python https://www.python.org/downloads/ 2.7
(last access: March 2019)

Fortran compiler ifort https://software.intel.com/en-us/fortran-compilers Composer-xe-2013.2.146
(last access: March 2019)

Libraries or packages UnidataNetCDF https://www.unidata.ucar.edu/ 3
(last access: March 2019)

Open MPI https://www.open-mpi.org/ 1.10.5
(last access: March 2019)

GRIB_API https://confluence.ecmwf.int/display/GRIB/Releases 1.14
(last access: March 2019)

nco http://nco.sourceforge.net/#Source 4.6.3
(last access: March 2019)

of CO and NOx anthropogenic emissions in Europe based on
MOPITT CO data and OMI NO2 data, respectively. We have
chosen to present an illustration of CO inversion over 7 d, the
first week of March 2015. Considering the short lifetime of
NOx of a few hours (Valin et al., 2013; Liu et al., 2016), we
have chosen to present illustration of NOx inversion over 1 d,
19 February 2015. These particular periods have been chosen
as they present a representative number of super-observations
during winter, and as the emissions are high during that pe-
riod. All the information required by the system to invert CO
and NOx emissions is listed in Table 1.

4.1 Data and model description

4.1.1 Observations y

We use CO data from the MOPITT instrument (Deeter et al.,
2019). MOPITT has been flown onboard the NASA EOS-
Terra satellite, on a low sun-synchronous orbit that crosses
the Equator at 10:30 and 22:30 LST. The spatial resolu-
tion of its observations is about 22× 22 km2 at nadir. It has
been operated nearly continuously since March 2000. MO-
PITT CO products are available in three variants: thermal-
infrared TIR only, near-infrared NIR only and the multispec-
tral TIR-NIR product, all containing total columns and re-
trieved profiles (expressed on a 10-level grid from the sur-
face to 100 hPa). We choose to constrain CO emissions with
the MOPITT surface product for our illustration. Among
the different MOPITTv8 products, we choose to work with
the multispectral MOPITTv8-NIR-TIR one, as it provides
the highest number of observations, with a good evaluation
against in situ data from NOAA stations (Deeter et al., 2019).
The MOPITTv8-NIR-TIR surface concentrations are sub-
sampled into “super-observations” in order to reduce the ef-
fect of errors that are correlated between neighboring obser-
vations: we selected the median of each subset of MOPITT

data within each 0.5◦× 0.5◦ grid cell and each physical time
step (about 5–10 min). After this screening, 8437 “super-
observations” remain in the 7 d inversion (from 10 667 raw
observations). It is important to note that the potential of MO-
PITT to provide information at a high temporal resolution, up
to the daily scale, is hampered by the cloud coverage (see the
blanks in Fig. 5b).

The observational constraint on NO2 emissions comes
from the OMI QA4ECV tropospheric columns (Muller et al.,
2016; Boersma et al., 2016, 2017). The Ozone Monitoring
Instrument (OMI), a near-UV–visible nadir solar backscatter
spectrometer, was launched onboard EOS Aura in July 2004.
It has been flown on a 705 km sun-synchronous orbit that
crosses the Equator at 13:30 LT. Our data selection follows
the criteria of the OMI QA4ECV data quality statement.
As the spatial resolution of the OMI data is finer than this
of the chosen CHIMERE model grid (13× 24 km2 against
0.5◦×0.5◦, respectively), the OMI tropospheric columns are
sub-sampled into “super-observations” (median of the OMI
data within the 0.5◦× 0.5◦ grid cell and each physical time
step and its corresponding AKs).

4.1.2 CHIMERE setup

CHIMERE is run over a 0.5◦× 0.5◦ regular grid (about
50× 50 km2) and 17 vertical layers, from the surface to
200 hPa (about 12 km), with 8 layers within the first two
kilometers. The domain includes 101 (longitude)× 85 (lat-
itude) grid cells (31.5–74◦ N, 15.5◦W–35◦ E; see Fig. 3).
CHIMERE is driven by the European Centre for Medium-
Range Weather Forecasts (ECMWF) meteorological fore-
cast (Owens and Hewson, 2018). The chemical scheme used
in PYVAR-CHIMERE is MELCHIOR-2, with more than
100 reactions (Lattuati, 1997; CHIMERE, https://www.lmd.
polytechnique.fr/chimere/docs/CHIMEREdoc2017.pdf, last
8 June 2017) including 24 for inorganic chemistry. The prior
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Figure 3. Mean CO surface concentrations from 1 to 7 March 2015 simulated by CHIMERE (a) with anthropogenic and biogenic emissions,
and (b) without emissions, in ppbv, at the 0.5◦× 0.5◦ grid-cell resolution.

Figure 4. Mean CO surface concentrations from 1 to 7 March 2015 simulated by CHIMERE using for initial and boundary conditions,
(a) the climatological values from the LMDZ-INCA global model; (b) the climatological values from a MACC reanalysis, in ppbv; and
(c) the relative differences between these two simulations , in %, at the 0.5◦× 0.5◦ grid-cell resolution.

anthropogenic emissions for CO and NOx emissions are ob-
tained from the TNO-GCHco-v1 inventory (Super et al.,
2020), the last update of the TNO-MACCII inventory (Kue-
nen et al., 2014). This inventory is based on the EMEP Cen-
tre on Emission Inventories and Projections (CEIP) official
country reporting for air pollutants done in 2017. It is an
inventory at 6× 6 km2 horizontal resolution. From the an-
nual and national budgets, each sector is assigned to a spe-
cific proxy to quantify the spatial variability of the emissions
within each country. Temporal profiles are also provided
per gridded nomenclature for reporting (GNFR) sector code
(variations due to the month, weekday and hour). Follow-
ing the Generation of European Emission Data for Episodes
(GENEMIS) recommendations (Kurtenbach et al., 2001; Au-
mont et al., 2003), NOx emissions are speciated as 90 %
of NO, 9.2 % of NO2 and 0.8 % of nitrous acid (HONO).
The TNO-GHGco-v1 inventory has been aggregated to the
CHIMERE grid.

The prior anthropogenic emissions for VOCs are ob-
tained from the EMEP inventory (Vestreng et al., 2005;
EMEP/CEIP: https://ceip.at/ms/ceip_home1/ceip_home/
webdab_emepdatabase/emissions_emepmodels/, last access:
March 2019). Biogenic emissions come from the Model of
Emissions of Gases and Aerosols from nature (MEGAN)
(Guenther et al., 2006). Different climatological values from
the LMDZ-INCA global model (Szopa et al., 2008) or from a
Monitoring Atmospheric Composition and Climate (MACC)
reanalysis are used to prescribe concentrations at the lateral
and top boundaries and the initial atmospheric composition
in the domain. Full access to and more information about
the MACC reanalysis data can be obtained through the
MACC-II web site (http://www.copernicus-atmosphere.eu,
last access: March 2019). In order to ensure realistic fields of
simulated CO and NO2 concentrations from the beginning
of the inversion period, runs have been preceded with a 10 d
spinup.
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Figure 5. Mean CO collocated surface concentrations from 1 to 7 March 2015 (a) simulated by CHIMERE using the prior TNO-GHGco-
v1 emissions and the climatological values from the LMDZ-INCA global model for initial and boundary conditions, (b) observed by
MOPITTv8-NIR-TIR and (c) simulated by CHIMERE using the posterior emissions, in ppbv, at the 0.5◦× 0.5◦ grid-cell resolution. Relative
differences between MOPITT and (d) the prior CHIMERE simulation or (e) the posterior CHIMERE simulation, in %. Statistics for the
comparison between simulations and observations are given in Table 4 for the area in the purple box.

4.1.3 CO sensitivity to emissions and to initial and
boundary conditions

With its lifetime of about 2 months, CO could be strongly
influenced by the initial and lateral boundary conditions pre-
scribed in the CTM. In fact, as seen in Fig. 3b, initial and
boundary conditions provide a relatively flat background and
the patterns which appear clearly over the background are
linked to surface emissions (Fig. 3a). To characterize the
uncertainties in the concentration fields due to the initial
and lateral boundary conditions, we performed a sensitivity
test by using either climatological values from LMDZ-INCA
(Fig. 4a) or a MACC reanalysis (Fig. 4b): maximum relative
differences in concentrations of about 15 % over continental
land are estimated (Fig. 4c). The errors assigned to initial and
boundary conditions in Sect. 4.2.2 are based on this sensitiv-
ity test.

4.1.4 Comparison between CHIMERE and the
observations

Large discrepancies (Fig. 5d) are found between the MO-
PITT CO observations (Fig. 5b) and the prior simulation
by CHIMERE over Europe (Fig. 5a). For the first week
of March 2015, CO concentrations are generally under-

estimated by CHIMERE, particularly over central and east-
ern Europe (except in the south of Poland). On the con-
trary, CO concentrations seem to be over-estimated over
Spain and Portugal. Large discrepancies are also found be-
tween the OMI NO2 super-observations and the prior sim-
ulation by PYVAR-CHIMERE (Fig. 6d), as already noticed
by Huijnen et al. (2010), with an inter-comparison of NO2
OMI-DOMINO tropospheric columns with an ensemble of
European regional air quality models including CHIMERE.
Over Europe, the prior simulation strongly underestimates
the tropospheric columns over industrial areas (e.g., over the
Netherlands and Po Valley). These discrepancies might be
due to different causes, which can all interact. A source of un-
certainties is related to the observations. For example, satel-
lite data inter-comparison studies reveal large differences be-
tween different retrievals of the same compound (Qu et al.,
2020). This can be explained by uncertainties from the CTM
(e.g., through the underestimation of the atmospheric pro-
duction or the underestimation of the species lifetime). It
could also be explained by an underestimation of the anthro-
pogenic emissions in the BU inventory.
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Figure 6. NO2 collocated tropospheric columns (a) simulated by CHIMERE using the prior TNO-GHGco-v1 emissions and the climatolog-
ical values from the LMDZ-INCA global model for initial and boundary conditions, (b) observed by OMI and (c) simulated by CHIMERE
using the posterior emissions, in 1016 molec. cm−2, at the 0.5◦× 0.5◦ grid-cell resolution, for 19 February 2015. Relative differences be-
tween OMI and (d) the prior CHIMERE simulation or (e) the posterior CHIMERE simulation, in %. Statistics for the comparison between
simulations and observations are given in Table 5 for the area in the purple box.

Table 3. Description of the different sensitivity tests performed for the construction of the B matrix for the NOx inversion.

Prior error standard
deviations in B

Name of the On prior On prior Spatial correla- Number of Reduction of the norm
sensitivity tests emissions initial conditions tion in B iterations of the gradient of J

A 50 % – – 4 99 %
B 50 % 15 % – 6 98 %
C 80 % 15 % – 7 97 %
D 100 % 15 % – 6 95 %
E 50 % 15 % 50 km 5 92 %

4.2 Inversions

4.2.1 Control vector x

For the CO inversion, the control vector x is as follows:

– the CO anthropogenic emissions at a 7 d temporal reso-
lution, at a 0.5◦×0.5◦ (longitude × latitude) horizontal
resolution and over the first 8 vertical levels, i.e., for
each of the corresponding 101× 85× 8 grid cells;

– the CO lateral and top boundary conditions at a 7 d tem-
poral resolution, at a 0.5◦× 0.5◦ (longitude × latitude)

resolution and over the 17 vertical levels of CHIMERE,
i.e., (2× 101+ 2× 85)× 17 grid cells;

– the CO 3D initial conditions for 1 March 2015 at
00:00 UTC, at a 0.5◦×0.5◦ (longitude × latitude) reso-
lution and over the 17 vertical levels of CHIMERE.

Considering its short lifetime, there are no boundary condi-
tions for NO2. For the NOx inversion, the control vector x is
as follows:

– the NO and NO2 anthropogenic emissions at a 1 d tem-
poral resolution, at a 0.5◦× 0.5◦ (longitude × latitude)
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resolution, and over the first 8 vertical levels, i.e., for
each of the corresponding 101× 85× 8 grid cells;

– the NO and NO2 3D initial conditions for 19 Febru-
ary 2015 at 00:00 UTC, at a 0.5◦× 0.5◦ (longitude ×
latitude) resolution, and over the 17 vertical levels of
CHIMERE.

4.2.2 Covariance matrices B and R

To our knowledge, there are few available studies dealing
with the estimates of the uncertainties in gridded bottom-up
emission inventories at the 0.5◦× 0.5◦ resolution or higher.
The characterization of their statistics in the inversion con-
figuration is consequently often based on crude assumptions
from the inverse modelers. Defining the covariance matri-
ces B and R is not an easy task, while incorrectly specify-
ing these matrices has a very strong impact on the results of
the inversion. In particular, the relative weights of B and R
and the spatial and temporal correlations in B influence the
degree of freedom and the structure for the adjustments at-
tempted by the inversion in the optimization process. Conse-
quently, as an example for the NOx inversion, different sensi-
tivity tests described in Table 3 have been performed for the
construction of the B matrix. For both the prior NO and NO2
emissions at 1 d and 0.5◦ resolution, the prior error standard
deviations are first assigned to 50 % of the prior estimate of
the emissions (test A), as in Souri et al. (2020). Sensitivity
tests have also been performed with prior error standard de-
viations assigned to 80 % and 100 % of the prior estimate of
the emissions (test C and test D, respectively; Fig. 8).

With prior error standard deviations set at 15 % of the
initial conditions, the changes in initial conditions are very
small (not shown) and do not affect the posterior emissions
(test B; Fig. 8). As indicated in Sect. 3.4 and in Table 1, it is
possible to use correlations in B, as in Broquet et al. (2011,
2013) and in Kadygrov et al. (2015). We demonstrate the
strong impact of spatial correlations, defined by an e-folding
length of 50 km over land and over the sea, on our inversion
results (test E; Fig. 8).

Even though annual CO emissions in western Europe may
be well known, with uncertainties of 6 % according to Su-
per et al. (2020), larger uncertainties could affect eastern
Europe. Moreover, large uncertainties still affect bottom-up
emission inventories at the 0.5◦ resolution: spatial disaggre-
gation of the national-scale estimates to provide gridded esti-
mates causes a significant increase in the uncertainty for CO
(Super et al., 2020). For the inversion of CO emissions, the
error standard deviations assigned to the prior CO emissions
at 7 d and 0.5◦ resolution are 100 %. This value of 100 % has
already been chosen in Fortems-Cheiney et al. (2011) and in
Fortems-Cheiney et al. (2012). For this CO illustration, the
covariance matrix B of the prior errors is defined as diagonal
(i.e., only variances in the individual control variables listed
in Sect. 4.2.1 are taken into account). With such a setup, in

theory, we could obtain negative posterior emissions since
the inversion system does not impose a constraint of positiv-
ity in the results. Nevertheless, even an uncertainty of 100 %
leads to a prior distribution mostly (> 80 %) on the positive
side. The assimilation of data showing an increase above the
background (at the edges of the domain; not shown) further
drives the inversion towards positive emissions for both CO
and NOx inversions. In practice, our inversion does not lead
to negative posterior emissions (Fig. 7b). Spatial and tem-
poral correlations in B would further limit the probability of
getting negative emissions locally by smoothing the poste-
rior emissions at a spatial scale at which the “aggregated”
prior uncertainty is smaller than 100 %. However, a positiv-
ity constraint should be implemented in future versions of the
system.

Based on the sensitivity test in Fig. 4, the errors assigned to
the CO lateral boundary conditions and to their initial condi-
tions are set at 15 %. As these relative errors are significantly
lower than those for the emissions and as variations in the
CO surface concentrations are mainly driven by emissions
(Fig. 3), we assume a small relative influence of the correc-
tion of initial and boundary conditions on our results. The
variance of the individual observation errors in R is defined
as the quadratic sum of the measurement error reported in
the MOPITT and the OMI data sets, and of the CTM errors
(including chemistry and transport errors and representativ-
ity errors) set at 20 % of the retrieval values. The represen-
tativity errors could have been reduced with the choice of a
finer CTM resolution (e.g., with a resolution closer to the size
of the satellite pixel). Error correlations between the super-
observations are neglected, so that the covariance matrix R
of the observation errors is diagonal.

4.2.3 Inversion of CO emissions

A total of 10 iterations are needed to reduce the norm of
the gradient of J by 90 % with the minimization algorithm
M1QN3 and obtain the increments, i.e., the corrections pro-
vided by the inversion. The prior CO emissions over Eu-
rope for the first week of March 2015 and their increments
are shown in Fig. 7. As expected from the large differences
(Fig. 5d) between the prior surface concentrations (Fig. 5a)
and the MOPITT observations (Fig. 5b), local increments
can reach more than +50 % (Fig. 7b). CO emissions are in-
creased over central and eastern Europe, except in the south
of Poland. On the contrary, CO emissions are decreased
over Spain and Portugal. The analyzed concentrations are
the concentrations simulated by CHIMERE with the poste-
rior fluxes: as expected, the optimization of the fluxes im-
proves the fit of the simulated concentrations to the obser-
vations (Fig. 5c and e), particularly over central and east-
ern Europe. Over this area (see the purple box in Fig. 5),
the mean bias between the simulation and the observations
has been reduced by about 27 % when using the posterior
emissions (mean bias of 11.6 ppbv against 15.9 ppbv with the
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Figure 7. (a) TNO-GHGco-v1 CO anthropogenic prior emissions, in kt CO per grid cell, and (b) increments provided by the inversion with
constraints from MOPITTv8-NIR-TIR from 1 to 7 March 2015, in %.

Table 4. Statistics for the comparison between simulated and observed CO surface concentrations over central and eastern Europe (see the
area in purple in Fig. 5). MB=mean bias, RMSE= root mean square error, SD= standard deviation are in ppbv. The spatial correlations r
are presented with their p value.

Prior Posterior

MB RMSE SD r MB RMSE SD r

15.88 41.95 38.82 0.02 11.58 21.14 17.69 0.74
(p value= 0.99) (p value= 2.08×10−11)

prior emissions; Table 4). The RMSE and the standard devi-
ation have been reduced by about 50 % and the correlation
has been strongly improved (0.74 when using the posterior
emissions against 0.02).

4.2.4 Inversion of NOx emissions

The prior NOx emissions and the corrections provided by
the different sensitivity tests of Table 3 are shown in Fig. 8.
Here, we analyzed the results from inversion E. As expected
from the underestimation of the prior tropospheric columns
in Fig. 6a, local increments may be large, for example over
industrial areas (e.g., over the Po Valley) and over the Nether-
lands, with increments of more than+50 % (Fig. 8b). The an-
alyzed NO2 tropospheric columns in Fig. 6c are the columns
simulated by CHIMERE with the NO2 posterior fluxes: as
expected, the optimization of the fluxes improves the fit of
the simulated concentrations to the observations over the
Netherlands (Fig. 6e). Over this area (see the purple box in
Fig. 6), where the OMI uncertainties are lower than 50 %
(Fig. 9b), the mean bias between the simulation and the
observations has been reduced by about 24 % when using
the posterior emissions (mean bias of 1.9×1015 molec. cm−2

against 2.6×1015 molec. cm−2 with the prior emissions; Ta-
ble 5, Fig. 9a). The RMSE and the standard deviation have

been reduced by about 7 %. The correlation has not been im-
proved.

Even with high emission increments, the impact on the tro-
pospheric columns is rather small. We have performed a test
to explain this lack of sensitivity. We have simulated NO2
columns with anthropogenic emissions increased by a fac-
tor of 3 compared to the simulation in Fig. 6a. The ratio
between these two simulations shows strong non-linearities,
blurring the multiplicative effect of our increments and ex-
plaining the lack of sensitivity (not shown). By increasing
NOx anthropogenic emissions, NO2 tropospheric columns
can be strongly increased and can even exceed the observa-
tion values for particular pixels. NO2 tropospheric columns
can also be decreased or only slightly increased. On aver-
age, it tends to increase the concentrations by a factor that is
much smaller than the factor of increase in the anthropogenic
emissions. However, the patterns where the posterior tropo-
spheric columns exceed the observations or, on the contrary,
are decreased or only slightly increased, explain why the in-
version system does not attempt to increase further the aver-
age level of the concentration (to decrease further the general
bias to the observations), even though it accounts for the im-
pact of non-linearities in the chemistry through the use of the
M1QN3 minimization algorithm. We can conclude that the
strong non-linearities of the NOx chemistry mainly explain
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Table 5. Statistics for the comparison between simulated and observed NO2 tropospheric columns for the inversion E, mainly over the
Netherlands (see the area in purple in Fig. 6). MB=mean bias, RMSE= root mean square error, SD= standard deviation are in molec. cm−2.
The spatial correlations r are presented with their p value.

Prior Posterior

MB RMSE SD r MB RMSE SD r

NO2 2.6×1015 4.0×1015 3.0×1015 0.008 (p = 0.96) 1.9×1015 3.74×1015 2.9×1015 0.01 (p = 0.91)

Figure 8. (a) TNO-GHGco-v1 NOx anthropogenic prior emissions,
in kt NO2 per grid cell and increments provided by the inversion
(b) A, (c) B, (d) C, (e) D and (f) E with constraints from OMI
19 February 2015, in %. The description of the different inversions
is given in Table 3.

the lack of sensitivity between NOx emissions and satellite
NO2 columns. Besides chemical effects, the lack of sensitiv-
ity could be also partly due to the contribution of emissions
during the preceding days, and the assimilation window will
be widened in the near future.

The posterior emissions and their uncertainties will have to
be evaluated and may give hints as to the cause of the discrep-
ancies between simulated and observed NO2 tropospheric
columns. The biases between OMI and simulated NO2 tropo-
spheric columns are a complex topic that is not only related
to our CHIMERE simulations (Huijnen et al., 2010; Souri et
al., 2020; Elguindi et al., 2020). Several studies have indeed
already reported that strong non-linear relationships exist be-
tween NOx emissions and satellite NO2 columns (Lamsal et
al., 2011; Vinken et al., 2014; Miyazaki et al., 2017; Li and
Wang, 2019). This reveals that a fully comprehensive scien-
tific study is required, by analyzing the NOx lifetime through
processes such as the NO2+OH reactions and/or the reactive
uptake of NO2 and N2O5 by aerosols (e.g., Lin et al., 2012;
Stavrakou et al., 2013).

5 Conclusion and discussion

This paper presents the Bayesian variational inverse system
PYVAR-CHIMERE, which has been adapted to the inver-
sion of reactive species such as CO and NOx , taking ad-
vantage of the previous developments for long-lived species
such as CO2 (Broquet et al., 2011) and CH4 (Pison et al.,
2018). We show the potential of PYVAR-CHIMERE, with
inversions for CO and NOx illustrated over Europe. PYVAR-
CHIMERE will now be used to infer CO and NOx emissions
over long periods, e.g., first for a whole season or year and
then for the recent decade 2005–2015 in the framework of
the H2020 VERIFY project over Europe, and in the frame-
work of the ANR PolEASIA project over China, to quan-
tify their trend and their spatiotemporal variability. Never-
theless, as we have reported strong non-linear relationships
between NOx emissions and satellite NO2 columns, a fully
comprehensive scientific study is required, by analyzing the
NOx lifetime through processes such as the NO2+OH reac-
tions and/or the reactive uptake of NO2 and N2O5 by aerosols
(e.g., Lin et al., 2012; Stavrakou et al., 2013). Biogenic emis-
sions will be also further studied to better understand the
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Figure 9. (a) Bias ratio between CHIMERE simulations using the posterior emissions against prior TNO-GHGco-v1 emissions compared to
the OMI-QA4ECV-v1.1 observations. All ratios lower than 1, in blue, demonstrate that posterior emissions improve the simulation compared
to the prior ones. (b) OMI uncertainties, in %, for 19 February 2015.

relationship between NOx emissions and NO2 spaceborne
columns.

The PYVAR-CHIMERE system can handle any large
number of both control parameters and observations. It will
be able to cope with the dramatic increase in the num-
ber of data in the near future with, for example, the high-
resolution imaging (pixel of 7×3.5 km2) of the new Sentinel-
5P/TROPOMI program, launched in October 2017. These
new space missions with high-resolution imaging have the
ambition to monitor atmospheric chemical composition for
the quantification of anthropogenic emissions. It will in-
deed entail using PYVAR-CHIMERE at higher spatiotempo-
ral resolutions, but probably for smaller domains (i.e., over
countries rather than over Europe) as a compromise between
resolution and the computational cost. Moreover, a step for-
ward in the joint assimilation of co-emitted pollutants will be
possible with the PYVAR-CHIMERE system and the avail-
ability of TROPOMI co-localized images of CO and NO2.
This should improve the consistency of the inversion results
and can be used to inform inventory compilers and subse-
quently improve emission inventories. Moreover, this devel-
opment will help in further understanding air quality prob-
lems and addressing air-quality-related emissions at the na-
tional to subnational scales.

Code and data availability. The OMI QA4ECV NO2 product
can be found here: http://temis.nl/qa4ecv/no2.html (last access:
March 2019, Boersma et al., 2017).

The MOPITTv8-NIR-TIR CO product can be found here: ftp:
//l5ftl01.larc.nasa.gov/MOPITT/ (last access March 2019, Deeter et
al., 2019).

The CHIMERE code is available here: https://www.lmd.
polytechnique.fr/chimere/ (last access March 2019, CHIMERE,
2019).

The associated documentation of PYVAR-CHIMERE is avail-
able on the website https://pyvar.lsce.ipsl.fr/doku.php/3chimere:
headpage (last access March 2019, PYVAR-CHIMERE, 2019). The
documentation includes a whole description of PYVAR-CHIMERE
and several tutorials on how to run a first PYVAR-CHIMERE sim-
ulation or how to run an inversion.
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