Articles | Volume 13, issue 2
https://doi.org/10.5194/gmd-13-685-2020
https://doi.org/10.5194/gmd-13-685-2020
Development and technical paper
 | 
21 Feb 2020
Development and technical paper |  | 21 Feb 2020

Enforcing conservation of axial angular momentum in the atmospheric general circulation model CAM6

Thomas Toniazzo, Mats Bentsen, Cheryl Craig, Brian E. Eaton, Jim Edwards, Steve Goldhaber, Christiane Jablonowski, and Peter H. Lauritzen

Related authors

Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations
Øyvind Seland, Mats Bentsen, Dirk Olivié, Thomas Toniazzo, Ada Gjermundsen, Lise Seland Graff, Jens Boldingh Debernard, Alok Kumar Gupta, Yan-Chun He, Alf Kirkevåg, Jörg Schwinger, Jerry Tjiputra, Kjetil Schanke Aas, Ingo Bethke, Yuanchao Fan, Jan Griesfeller, Alf Grini, Chuncheng Guo, Mehmet Ilicak, Inger Helene Hafsahl Karset, Oskar Landgren, Johan Liakka, Kine Onsum Moseid, Aleksi Nummelin, Clemens Spensberger, Hui Tang, Zhongshi Zhang, Christoph Heinze, Trond Iversen, and Michael Schulz
Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020,https://doi.org/10.5194/gmd-13-6165-2020, 2020
Short summary
A note on the statistical evidence for an influence of geomagnetic activity on Northern Hemisphere seasonal-mean stratospheric temperatures using the Japanese 55-year Reanalysis
Nazario Tartaglione, Thomas Toniazzo, Yvan Orsolini, and Odd Helge Otterå
Ann. Geophys., 38, 545–555, https://doi.org/10.5194/angeo-38-545-2020,https://doi.org/10.5194/angeo-38-545-2020, 2020
Short summary
A double ITCZ phenomenology of wind errors in the equatorial Atlantic in seasonal forecasts with ECMWF models
Jonathan K. P. Shonk, Teferi D. Demissie, and Thomas Toniazzo
Atmos. Chem. Phys., 19, 11383–11399, https://doi.org/10.5194/acp-19-11383-2019,https://doi.org/10.5194/acp-19-11383-2019, 2019
Short summary
Description and evaluation of NorESM1-F: a fast version of the Norwegian Earth System Model (NorESM)
Chuncheng Guo, Mats Bentsen, Ingo Bethke, Mehmet Ilicak, Jerry Tjiputra, Thomas Toniazzo, Jörg Schwinger, and Odd Helge Otterå
Geosci. Model Dev., 12, 343–362, https://doi.org/10.5194/gmd-12-343-2019,https://doi.org/10.5194/gmd-12-343-2019, 2019
Short summary

Related subject area

Atmospheric sciences
Knowledge-inspired fusion strategies for the inference of PM2.5 values with a neural network
Matthieu Dabrowski, José Mennesson, Jérôme Riedi, Chaabane Djeraba, and Pierre Nabat
Geosci. Model Dev., 18, 3707–3733, https://doi.org/10.5194/gmd-18-3707-2025,https://doi.org/10.5194/gmd-18-3707-2025, 2025
Short summary
Tuning the ICON-A 2.6.4 climate model with machine-learning-based emulators and history matching
Pauline Bonnet, Lorenzo Pastori, Mierk Schwabe, Marco Giorgetta, Fernando Iglesias-Suarez, and Veronika Eyring
Geosci. Model Dev., 18, 3681–3706, https://doi.org/10.5194/gmd-18-3681-2025,https://doi.org/10.5194/gmd-18-3681-2025, 2025
Short summary
A novel method for quantifying the contribution of regional transport to PM2.5 in Beijing (2013–2020): combining machine learning with concentration-weighted trajectory analysis
Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao
Geosci. Model Dev., 18, 3623–3634, https://doi.org/10.5194/gmd-18-3623-2025,https://doi.org/10.5194/gmd-18-3623-2025, 2025
Short summary
Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet
Geosci. Model Dev., 18, 3607–3622, https://doi.org/10.5194/gmd-18-3607-2025,https://doi.org/10.5194/gmd-18-3607-2025, 2025
Short summary
Diagnosis of winter precipitation types using the spectral bin model (version 1DSBM-19M): comparison of five methods using ICE-POP 2018 field experiment data
Wonbae Bang, Jacob T. Carlin, Kwonil Kim, Alexander V. Ryzhkov, Guosheng Liu, and GyuWon Lee
Geosci. Model Dev., 18, 3559–3581, https://doi.org/10.5194/gmd-18-3559-2025,https://doi.org/10.5194/gmd-18-3559-2025, 2025
Short summary

Cited articles

Arakawa, A. and Lamb, V. R.: A potential enstrophy and energy conserving scheme for the shallow water equations, Mon. Weather Rev., 109, 18–36, 1981. 
Colella, P. and Woodward, P. R.: The piecewise parabolic method (PPM) for gas-dynamical simulations, J. Comput. Phys., 54, 174–201, 1984. 
Courant, R., Friedrichs, K., and Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann., 100, 3274, https://doi.org/10.1007/BF01448839, 1928. 
Egger, J. and Hoinka, K.-P.: The annual cycle of the axial angular momentum of the atmosphere, J. Climate, 18, 757–771, 2005. 
Download
Short summary
We show that ensuring global conservation of the angular (rotational) momentum (AM) of the atmosphere along the Earth's axis of rotation, which is a property of the governing equations, has important and beneficial consequences for the quality of the numerical simulation of the general circulation of the atmosphere. We discuss the causes of non-conservation in the FV dynamical core of the Community Atmosphere Model (CAM), propose remedies, and show their impact in correcting systematic biases.
Share