the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Description and evaluation of a detailed gas-phase chemistry scheme in the TM5-MP global chemistry transport model (r112)
Nikos Daskalakis
Angelos Gkouvousis
Andreas Hilboll
Twan van Noije
Jason E. Williams
Philippe Le Sager
Vincent Huijnen
Sander Houweling
Tommi Bergman
Johann Rasmus Nüß
Mihalis Vrekoussis
Maria Kanakidou
Related authors
A state-of-the-art thermodynamic model has been coupled with the city-scale chemistry transport model EPISODE–CityChem to investigate the equilibrium between the inorganic gas and aerosol phases over the greater Athens area, Greece. The simulations indicate that the formation of nitrates in an urban environment is significantly affected by local nitrogen oxide emissions, as well as ambient temperature, relative humidity, photochemical activity, and the presence of non-volatile cations.
A state-of-the-art thermodynamic model has been coupled with the city-scale chemistry transport model EPISODE–CityChem to investigate the equilibrium between the inorganic gas and aerosol phases over the greater Athens area, Greece. The simulations indicate that the formation of nitrates in an urban environment is significantly affected by local nitrogen oxide emissions, as well as ambient temperature, relative humidity, photochemical activity, and the presence of non-volatile cations.
AscDescModeflag of the MLS v4.20 standard O3 product for 90–60° S and 60–90° N, resulting in inconsistent O3 profiles in these regions before May 2015.