Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.240 IF 5.240
  • IF 5-year value: 5.768 IF 5-year
    5.768
  • CiteScore value: 8.9 CiteScore
    8.9
  • SNIP value: 1.713 SNIP 1.713
  • IPP value: 5.53 IPP 5.53
  • SJR value: 3.18 SJR 3.18
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 71 Scimago H
    index 71
  • h5-index value: 51 h5-index 51
GMD | Articles | Volume 13, issue 5
Geosci. Model Dev., 13, 2169–2184, 2020
https://doi.org/10.5194/gmd-13-2169-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 13, 2169–2184, 2020
https://doi.org/10.5194/gmd-13-2169-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Model evaluation paper 07 May 2020

Model evaluation paper | 07 May 2020

Evaluating a fire smoke simulation algorithm in the National Air Quality Forecast Capability (NAQFC) by using multiple observation data sets during the Southeast Nexus (SENEX) field campaign

Li Pan et al.

Related authors

A case study of aerosol data assimilation with the Community Multi-scale Air Quality Model over the contiguous United States using 3D-Var and optimal interpolation methods
Youhua Tang, Mariusz Pagowski, Tianfeng Chai, Li Pan, Pius Lee, Barry Baker, Rajesh Kumar, Luca Delle Monache, Daniel Tong, and Hyun-Cheol Kim
Geosci. Model Dev., 10, 4743–4758, https://doi.org/10.5194/gmd-10-4743-2017,https://doi.org/10.5194/gmd-10-4743-2017, 2017
Short summary
Evaluating a fire smoke simulation algorithm in the National Air Quality Forecast Capability (NAQFC) by using multiple observation data sets during the Southeast Nexus (SENEX) field campaign
Li Pan, Hyun Cheol Kim, Pius Lee, Rick Saylor, YouHua Tang, Daniel Tong, Barry Baker, Shobha Kondragunta, Chuanyu Xu, Mark G. Ruminski, Weiwei Chen, Jeff Mcqueen, and Ivanka Stajner
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-207,https://doi.org/10.5194/gmd-2017-207, 2017
Revised manuscript not accepted
Short summary
OMI NO2 column densities over North American urban cities: the effect of satellite footprint resolution
Hyun Cheol Kim, Pius Lee, Laura Judd, Li Pan, and Barry Lefer
Geosci. Model Dev., 9, 1111–1123, https://doi.org/10.5194/gmd-9-1111-2016,https://doi.org/10.5194/gmd-9-1111-2016, 2016
Short summary
Toward enhanced capability for detecting and predicting dust events in the western United States: the Arizona case study
M. Huang, D. Tong, P. Lee, L. Pan, Y. Tang, I. Stajner, R. B. Pierce, J. McQueen, and J. Wang
Atmos. Chem. Phys., 15, 12595–12610, https://doi.org/10.5194/acp-15-12595-2015,https://doi.org/10.5194/acp-15-12595-2015, 2015
Short summary

Related subject area

Atmospheric Sciences
Further improvement of wet process treatments in GEOS-Chem v12.6.0: impact on global distributions of aerosols and aerosol precursors
Gan Luo, Fangqun Yu, and Jonathan M. Moch
Geosci. Model Dev., 13, 2879–2903, https://doi.org/10.5194/gmd-13-2879-2020,https://doi.org/10.5194/gmd-13-2879-2020, 2020
Short summary
Impact of scale-aware deep convection on the cloud liquid and ice water paths and precipitation using the Model for Prediction Across Scales (MPAS-v5.2)
Laura D. Fowler, Mary C. Barth, and Kiran Alapaty
Geosci. Model Dev., 13, 2851–2877, https://doi.org/10.5194/gmd-13-2851-2020,https://doi.org/10.5194/gmd-13-2851-2020, 2020
Short summary
Single-precision arithmetic in ECHAM radiation reduces runtime and energy consumption
Alessandro Cotronei and Thomas Slawig
Geosci. Model Dev., 13, 2783–2804, https://doi.org/10.5194/gmd-13-2783-2020,https://doi.org/10.5194/gmd-13-2783-2020, 2020
Short summary
Three-dimensional normal mode functions: open-access tools for their computation in isobaric coordinates (p-3DNMF.v1)
Carlos A. F. Marques, Martinho Marta-Almeida, and José M. Castanheira
Geosci. Model Dev., 13, 2763–2781, https://doi.org/10.5194/gmd-13-2763-2020,https://doi.org/10.5194/gmd-13-2763-2020, 2020
Short summary
Optimizing a dynamic fossil fuel CO2 emission model with CTDAS (CarbonTracker Data Assimilation Shell, v1.0) for an urban area using atmospheric observations of CO2, CO, NOx, and SO2
Ingrid Super, Hugo A. C. Denier van der Gon, Michiel K. van der Molen, Stijn N. C. Dellaert, and Wouter Peters
Geosci. Model Dev., 13, 2695–2721, https://doi.org/10.5194/gmd-13-2695-2020,https://doi.org/10.5194/gmd-13-2695-2020, 2020
Short summary

Cited articles

Achtemeier, G. L., Goodrick, S. A., Liu, Y. Q., Garcia-Menendez, F., Hu, Y. T., and Odman, M. T.: Modeling Smoke Plume-Rise and Dispersion from Southern United States Prescribed Burns with Daysmoke, Atmosphere, 2, 358–388, https://doi.org/10.3390/atmos2030358, 2011. 
Aiken, A. C., de Foy, B., Wiedinmyer, C., DeCarlo, P. F., Ulbrich, I. M., Wehrli, M. N., Szidat, S., Prevot, A. S. H., Noda, J., Wacker, L., Volkamer, R., Fortner, E., Wang, J., Laskin, A., Shutthanandan, V., Zheng, J., Zhang, R., Paredes-Miranda, G., Arnott, W. P., Molina, L. T., Sosa, G., Querol, X., and Jimenez, J. L.: Mexico city aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) – Part 2: Analysis of the biomass burning contribution and the non-fossil carbon fraction, Atmos. Chem. Phys., 10, 5315–5341, https://doi.org/10.5194/acp-10-5315-2010, 2010. 
Alvarado, M. J., Lonsdale, C. R., Yokelson, R. J., Akagi, S. K., Coe, H., Craven, J. S., Fischer, E. V., McMeeking, G. R., Seinfeld, J. H., Soni, T., Taylor, J. W., Weise, D. R., and Wold, C. E.: Investigating the links between ozone and organic aerosol chemistry in a biomass burning plume from a prescribed fire in California chaparral, Atmos. Chem. Phys., 15, 6667–6688, https://doi.org/10.5194/acp-15-6667-2015, 2015. 
Baker, K. R., Woody, M. C., Tonnesen, G. S., Hutzell, W., Pye, H. O. T., Beaver, M. R., Pouliot, G., and Pierce, T.: Contribution of regional-scale fire events to ozone and PM2.5 air quality estimated by photochemical modeling approaches, Atmos. Environ., 140, 539–554, https://doi.org/10.1016/j.atmosenv.2016.06.032, 2016. 
Briggs, G. A.: Plume rise predictions, in: Lectures on air pollution and environmental impact analyses, Boston, 59–111, 1975. 
Publications Copernicus
Download
Short summary
Compared to anthropogenic emissions, emissions from wildfires are largely uncontrolled and unpredictable. Quantitatively describing wildfire emissions and their contributions to air pollution remains a substantial challenge for air quality forecasting efforts. In this study, we test the wildfire calculation algorithm used by the National Air Quality Forecasting Capability (NAQFC) by comparison with ground, satellite and flight measurements during the Southeast Nexus (SENEX) field experiment.
Compared to anthropogenic emissions, emissions from wildfires are largely uncontrolled and...
Citation