Articles | Volume 13, issue 4
https://doi.org/10.5194/gmd-13-2031-2020
https://doi.org/10.5194/gmd-13-2031-2020
Development and technical paper
 | 
22 Apr 2020
Development and technical paper |  | 22 Apr 2020

Tracking water masses using passive-tracer transport in NEMO v3.4 with NEMOTAM: application to North Atlantic Deep Water and North Atlantic Subtropical Mode Water

Dafydd Stephenson, Simon A. Müller, and Florian Sévellec

Related authors

Arctic regional changes revealed by clustering of sea-ice observations
Amélie Simon, Pierre Tandeo, Florian Sévellec, and Camille Lique
EGUsphere, https://doi.org/10.5194/egusphere-2025-704,https://doi.org/10.5194/egusphere-2025-704, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Past, Present, and Future Variability of Atlantic Meridional Overturning Circulation in CMIP6 Ensembles
Arthur Coquereau, Florian Sévellec, Thierry Huck, Joël J.-M. Hirschi, and Quentin Jamet
EGUsphere, https://doi.org/10.5194/egusphere-2025-17,https://doi.org/10.5194/egusphere-2025-17, 2025
Short summary
Selecting and weighting dynamical models using data-driven approaches
Pierre Le Bras, Florian Sévellec, Pierre Tandeo, Juan Ruiz, and Pierre Ailliot
Nonlin. Processes Geophys., 31, 303–317, https://doi.org/10.5194/npg-31-303-2024,https://doi.org/10.5194/npg-31-303-2024, 2024
Short summary
Data-driven reconstruction of partially observed dynamical systems
Pierre Tandeo, Pierre Ailliot, and Florian Sévellec
Nonlin. Processes Geophys., 30, 129–137, https://doi.org/10.5194/npg-30-129-2023,https://doi.org/10.5194/npg-30-129-2023, 2023
Short summary
Analog data assimilation for the selection of suitable general circulation models
Juan Ruiz, Pierre Ailliot, Thi Tuyet Trang Chau, Pierre Le Bras, Valérie Monbet, Florian Sévellec, and Pierre Tandeo
Geosci. Model Dev., 15, 7203–7220, https://doi.org/10.5194/gmd-15-7203-2022,https://doi.org/10.5194/gmd-15-7203-2022, 2022
Short summary

Related subject area

Oceanography
sedInterFoam 1.0: a three-phase numerical model for sediment transport applications with free surfaces
Antoine Mathieu, Yeulwoo Kim, Tian-Jian Hsu, Cyrille Bonamy, and Julien Chauchat
Geosci. Model Dev., 18, 1561–1573, https://doi.org/10.5194/gmd-18-1561-2025,https://doi.org/10.5194/gmd-18-1561-2025, 2025
Short summary
The Ross Sea and Amundsen Sea Ice–Sea Model (RAISE v1.0): a high-resolution ocean–sea ice–ice shelf coupling model for simulating the Dense Shelf Water and Antarctic Bottom Water in the Ross Sea, Antarctica
Zhaoru Zhang, Chuan Xie, Chuning Wang, Yuanjie Chen, Heng Hu, and Xiaoqiao Wang
Geosci. Model Dev., 18, 1375–1393, https://doi.org/10.5194/gmd-18-1375-2025,https://doi.org/10.5194/gmd-18-1375-2025, 2025
Short summary
Sensitivity of the tropical Atlantic to vertical mixing in two ocean models (ICON-O v2.6.6 and FESOM v2.5)
Swantje Bastin, Aleksei Koldunov, Florian Schütte, Oliver Gutjahr, Marta Agnieszka Mrozowska, Tim Fischer, Radomyra Shevchenko, Arjun Kumar, Nikolay Koldunov, Helmuth Haak, Nils Brüggemann, Rebecca Hummels, Mia Sophie Specht, Johann Jungclaus, Sergey Danilov, Marcus Dengler, and Markus Jochum
Geosci. Model Dev., 18, 1189–1220, https://doi.org/10.5194/gmd-18-1189-2025,https://doi.org/10.5194/gmd-18-1189-2025, 2025
Short summary
HIDRA3: a deep-learning model for multipoint ensemble sea level forecasting in the presence of tide gauge sensor failures
Marko Rus, Hrvoje Mihanović, Matjaž Ličer, and Matej Kristan
Geosci. Model Dev., 18, 605–620, https://doi.org/10.5194/gmd-18-605-2025,https://doi.org/10.5194/gmd-18-605-2025, 2025
Short summary
A wave-resolving two-dimensional vertical Lagrangian approach to model microplastic transport in nearshore waters based on TrackMPD 3.0
Isabel Jalón-Rojas, Damien Sous, and Vincent Marieu
Geosci. Model Dev., 18, 319–336, https://doi.org/10.5194/gmd-18-319-2025,https://doi.org/10.5194/gmd-18-319-2025, 2025
Short summary

Cited articles

Avsic, T., Karstensen, J., Send, U., and Fischer, J.: Interannual variability of newly formed Labrador Sea Water from 1994 to 2005, Geophys. Res. Lett., 33, L21S02, https://doi.org/10.1029/2006GL026913, 2006. a
Banks, H. T. and Gregory, J. M.: Mechanisms of ocean heat uptake in a coupled climate model and the implications for tracer based predictions of ocean heat uptake, Geophys. Res. Lett., 33, L07608, https://doi.org/10.1029/2005GL0253522006. a
Blanke, B. and Raynaud, S.: Kinematics of the Pacific equatorial undercurrent: An Eulerian and Lagrangian approach from GCM results, J. Phys. Oceanogr., 27, 1038–1053, 1997. a
Bower, A., Lozier, S., and Gary, S.: Export of Labrador Sea water from the subpolar North Atlantic: a Lagrangian perspective, Deep-Sea Res. Pt. II, 58, 1798–1818, 2011. a, b
Bower, A., Lozier, S., Biastoch, A., Drouin, K., Foukal, N., Furey, H., Lankhorst, M., Rühs, S., and Zou, S.: Lagrangian Views of the Pathways of the Atlantic Meridional Overturning Circulation, J. Geophys. Res.-Oceans, 124, 5313–5335, https://doi.org/10.1029/2019JC015014, 2019. a
Download
Short summary
Different water types are created at the sea surface with a signature based on the local conditions of the atmosphere. They then take these conditions with them into the deeper ocean, and so their journey is an important climate process to understand. In this study, we modify and repurpose a specialised model which simulates the ocean forward and backward in time to determine where new ocean water goes, where at the surface existing water comes from, and how old it is, by tracking it as a dye.
Share