Articles | Volume 12, issue 11
Geosci. Model Dev., 12, 4781–4802, 2019
https://doi.org/10.5194/gmd-12-4781-2019
Geosci. Model Dev., 12, 4781–4802, 2019
https://doi.org/10.5194/gmd-12-4781-2019
Model description paper
20 Nov 2019
Model description paper | 20 Nov 2019

A new model of the coupled carbon, nitrogen, and phosphorus cycles in the terrestrial biosphere (QUINCY v1.0; revision 1996)

Tea Thum et al.

Related authors

Evaluating two soil carbon models within the global land surface model JSBACH using surface and spaceborne observations of atmospheric CO2
Tea Thum, Julia E. M. S. Nabel, Aki Tsuruta, Tuula Aalto, Edward J. Dlugokencky, Jari Liski, Ingrid T. Luijkx, Tiina Markkanen, Julia Pongratz, Yukio Yoshida, and Sönke Zaehle
Biogeosciences, 17, 5721–5743, https://doi.org/10.5194/bg-17-5721-2020,https://doi.org/10.5194/bg-17-5721-2020, 2020
Short summary
Parameter calibration and stomatal conductance formulation comparison for boreal forests with adaptive population importance sampler in the land surface model JSBACH
Jarmo Mäkelä, Jürgen Knauer, Mika Aurela, Andrew Black, Martin Heimann, Hideki Kobayashi, Annalea Lohila, Ivan Mammarella, Hank Margolis, Tiina Markkanen, Jouni Susiluoto, Tea Thum, Toni Viskari, Sönke Zaehle, and Tuula Aalto
Geosci. Model Dev., 12, 4075–4098, https://doi.org/10.5194/gmd-12-4075-2019,https://doi.org/10.5194/gmd-12-4075-2019, 2019
Short summary
Response of water use efficiency to summer drought in a boreal Scots pine forest in Finland
Yao Gao, Tiina Markkanen, Mika Aurela, Ivan Mammarella, Tea Thum, Aki Tsuruta, Huiyi Yang, and Tuula Aalto
Biogeosciences, 14, 4409–4422, https://doi.org/10.5194/bg-14-4409-2017,https://doi.org/10.5194/bg-14-4409-2017, 2017
Short summary
Modelling sun-induced fluorescence and photosynthesis with a land surface model at local and regional scales in northern Europe
Tea Thum, Sönke Zaehle, Philipp Köhler, Tuula Aalto, Mika Aurela, Luis Guanter, Pasi Kolari, Tuomas Laurila, Annalea Lohila, Federico Magnani, Christiaan Van Der Tol, and Tiina Markkanen
Biogeosciences, 14, 1969–1987, https://doi.org/10.5194/bg-14-1969-2017,https://doi.org/10.5194/bg-14-1969-2017, 2017
Short summary
Assessing various drought indicators in representing summer drought in boreal forests in Finland
Y. Gao, T. Markkanen, T. Thum, M. Aurela, A. Lohila, I. Mammarella, M. Kämäräinen, S. Hagemann, and T. Aalto
Hydrol. Earth Syst. Sci., 20, 175–191, https://doi.org/10.5194/hess-20-175-2016,https://doi.org/10.5194/hess-20-175-2016, 2016

Related subject area

Biogeosciences
Development of an open-source regional data assimilation system in PEcAn v. 1.7.2: application to carbon cycle reanalysis across the contiguous US using SIPNET
Hamze Dokoohaki, Bailey D. Morrison, Ann Raiho, Shawn P. Serbin, Katie Zarada, Luke Dramko, and Michael Dietze
Geosci. Model Dev., 15, 3233–3252, https://doi.org/10.5194/gmd-15-3233-2022,https://doi.org/10.5194/gmd-15-3233-2022, 2022
Short summary
Predicting global terrestrial biomes with the LeNet convolutional neural network
Hisashi Sato and Takeshi Ise
Geosci. Model Dev., 15, 3121–3132, https://doi.org/10.5194/gmd-15-3121-2022,https://doi.org/10.5194/gmd-15-3121-2022, 2022
Short summary
KGML-ag: a modeling framework of knowledge-guided machine learning to simulate agroecosystems: a case study of estimating N2O emission using data from mesocosm experiments
Licheng Liu, Shaoming Xu, Jinyun Tang, Kaiyu Guan, Timothy J. Griffis, Matthew D. Erickson, Alexander L. Frie, Xiaowei Jia, Taegon Kim, Lee T. Miller, Bin Peng, Shaowei Wu, Yufeng Yang, Wang Zhou, Vipin Kumar, and Zhenong Jin
Geosci. Model Dev., 15, 2839–2858, https://doi.org/10.5194/gmd-15-2839-2022,https://doi.org/10.5194/gmd-15-2839-2022, 2022
Short summary
Assessing methane emissions for northern peatlands in ORCHIDEE-PEAT revision 7020
Elodie Salmon, Fabrice Jégou, Bertrand Guenet, Line Jourdain, Chunjing Qiu, Vladislav Bastrikov, Christophe Guimbaud, Dan Zhu, Philippe Ciais, Philippe Peylin, Sébastien Gogo, Fatima Laggoun-Défarge, Mika Aurela, M. Syndonia Bret-Harte, Jiquan Chen, Bogdan H. Chojnicki, Housen Chu, Colin W. Edgar, Eugenie S. Euskirchen, Lawrence B. Flanagan, Krzysztof Fortuniak, David Holl, Janina Klatt, Olaf Kolle, Natalia Kowalska, Lars Kutzbach, Annalea Lohila, Lutz Merbold, Włodzimierz Pawlak, Torsten Sachs, and Klaudia Ziemblińska
Geosci. Model Dev., 15, 2813–2838, https://doi.org/10.5194/gmd-15-2813-2022,https://doi.org/10.5194/gmd-15-2813-2022, 2022
Short summary
A dynamic local-scale vegetation model for lycopsids (LYCOm v1.0)
Suman Halder, Susanne K. M. Arens, Kai Jensen, Tais W. Dahl, and Philipp Porada
Geosci. Model Dev., 15, 2325–2343, https://doi.org/10.5194/gmd-15-2325-2022,https://doi.org/10.5194/gmd-15-2325-2022, 2022
Short summary

Cited articles

Ahrens, B., Braakhekke, M. C., Guggenberger, G., Schrumpf, M., and Reichstein, M.: Contribution of sorption, DOC transport and microbial interactions to the 14C age of a soil organic carbon profile: Insights from a calibrated process model, Soil Biol. Biochem., 88, 390–402, 2015. a
Ammann, C., Flechard, C., Leifeld, J., Neftel, A., and Fuhrer, J.: The carbon budget of newly established temperate grassland depends on management intensity, Agr. Ecosyst. Environ., 121, 5–20, https://doi.org/10.1016/j.agee.2006.12.002, 2007. a
Araújo, A. C., Nobre, A. D., Kruijt, B., Elbers, J. A., Dallarosa, R., Stefani, P., von Randow, C., Manzi, A. O., Culf, A. D., Gash, J. H. C., Valentini, R., and Kabat, P.: Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: The Manaus LBA site, J. Geophys. Res.-Atmos., 107, LBA 58–1–LBA 58–20, https://doi.org/10.1029/2001JD000676, 2002. a
Archibald, S., Nickless, A., Govender, N., Scholes, R. J., and Lehsten, V.: Climate and the inter-annual variability of fire in southern Africa: a meta-analysis using long-term field data and satellite-derived burnt area data, Global Ecol. Biogeogr., 19, 794–809, https://doi.org/10.1111/j.1466-8238.2010.00568.x, 2010. a
Atkin, O. K., Meir, P., and Turnbull, M. H.: Improving representation of leaf respiration in large-scale predictive climate–vegetation models, New Phytol., 202, 743–748, https://doi.org/10.1111/nph.12686, 2014. a, b
Download
Short summary
To predict the response of the vegetation to climate change, we need global models that describe the relevant processes taking place in the vegetation. Recently, we have obtained more in-depth understanding of vegetation processes and the role of nutrients in the biogeochemical cycles. We have developed a new global vegetation model that includes carbon, water, nitrogen, and phosphorus cycles. We show that the model is successful in evaluation against a wide range of observations.