Articles | Volume 12, issue 4
https://doi.org/10.5194/gmd-12-1319-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-12-1319-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A crop yield change emulator for use in GCAM and similar models: Persephone v1.0
Abigail Snyder
CORRESPONDING AUTHOR
Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD, USA
Katherine V. Calvin
Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD, USA
Meridel Phillips
Earth Institute Center For Climate Systems Research, Columbia University, New York, NY, USA
Goddard Institute for Space Studies, NASA, New York, NY, USA
Alex C. Ruane
Goddard Institute for Space Studies, NASA, New York, NY, USA
Related authors
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Abigail Snyder, Noah Prime, Claudia Tebaldi, and Kalyn Dorheim
Earth Syst. Dynam., 15, 1301–1318, https://doi.org/10.5194/esd-15-1301-2024, https://doi.org/10.5194/esd-15-1301-2024, 2024
Short summary
Short summary
From running climate models to using their outputs to identify impacts, modeling the integrated human–Earth system is expensive. This work presents a method to identify a smaller subset of models from the full set that preserves the uncertainty characteristics of the full set. This results in a smaller number of runs that an impact modeler can use to assess how uncertainty propagates from the Earth to the human system, while still capturing the range of outcomes provided by climate models.
Claudia Tebaldi, Abigail Snyder, and Kalyn Dorheim
Earth Syst. Dynam., 13, 1557–1609, https://doi.org/10.5194/esd-13-1557-2022, https://doi.org/10.5194/esd-13-1557-2022, 2022
Short summary
Short summary
Impact modelers need many future scenarios to characterize the consequences of climate change. The climate modeling community cannot fully meet this need because of the computational cost of climate models. Emulators have fallen short of providing the entire range of inputs that modern impact models require. Our proposal, STITCHES, meets these demands in a comprehensive way and may thus support a fully integrated impact research effort and save resources for the climate modeling enterprise.
Katherine V. Calvin, Abigail Snyder, Xin Zhao, and Marshall Wise
Geosci. Model Dev., 15, 429–447, https://doi.org/10.5194/gmd-15-429-2022, https://doi.org/10.5194/gmd-15-429-2022, 2022
Short summary
Short summary
Future changes in land use and cover have important implications for agriculture, energy, water use, and climate. In this study, we demonstrate a more systematic and empirically based approach to estimating a few key parameters for an economic model of land use and land cover change, gcamland. We identify parameter combinations that best replicate historical land use in the United States.
James A. Franke, Christoph Müller, Joshua Elliott, Alex C. Ruane, Jonas Jägermeyr, Abigail Snyder, Marie Dury, Pete D. Falloon, Christian Folberth, Louis François, Tobias Hank, R. Cesar Izaurralde, Ingrid Jacquemin, Curtis Jones, Michelle Li, Wenfeng Liu, Stefan Olin, Meridel Phillips, Thomas A. M. Pugh, Ashwan Reddy, Karina Williams, Ziwei Wang, Florian Zabel, and Elisabeth J. Moyer
Geosci. Model Dev., 13, 3995–4018, https://doi.org/10.5194/gmd-13-3995-2020, https://doi.org/10.5194/gmd-13-3995-2020, 2020
Short summary
Short summary
Improving our understanding of the impacts of climate change on crop yields will be critical for global food security in the next century. The models often used to study the how climate change may impact agriculture are complex and costly to run. In this work, we describe a set of global crop model emulators (simplified models) developed under the Agricultural Model Intercomparison Project. Crop model emulators make agricultural simulations more accessible to policy or decision makers.
Robert Link, Abigail Snyder, Cary Lynch, Corinne Hartin, Ben Kravitz, and Ben Bond-Lamberty
Geosci. Model Dev., 12, 1477–1489, https://doi.org/10.5194/gmd-12-1477-2019, https://doi.org/10.5194/gmd-12-1477-2019, 2019
Short summary
Short summary
Earth system models (ESMs) produce the highest-quality future climate data available, but they are costly to run, so only a few runs from each model are publicly available. What is needed are emulators that tell us what would have happened, if we had been able to perform as many ESM runs as we might have liked. Much of the existing work on emulators has focused on deterministic projections of average values. Here we present a way to imbue emulators with the variability seen in ESM runs.
Katherine Calvin, Pralit Patel, Leon Clarke, Ghassem Asrar, Ben Bond-Lamberty, Ryna Yiyun Cui, Alan Di Vittorio, Kalyn Dorheim, Jae Edmonds, Corinne Hartin, Mohamad Hejazi, Russell Horowitz, Gokul Iyer, Page Kyle, Sonny Kim, Robert Link, Haewon McJeon, Steven J. Smith, Abigail Snyder, Stephanie Waldhoff, and Marshall Wise
Geosci. Model Dev., 12, 677–698, https://doi.org/10.5194/gmd-12-677-2019, https://doi.org/10.5194/gmd-12-677-2019, 2019
Short summary
Short summary
This paper describes GCAM v5.1, an open source model that represents the linkages between energy, water, land, climate, and economic systems. GCAM examines the future evolution of these systems through the end of the 21st century. It can be used to examine, for example, how changes in population, income, or technology cost might alter crop production, energy demand, or water withdrawals, or how changes in one region’s demand for energy affect energy, water, and land in other regions.
Abigail C. Snyder, Robert P. Link, and Katherine V. Calvin
Geosci. Model Dev., 10, 4307–4319, https://doi.org/10.5194/gmd-10-4307-2017, https://doi.org/10.5194/gmd-10-4307-2017, 2017
Short summary
Short summary
Experiments conducting a model forecast for a period in which observational data are available are rarely undertaken in the integrated assessment model (IAM) community. When undertaken, results are often evaluated using global aggregates that mask deficiencies. Comparing land allocation simulations in GCAM with FAO observational data from 1990 to 2010, we find quantitative evidence that global aggregates alone are not sufficient for evaluating IAMs with global supply constraints similar to GCAM.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Abigail Snyder, Noah Prime, Claudia Tebaldi, and Kalyn Dorheim
Earth Syst. Dynam., 15, 1301–1318, https://doi.org/10.5194/esd-15-1301-2024, https://doi.org/10.5194/esd-15-1301-2024, 2024
Short summary
Short summary
From running climate models to using their outputs to identify impacts, modeling the integrated human–Earth system is expensive. This work presents a method to identify a smaller subset of models from the full set that preserves the uncertainty characteristics of the full set. This results in a smaller number of runs that an impact modeler can use to assess how uncertainty propagates from the Earth to the human system, while still capturing the range of outcomes provided by climate models.
Jose Rafael Guarin, Jonas Jägermeyr, Elizabeth A. Ainsworth, Fabio A. A. Oliveira, Senthold Asseng, Kenneth Boote, Joshua Elliott, Lisa Emberson, Ian Foster, Gerrit Hoogenboom, David Kelly, Alex C. Ruane, and Katrina Sharps
Geosci. Model Dev., 17, 2547–2567, https://doi.org/10.5194/gmd-17-2547-2024, https://doi.org/10.5194/gmd-17-2547-2024, 2024
Short summary
Short summary
The effects of ozone (O3) stress on crop photosynthesis and leaf senescence were added to maize, rice, soybean, and wheat crop models. The modified models reproduced growth and yields under different O3 levels measured in field experiments and reported in the literature. The combined interactions between O3 and additional stresses were reproduced with the new models. These updated crop models can be used to simulate impacts of O3 stress under future climate change and air pollution scenarios.
Claudia Tebaldi, Abigail Snyder, and Kalyn Dorheim
Earth Syst. Dynam., 13, 1557–1609, https://doi.org/10.5194/esd-13-1557-2022, https://doi.org/10.5194/esd-13-1557-2022, 2022
Short summary
Short summary
Impact modelers need many future scenarios to characterize the consequences of climate change. The climate modeling community cannot fully meet this need because of the computational cost of climate models. Emulators have fallen short of providing the entire range of inputs that modern impact models require. Our proposal, STITCHES, meets these demands in a comprehensive way and may thus support a fully integrated impact research effort and save resources for the climate modeling enterprise.
Matthew Binsted, Gokul Iyer, Pralit Patel, Neal T. Graham, Yang Ou, Zarrar Khan, Nazar Kholod, Kanishka Narayan, Mohamad Hejazi, Son Kim, Katherine Calvin, and Marshall Wise
Geosci. Model Dev., 15, 2533–2559, https://doi.org/10.5194/gmd-15-2533-2022, https://doi.org/10.5194/gmd-15-2533-2022, 2022
Short summary
Short summary
GCAM-USA v5.3_water_dispatch is an open-source model that represents key interactions across economic, energy, water, and land systems in a global framework, with subnational detail in the United States. GCAM-USA can be used to explore future changes in demand for (and production of) energy, water, and crops at the state and regional level in the US. This paper describes GCAM-USA and provides four illustrative scenarios to demonstrate the model's capabilities and potential applications.
Katherine V. Calvin, Abigail Snyder, Xin Zhao, and Marshall Wise
Geosci. Model Dev., 15, 429–447, https://doi.org/10.5194/gmd-15-429-2022, https://doi.org/10.5194/gmd-15-429-2022, 2022
Short summary
Short summary
Future changes in land use and cover have important implications for agriculture, energy, water use, and climate. In this study, we demonstrate a more systematic and empirically based approach to estimating a few key parameters for an economic model of land use and land cover change, gcamland. We identify parameter combinations that best replicate historical land use in the United States.
Eva Sinha, Kate Calvin, Ben Bond-Lamberty, Beth Drewniak, Dan Ricciuto, Khachik Sargsyan, Yanyan Cheng, Carl Bernacchi, and Caitlin Moore
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-244, https://doi.org/10.5194/gmd-2021-244, 2021
Preprint withdrawn
Short summary
Short summary
Perennial bioenergy crops are not well represented in global land models, despite projected increase in their production. Our study expands Energy Exascale Earth System Model (E3SM) Land Model (ELM) to include perennial bioenergy crops and calibrates the model for miscanthus and switchgrass. The calibrated model captures the seasonality and magnitude of carbon and energy fluxes. This study provides the foundation for future research examining the impact of perennial bioenergy crop expansion.
George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang
Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, https://doi.org/10.5194/gmd-13-5425-2020, 2020
Short summary
Short summary
To estimate the effects of human land use activities on the carbon–climate system, a new set of global gridded land use forcing datasets was developed to link historical land use data to eight future scenarios in a standard format required by climate models. This new generation of land use harmonization (LUH2) includes updated inputs, higher spatial resolution, more detailed land use transitions, and the addition of important agricultural management layers; it will be used for CMIP6 simulations.
James A. Franke, Christoph Müller, Joshua Elliott, Alex C. Ruane, Jonas Jägermeyr, Abigail Snyder, Marie Dury, Pete D. Falloon, Christian Folberth, Louis François, Tobias Hank, R. Cesar Izaurralde, Ingrid Jacquemin, Curtis Jones, Michelle Li, Wenfeng Liu, Stefan Olin, Meridel Phillips, Thomas A. M. Pugh, Ashwan Reddy, Karina Williams, Ziwei Wang, Florian Zabel, and Elisabeth J. Moyer
Geosci. Model Dev., 13, 3995–4018, https://doi.org/10.5194/gmd-13-3995-2020, https://doi.org/10.5194/gmd-13-3995-2020, 2020
Short summary
Short summary
Improving our understanding of the impacts of climate change on crop yields will be critical for global food security in the next century. The models often used to study the how climate change may impact agriculture are complex and costly to run. In this work, we describe a set of global crop model emulators (simplified models) developed under the Agricultural Model Intercomparison Project. Crop model emulators make agricultural simulations more accessible to policy or decision makers.
James A. Franke, Christoph Müller, Joshua Elliott, Alex C. Ruane, Jonas Jägermeyr, Juraj Balkovic, Philippe Ciais, Marie Dury, Pete D. Falloon, Christian Folberth, Louis François, Tobias Hank, Munir Hoffmann, R. Cesar Izaurralde, Ingrid Jacquemin, Curtis Jones, Nikolay Khabarov, Marian Koch, Michelle Li, Wenfeng Liu, Stefan Olin, Meridel Phillips, Thomas A. M. Pugh, Ashwan Reddy, Xuhui Wang, Karina Williams, Florian Zabel, and Elisabeth J. Moyer
Geosci. Model Dev., 13, 2315–2336, https://doi.org/10.5194/gmd-13-2315-2020, https://doi.org/10.5194/gmd-13-2315-2020, 2020
Short summary
Short summary
Concerns about food security under climate change motivate efforts to better understand future changes in crop yields. Crop models, which represent plant biology, are necessary tools for this purpose since they allow representing future climate, farmer choices, and new agricultural geographies. The Global Gridded Crop Model Intercomparison (GGCMI) Phase 2 experiment, under the Agricultural Model Intercomparison and Improvement Project (AgMIP), is designed to evaluate and improve crop models.
Min Chen, Chris R. Vernon, Maoyi Huang, Katherine V. Calvin, and Ian P. Kraucunas
Geosci. Model Dev., 12, 1753–1764, https://doi.org/10.5194/gmd-12-1753-2019, https://doi.org/10.5194/gmd-12-1753-2019, 2019
Short summary
Short summary
Demeter is a community spatial downscaling model that disaggregates land use and land cover changes projected by integrated human–Earth system models. However, Demeter has not been intensively calibrated, and we still lack good knowledge about its sensitivity to key parameters and parameter uncertainties. This paper aims to solve this problem.
Robert Link, Abigail Snyder, Cary Lynch, Corinne Hartin, Ben Kravitz, and Ben Bond-Lamberty
Geosci. Model Dev., 12, 1477–1489, https://doi.org/10.5194/gmd-12-1477-2019, https://doi.org/10.5194/gmd-12-1477-2019, 2019
Short summary
Short summary
Earth system models (ESMs) produce the highest-quality future climate data available, but they are costly to run, so only a few runs from each model are publicly available. What is needed are emulators that tell us what would have happened, if we had been able to perform as many ESM runs as we might have liked. Much of the existing work on emulators has focused on deterministic projections of average values. Here we present a way to imbue emulators with the variability seen in ESM runs.
Matthew J. Gidden, Keywan Riahi, Steven J. Smith, Shinichiro Fujimori, Gunnar Luderer, Elmar Kriegler, Detlef P. van Vuuren, Maarten van den Berg, Leyang Feng, David Klein, Katherine Calvin, Jonathan C. Doelman, Stefan Frank, Oliver Fricko, Mathijs Harmsen, Tomoko Hasegawa, Petr Havlik, Jérôme Hilaire, Rachel Hoesly, Jill Horing, Alexander Popp, Elke Stehfest, and Kiyoshi Takahashi
Geosci. Model Dev., 12, 1443–1475, https://doi.org/10.5194/gmd-12-1443-2019, https://doi.org/10.5194/gmd-12-1443-2019, 2019
Short summary
Short summary
We present a suite of nine scenarios of future emissions trajectories of anthropogenic sources for use in CMIP6. Integrated assessment model results are provided for each scenario with consistent transitions from the historical data to future trajectories. We find that the set of scenarios enables the exploration of a variety of warming pathways. A wide range of scenario data products are provided for the CMIP6 scientific community including global, regional, and gridded emissions datasets.
Katherine Calvin, Pralit Patel, Leon Clarke, Ghassem Asrar, Ben Bond-Lamberty, Ryna Yiyun Cui, Alan Di Vittorio, Kalyn Dorheim, Jae Edmonds, Corinne Hartin, Mohamad Hejazi, Russell Horowitz, Gokul Iyer, Page Kyle, Sonny Kim, Robert Link, Haewon McJeon, Steven J. Smith, Abigail Snyder, Stephanie Waldhoff, and Marshall Wise
Geosci. Model Dev., 12, 677–698, https://doi.org/10.5194/gmd-12-677-2019, https://doi.org/10.5194/gmd-12-677-2019, 2019
Short summary
Short summary
This paper describes GCAM v5.1, an open source model that represents the linkages between energy, water, land, climate, and economic systems. GCAM examines the future evolution of these systems through the end of the 21st century. It can be used to examine, for example, how changes in population, income, or technology cost might alter crop production, energy demand, or water withdrawals, or how changes in one region’s demand for energy affect energy, water, and land in other regions.
Abigail C. Snyder, Robert P. Link, and Katherine V. Calvin
Geosci. Model Dev., 10, 4307–4319, https://doi.org/10.5194/gmd-10-4307-2017, https://doi.org/10.5194/gmd-10-4307-2017, 2017
Short summary
Short summary
Experiments conducting a model forecast for a period in which observational data are available are rarely undertaken in the integrated assessment model (IAM) community. When undertaken, results are often evaluated using global aggregates that mask deficiencies. Comparing land allocation simulations in GCAM with FAO observational data from 1990 to 2010, we find quantitative evidence that global aggregates alone are not sufficient for evaluating IAMs with global supply constraints similar to GCAM.
Christoph Müller, Joshua Elliott, James Chryssanthacopoulos, Almut Arneth, Juraj Balkovic, Philippe Ciais, Delphine Deryng, Christian Folberth, Michael Glotter, Steven Hoek, Toshichika Iizumi, Roberto C. Izaurralde, Curtis Jones, Nikolay Khabarov, Peter Lawrence, Wenfeng Liu, Stefan Olin, Thomas A. M. Pugh, Deepak K. Ray, Ashwan Reddy, Cynthia Rosenzweig, Alex C. Ruane, Gen Sakurai, Erwin Schmid, Rastislav Skalsky, Carol X. Song, Xuhui Wang, Allard de Wit, and Hong Yang
Geosci. Model Dev., 10, 1403–1422, https://doi.org/10.5194/gmd-10-1403-2017, https://doi.org/10.5194/gmd-10-1403-2017, 2017
Short summary
Short summary
Crop models are increasingly used in climate change impact research and integrated assessments. For the Agricultural Model Intercomparison and Improvement Project (AgMIP), 14 global gridded crop models (GGCMs) have supplied crop yield simulations (1980–2010) for maize, wheat, rice and soybean. We evaluate the performance of these models against observational data at global, national and grid cell level. We propose an open-access benchmark system against which future model versions can be tested.
Christian Folberth, Joshua Elliott, Christoph Müller, Juraj Balkovic, James Chryssanthacopoulos, Roberto C. Izaurralde, Curtis D. Jones, Nikolay Khabarov, Wenfeng Liu, Ashwan Reddy, Erwin Schmid, Rastislav Skalský, Hong Yang, Almut Arneth, Philippe Ciais, Delphine Deryng, Peter J. Lawrence, Stefan Olin, Thomas A. M. Pugh, Alex C. Ruane, and Xuhui Wang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-527, https://doi.org/10.5194/bg-2016-527, 2016
Manuscript not accepted for further review
Short summary
Short summary
Global crop models differ in numerous aspects such as algorithms, parameterization, input data, and management assumptions. This study compares five global crop model frameworks, all based on the same field-scale model, to identify differences induced by the latter three. Results indicate that foremost nutrient supply, soil handling, and crop management induce substantial differences in crop yield estimates whereas crop cultivars primarily result in scaling of yield levels.
Alex C. Ruane, Claas Teichmann, Nigel W. Arnell, Timothy R. Carter, Kristie L. Ebi, Katja Frieler, Clare M. Goodess, Bruce Hewitson, Radley Horton, R. Sari Kovats, Heike K. Lotze, Linda O. Mearns, Antonio Navarra, Dennis S. Ojima, Keywan Riahi, Cynthia Rosenzweig, Matthias Themessl, and Katharine Vincent
Geosci. Model Dev., 9, 3493–3515, https://doi.org/10.5194/gmd-9-3493-2016, https://doi.org/10.5194/gmd-9-3493-2016, 2016
Short summary
Short summary
The Vulnerability, Impacts, Adaptation, and Climate Services (VIACS) Advisory Board for CMIP6 was created to improve communications between communities that apply climate model output for societal benefit and the climate model centers. This manuscript describes the establishment of the VIACS Advisory Board as a coherent avenue for communication utilizing leading networks, experts, and programs; results of initial interactions during the development of CMIP6; and its potential next activities.
David M. Lawrence, George C. Hurtt, Almut Arneth, Victor Brovkin, Kate V. Calvin, Andrew D. Jones, Chris D. Jones, Peter J. Lawrence, Nathalie de Noblet-Ducoudré, Julia Pongratz, Sonia I. Seneviratne, and Elena Shevliakova
Geosci. Model Dev., 9, 2973–2998, https://doi.org/10.5194/gmd-9-2973-2016, https://doi.org/10.5194/gmd-9-2973-2016, 2016
Short summary
Short summary
Human land-use activities have resulted in large changes to the Earth's surface, with resulting implications for climate. In the future, land-use activities are likely to expand and intensify further to meet growing demands for food, fiber, and energy. The goal of LUMIP is to take the next steps in land-use change science, and enable, coordinate, and ultimately address the most important land-use science questions in more depth and sophistication than possible in a multi-model context to date.
W. D. Collins, A. P. Craig, J. E. Truesdale, A. V. Di Vittorio, A. D. Jones, B. Bond-Lamberty, K. V. Calvin, J. A. Edmonds, S. H. Kim, A. M. Thomson, P. Patel, Y. Zhou, J. Mao, X. Shi, P. E. Thornton, L. P. Chini, and G. C. Hurtt
Geosci. Model Dev., 8, 2203–2219, https://doi.org/10.5194/gmd-8-2203-2015, https://doi.org/10.5194/gmd-8-2203-2015, 2015
Short summary
Short summary
The integrated Earth system model (iESM) has been developed as a
new tool for projecting the joint human-climate system. The
iESM is based upon coupling an integrated assessment model (IAM)
and an Earth system model (ESM) into a common modeling
infrastructure. By introducing heretofore-omitted
feedbacks between natural and societal drivers in iESM, we can improve
scientific understanding of the human-Earth system
dynamics.
K. Frieler, A. Levermann, J. Elliott, J. Heinke, A. Arneth, M. F. P. Bierkens, P. Ciais, D. B. Clark, D. Deryng, P. Döll, P. Falloon, B. Fekete, C. Folberth, A. D. Friend, C. Gellhorn, S. N. Gosling, I. Haddeland, N. Khabarov, M. Lomas, Y. Masaki, K. Nishina, K. Neumann, T. Oki, R. Pavlick, A. C. Ruane, E. Schmid, C. Schmitz, T. Stacke, E. Stehfest, Q. Tang, D. Wisser, V. Huber, F. Piontek, L. Warszawski, J. Schewe, H. Lotze-Campen, and H. J. Schellnhuber
Earth Syst. Dynam., 6, 447–460, https://doi.org/10.5194/esd-6-447-2015, https://doi.org/10.5194/esd-6-447-2015, 2015
J. Elliott, C. Müller, D. Deryng, J. Chryssanthacopoulos, K. J. Boote, M. Büchner, I. Foster, M. Glotter, J. Heinke, T. Iizumi, R. C. Izaurralde, N. D. Mueller, D. K. Ray, C. Rosenzweig, A. C. Ruane, and J. Sheffield
Geosci. Model Dev., 8, 261–277, https://doi.org/10.5194/gmd-8-261-2015, https://doi.org/10.5194/gmd-8-261-2015, 2015
Short summary
Short summary
We present and describe the Global Gridded Crop Model Intercomparison (GGCMI) project, an ongoing international effort to 1) validate global models of crop productivity, 2) improve models through detailed analysis of processes, and 3) assess the impacts of climate change on agriculture and food security. We present analysis of data inputs for the project, detailed protocols for conducting and evaluating simulation outputs, and example results.
A. V. Di Vittorio, L. P. Chini, B. Bond-Lamberty, J. Mao, X. Shi, J. Truesdale, A. Craig, K. Calvin, A. Jones, W. D. Collins, J. Edmonds, G. C. Hurtt, P. Thornton, and A. Thomson
Biogeosciences, 11, 6435–6450, https://doi.org/10.5194/bg-11-6435-2014, https://doi.org/10.5194/bg-11-6435-2014, 2014
Short summary
Short summary
Economic models provide scenarios of land use and greenhouse gas emissions to earth system models to project global change. We found, and partially addressed, inconsistencies in land cover between an economic and an earth system model that effectively alter a prescribed scenario, causing significant differences in projected terrestrial carbon and atmospheric CO2 between prescribed and altered scenarios. We outline a solution to this current problem in scenario-based global change projections.
B. Bond-Lamberty, K. Calvin, A. D. Jones, J. Mao, P. Patel, X. Y. Shi, A. Thomson, P. Thornton, and Y. Zhou
Geosci. Model Dev., 7, 2545–2555, https://doi.org/10.5194/gmd-7-2545-2014, https://doi.org/10.5194/gmd-7-2545-2014, 2014
M. I. Hejazi, J. Edmonds, L. Clarke, P. Kyle, E. Davies, V. Chaturvedi, M. Wise, P. Patel, J. Eom, and K. Calvin
Hydrol. Earth Syst. Sci., 18, 2859–2883, https://doi.org/10.5194/hess-18-2859-2014, https://doi.org/10.5194/hess-18-2859-2014, 2014
M. I. Hejazi, J. Edmonds, L. Clarke, P. Kyle, E. Davies, V. Chaturvedi, J. Eom, M. Wise, P. Patel, and K. Calvin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-3383-2013, https://doi.org/10.5194/hessd-10-3383-2013, 2013
Revised manuscript has not been submitted
Related subject area
Climate and Earth system modeling
ISOM 1.0: a fully mesoscale-resolving idealized Southern Ocean model and the diversity of multiscale eddy interactions
A computationally lightweight model for ensemble forecasting of environmental hazards: General TAMSAT-ALERT v1.2.1
Introducing the MESMER-M-TPv0.1.0 module: spatially explicit Earth system model emulation for monthly precipitation and temperature
The need for carbon-emissions-driven climate projections in CMIP7
Robust handling of extremes in quantile mapping – “Murder your darlings”
A protocol for model intercomparison of impacts of marine cloud brightening climate intervention
An extensible perturbed parameter ensemble for the Community Atmosphere Model version 6
Coupling the regional climate model ICON-CLM v2.6.6 to the Earth system model GCOAST-AHOI v2.0 using OASIS3-MCT v4.0
A fully coupled solid-particle microphysics scheme for stratospheric aerosol injections within the aerosol–chemistry–climate model SOCOL-AERv2
An improved representation of aerosol in the ECMWF IFS-COMPO 49R1 through the integration of EQSAM4Climv12 – a first attempt at simulating aerosol acidity
At-scale Model Output Statistics in mountain environments (AtsMOS v1.0)
Impact of ocean vertical-mixing parameterization on Arctic sea ice and upper-ocean properties using the NEMO-SI3 model
Bridging the gap: a new module for human water use in the Community Earth System Model version 2.2.1
A new lightning scheme in the Canadian Atmospheric Model (CanAM5.1): implementation, evaluation, and projections of lightning and fire in future climates
Methane dynamics in the Baltic Sea: investigating concentration, flux, and isotopic composition patterns using the coupled physical–biogeochemical model BALTSEM-CH4 v1.0
Split-explicit external mode solver in the finite volume sea ice–ocean model FESOM2
Applying double cropping and interactive irrigation in the North China Plain using WRF4.5
The sea ice component of GC5: coupling SI3 to HadGEM3 using conductive fluxes
CICE on a C-grid: new momentum, stress, and transport schemes for CICEv6.5
HyPhAICC v1.0: a hybrid physics–AI approach for probability fields advection shown through an application to cloud cover nowcasting
CICERO Simple Climate Model (CICERO-SCM v1.1.1) – an improved simple climate model with a parameter calibration tool
Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)
Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model
A 3D-Var assimilation scheme for vertical velocity with CMA-MESO v5.0
Updating the radiation infrastructure in MESSy (based on MESSy version 2.55)
An urban module coupled with the Variable Infiltration Capacity model to improve hydrothermal simulations in urban systems
Bayesian hierarchical model for bias-correcting climate models
Evaluation of the coupling of EMACv2.55 to the land surface and vegetation model JSBACHv4
Reduced floating-point precision in regional climate simulations: an ensemble-based statistical verification
TorchClim v1.0: a deep-learning plugin for climate model physics
Linking global terrestrial and ocean biogeochemistry with process-based, coupled freshwater algae–nutrient–solid dynamics in LM3-FANSY v1.0
Validating a microphysical prognostic stratospheric aerosol implementation in E3SMv2 using observations after the Mount Pinatubo eruption
Architectural Insights and Training Methodology Optimization of Pangu-Weather
Implementing detailed nucleation predictions in the Earth system model EC-Earth3.3.4: sulfuric acid–ammonia nucleation
Modeling biochar effects on soil organic carbon on croplands in a microbial decomposition model (MIMICS-BC_v1.0)
Hector V3.2.0: functionality and performance of a reduced-complexity climate model
Evaluation of CMIP6 model simulations of PM2.5 and its components over China
Assessment of a tiling energy budget approach in a land surface model, ORCHIDEE-MICT (r8205)
Virtual Integration of Satellite and In-situ Observation Networks (VISION) v1.0: In-Situ Observations Simulator
Multivariate adjustment of drizzle bias using machine learning in European climate projections
Development and evaluation of the interactive Model for Air Pollution and Land Ecosystems (iMAPLE) version 1.0
A perspective on the next generation of Earth system model scenarios: towards representative emission pathways (REPs)
Evaluating downscaled products with expected hydroclimatic co-variances
Software sustainability of global impact models
Short-term effects of hurricanes on nitrate-nitrogen runoff loading: a case study of Hurricane Ida using E3SM land model (v2.1)
CARIB12: A Regional Community Earth System Model / Modular Ocean Model 6 Configuration of the Caribbean Sea
Parallel SnowModel (v1.0): a parallel implementation of a distributed snow-evolution modeling system (SnowModel)
GOSI9: UK Global Ocean and Sea Ice configurations
Jingwei Xie, Xi Wang, Hailong Liu, Pengfei Lin, Jiangfeng Yu, Zipeng Yu, Junlin Wei, and Xiang Han
Geosci. Model Dev., 17, 8469–8493, https://doi.org/10.5194/gmd-17-8469-2024, https://doi.org/10.5194/gmd-17-8469-2024, 2024
Short summary
Short summary
We propose the concept of mesoscale ocean direct numerical simulation (MODNS), which should resolve the first baroclinic deformation radius and ensure the numerical dissipative effects do not directly contaminate the mesoscale motions. It can be a benchmark for testing mesoscale ocean large eddy simulation (MOLES) methods in ocean models. We build an idealized Southern Ocean model using MITgcm to generate a type of MODNS. We also illustrate the diversity of multiscale eddy interactions.
Emily Black, John Ellis, and Ross I. Maidment
Geosci. Model Dev., 17, 8353–8372, https://doi.org/10.5194/gmd-17-8353-2024, https://doi.org/10.5194/gmd-17-8353-2024, 2024
Short summary
Short summary
We present General TAMSAT-ALERT, a computationally lightweight and versatile tool for generating ensemble forecasts from time series data. General TAMSAT-ALERT is capable of combining multiple streams of monitoring and meteorological forecasting data into probabilistic hazard assessments. In this way, it complements existing systems and enhances their utility for actionable hazard assessment.
Sarah Schöngart, Lukas Gudmundsson, Mathias Hauser, Peter Pfleiderer, Quentin Lejeune, Shruti Nath, Sonia Isabelle Seneviratne, and Carl-Friedrich Schleussner
Geosci. Model Dev., 17, 8283–8320, https://doi.org/10.5194/gmd-17-8283-2024, https://doi.org/10.5194/gmd-17-8283-2024, 2024
Short summary
Short summary
Precipitation and temperature are two of the most impact-relevant climatic variables. Yet, projecting future precipitation and temperature data under different emission scenarios relies on complex models that are computationally expensive. In this study, we propose a method that allows us to generate monthly means of local precipitation and temperature at low computational costs. Our modelling framework is particularly useful for all downstream applications of climate model data.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Peter Berg, Thomas Bosshard, Denica Bozhinova, Lars Bärring, Joakim Löw, Carolina Nilsson, Gustav Strandberg, Johan Södling, Johan Thuresson, Renate Wilcke, and Wei Yang
Geosci. Model Dev., 17, 8173–8179, https://doi.org/10.5194/gmd-17-8173-2024, https://doi.org/10.5194/gmd-17-8173-2024, 2024
Short summary
Short summary
When bias adjusting climate model data using quantile mapping, one needs to prescribe what to do at the tails of the distribution, where a larger data range is likely encountered outside of the calibration period. The end result is highly dependent on the method used. We show that, to avoid discontinuities in the time series, one needs to exclude data in the calibration range to also activate the extrapolation functionality in that time period.
Philip J. Rasch, Haruki Hirasawa, Mingxuan Wu, Sarah J. Doherty, Robert Wood, Hailong Wang, Andy Jones, James Haywood, and Hansi Singh
Geosci. Model Dev., 17, 7963–7994, https://doi.org/10.5194/gmd-17-7963-2024, https://doi.org/10.5194/gmd-17-7963-2024, 2024
Short summary
Short summary
We introduce a protocol to compare computer climate simulations to better understand a proposed strategy intended to counter warming and climate impacts from greenhouse gas increases. This slightly changes clouds in six ocean regions to reflect more sunlight and cool the Earth. Example changes in clouds and climate are shown for three climate models. Cloud changes differ between the models, but precipitation and surface temperature changes are similar when their cooling effects are made similar.
Trude Eidhammer, Andrew Gettelman, Katherine Thayer-Calder, Duncan Watson-Parris, Gregory Elsaesser, Hugh Morrison, Marcus van Lier-Walqui, Ci Song, and Daniel McCoy
Geosci. Model Dev., 17, 7835–7853, https://doi.org/10.5194/gmd-17-7835-2024, https://doi.org/10.5194/gmd-17-7835-2024, 2024
Short summary
Short summary
We describe a dataset where 45 parameters related to cloud processes in the Community Earth System Model version 2 (CESM2) Community Atmosphere Model version 6 (CAM6) are perturbed. Three sets of perturbed parameter ensembles (263 members) were created: current climate, preindustrial aerosol loading and future climate with sea surface temperature increased by 4 K.
Ha Thi Minh Ho-Hagemann, Vera Maurer, Stefan Poll, and Irina Fast
Geosci. Model Dev., 17, 7815–7834, https://doi.org/10.5194/gmd-17-7815-2024, https://doi.org/10.5194/gmd-17-7815-2024, 2024
Short summary
Short summary
The regional Earth system model GCOAST-AHOI v2.0 that includes the regional climate model ICON-CLM coupled to the ocean model NEMO and the hydrological discharge model HD via the OASIS3-MCT coupler can be a useful tool for conducting long-term regional climate simulations over the EURO-CORDEX domain. The new OASIS3-MCT coupling interface implemented in ICON-CLM makes it more flexible for coupling to an external ocean model and an external hydrological discharge model.
Sandro Vattioni, Rahel Weber, Aryeh Feinberg, Andrea Stenke, John A. Dykema, Beiping Luo, Georgios A. Kelesidis, Christian A. Bruun, Timofei Sukhodolov, Frank N. Keutsch, Thomas Peter, and Gabriel Chiodo
Geosci. Model Dev., 17, 7767–7793, https://doi.org/10.5194/gmd-17-7767-2024, https://doi.org/10.5194/gmd-17-7767-2024, 2024
Short summary
Short summary
We quantified impacts and efficiency of stratospheric solar climate intervention via solid particle injection. Microphysical interactions of solid particles with the sulfur cycle were interactively coupled to the heterogeneous chemistry scheme and the radiative transfer code of an aerosol–chemistry–climate model. Compared to injection of SO2 we only find a stronger cooling efficiency for solid particles when normalizing to the aerosol load but not when normalizing to the injection rate.
Samuel Rémy, Swen Metzger, Vincent Huijnen, Jason E. Williams, and Johannes Flemming
Geosci. Model Dev., 17, 7539–7567, https://doi.org/10.5194/gmd-17-7539-2024, https://doi.org/10.5194/gmd-17-7539-2024, 2024
Short summary
Short summary
In this paper we describe the development of the future operational cycle 49R1 of the IFS-COMPO system, used for operational forecasts of atmospheric composition in the CAMS project, and focus on the implementation of the thermodynamical model EQSAM4Clim version 12. The implementation of EQSAM4Clim significantly improves the simulated secondary inorganic aerosol surface concentration. The new aerosol and precipitation acidity diagnostics showed good agreement against observational datasets.
Maximillian Van Wyk de Vries, Tom Matthews, L. Baker Perry, Nirakar Thapa, and Rob Wilby
Geosci. Model Dev., 17, 7629–7643, https://doi.org/10.5194/gmd-17-7629-2024, https://doi.org/10.5194/gmd-17-7629-2024, 2024
Short summary
Short summary
This paper introduces the AtsMOS workflow, a new tool for improving weather forecasts in mountainous areas. By combining advanced statistical techniques with local weather data, AtsMOS can provide more accurate predictions of weather conditions. Using data from Mount Everest as an example, AtsMOS has shown promise in better forecasting hazardous weather conditions, making it a valuable tool for communities in mountainous regions and beyond.
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev., 17, 7445–7466, https://doi.org/10.5194/gmd-17-7445-2024, https://doi.org/10.5194/gmd-17-7445-2024, 2024
Short summary
Short summary
We study the parameters of the turbulent-kinetic-energy mixed-layer-penetration scheme in the NEMO model with regard to sea-ice-covered regions of the Arctic Ocean. This evaluation reveals the impact of these parameters on mixed-layer depth, sea surface temperature and salinity, and ocean stratification. Our findings demonstrate significant impacts on sea ice thickness and sea ice concentration, emphasizing the need for accurately representing ocean mixing to understand Arctic climate dynamics.
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
Geosci. Model Dev., 17, 7365–7399, https://doi.org/10.5194/gmd-17-7365-2024, https://doi.org/10.5194/gmd-17-7365-2024, 2024
Short summary
Short summary
In this study, we improved a climate model by adding the representation of water use sectors such as domestic, industry, and agriculture. This new feature helps us understand how water is used and supplied in various areas. We tested our model from 1971 to 2010 and found that it accurately identifies areas with water scarcity. By modelling the competition between sectors when water availability is limited, the model helps estimate the intensity and extent of individual sectors' water shortages.
Cynthia Whaley, Montana Etten-Bohm, Courtney Schumacher, Ayodeji Akingunola, Vivek Arora, Jason Cole, Michael Lazare, David Plummer, Knut von Salzen, and Barbara Winter
Geosci. Model Dev., 17, 7141–7155, https://doi.org/10.5194/gmd-17-7141-2024, https://doi.org/10.5194/gmd-17-7141-2024, 2024
Short summary
Short summary
This paper describes how lightning was added as a process in the Canadian Earth System Model in order to interactively respond to climate changes. As lightning is an important cause of global wildfires, this new model development allows for more realistic projections of how wildfires may change in the future, responding to a changing climate.
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev., 17, 7157–7179, https://doi.org/10.5194/gmd-17-7157-2024, https://doi.org/10.5194/gmd-17-7157-2024, 2024
Short summary
Short summary
Methane (CH4) cycling in the Baltic Proper is studied through model simulations, enabling a first estimate of key CH4 fluxes. A preliminary budget identifies benthic CH4 release as the dominant source and two main sinks: CH4 oxidation in the water (92 % of sinks) and outgassing to the atmosphere (8 % of sinks). This study addresses CH4 emissions from coastal seas and is a first step toward understanding the relative importance of open-water outgassing compared with local coastal hotspots.
Tridib Banerjee, Patrick Scholz, Sergey Danilov, Knut Klingbeil, and Dmitry Sidorenko
Geosci. Model Dev., 17, 7051–7065, https://doi.org/10.5194/gmd-17-7051-2024, https://doi.org/10.5194/gmd-17-7051-2024, 2024
Short summary
Short summary
In this paper we propose a new alternative to one of the functionalities of the sea ice model FESOM2. The alternative we propose allows the model to capture and simulate fast changes in quantities like sea surface elevation more accurately. We also demonstrate that the new alternative is faster and more adept at taking advantages of highly parallelized computing infrastructure. We therefore show that this new alternative is a great addition to the sea ice model FESOM2.
Yuwen Fan, Zhao Yang, Min-Hui Lo, Jina Hur, and Eun-Soon Im
Geosci. Model Dev., 17, 6929–6947, https://doi.org/10.5194/gmd-17-6929-2024, https://doi.org/10.5194/gmd-17-6929-2024, 2024
Short summary
Short summary
Irrigated agriculture in the North China Plain (NCP) has a significant impact on the local climate. To better understand this impact, we developed a specialized model specifically for the NCP region. This model allows us to simulate the double-cropping vegetation and the dynamic irrigation practices that are commonly employed in the NCP. This model shows improved performance in capturing the general crop growth, such as crop stages, biomass, crop yield, and vegetation greenness.
Ed Blockley, Emma Fiedler, Jeff Ridley, Luke Roberts, Alex West, Dan Copsey, Daniel Feltham, Tim Graham, David Livings, Clement Rousset, David Schroeder, and Martin Vancoppenolle
Geosci. Model Dev., 17, 6799–6817, https://doi.org/10.5194/gmd-17-6799-2024, https://doi.org/10.5194/gmd-17-6799-2024, 2024
Short summary
Short summary
This paper documents the sea ice model component of the latest Met Office coupled model configuration, which will be used as the physical basis for UK contributions to CMIP7. Documentation of science options used in the configuration are given along with a brief model evaluation. This is the first UK configuration to use NEMO’s new SI3 sea ice model. We provide details on how SI3 was adapted to work with Met Office coupling methodology and documentation of coupling processes in the model.
Jean-François Lemieux, William H. Lipscomb, Anthony Craig, David A. Bailey, Elizabeth C. Hunke, Philippe Blain, Till A. S. Rasmussen, Mats Bentsen, Frédéric Dupont, David Hebert, and Richard Allard
Geosci. Model Dev., 17, 6703–6724, https://doi.org/10.5194/gmd-17-6703-2024, https://doi.org/10.5194/gmd-17-6703-2024, 2024
Short summary
Short summary
We present the latest version of the CICE model. It solves equations that describe the dynamics and the growth and melt of sea ice. To do so, the domain is divided into grid cells and variables are positioned at specific locations in the cells. A new implementation (C-grid) is presented, with the velocity located on cell edges. Compared to the previous B-grid, the C-grid allows for a natural coupling with some oceanic and atmospheric models. It also allows for ice transport in narrow channels.
Rachid El Montassir, Olivier Pannekoucke, and Corentin Lapeyre
Geosci. Model Dev., 17, 6657–6681, https://doi.org/10.5194/gmd-17-6657-2024, https://doi.org/10.5194/gmd-17-6657-2024, 2024
Short summary
Short summary
This study introduces a novel approach that combines physics and artificial intelligence (AI) for improved cloud cover forecasting. This approach outperforms traditional deep learning (DL) methods in producing realistic and physically consistent results while requiring less training data. This architecture provides a promising solution to overcome the limitations of classical AI methods and contributes to open up new possibilities for combining physical knowledge with deep learning models.
Marit Sandstad, Borgar Aamaas, Ane Nordlie Johansen, Marianne Tronstad Lund, Glen Philip Peters, Bjørn Hallvard Samset, Benjamin Mark Sanderson, and Ragnhild Bieltvedt Skeie
Geosci. Model Dev., 17, 6589–6625, https://doi.org/10.5194/gmd-17-6589-2024, https://doi.org/10.5194/gmd-17-6589-2024, 2024
Short summary
Short summary
The CICERO-SCM has existed as a Fortran model since 1999 that calculates the radiative forcing and concentrations from emissions and is an upwelling diffusion energy balance model of the ocean that calculates temperature change. In this paper, we describe an updated version ported to Python and publicly available at https://github.com/ciceroOslo/ciceroscm (https://doi.org/10.5281/zenodo.10548720). This version contains functionality for parallel runs and automatic calibration.
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024, https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Short summary
A process-based plant carbon (C)–nitrogen (N) interface coupling framework has been developed which mainly focuses on plant resistance and N-limitation effects on photosynthesis, plant respiration, and plant phenology. A dynamic C / N ratio is introduced to represent plant resistance and self-adjustment. The framework has been implemented in a coupled biophysical-ecosystem–biogeochemical model, and testing results show a general improvement in simulating plant properties with this framework.
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024, https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Short summary
We give an overview of the Institute of Atmospheric Physics–Chinese Academy of Sciences subseasonal-to-seasonal ensemble forecasting system and Madden–Julian Oscillation forecast evaluation of the system. Compared to other S2S models, the IAP-CAS model has its benefits but also biases, i.e., underdispersive ensemble, overestimated amplitude, and faster propagation speed when forecasting MJO. We provide a reason for these biases and prospects for further improvement of this system in the future.
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024, https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary
Short summary
A new brittle sea ice rheology, BBM, has been implemented into the sea ice component of NEMO. We describe how a new spatial discretization framework was introduced to achieve this. A set of idealized and realistic ocean and sea ice simulations of the Arctic have been performed using BBM and the standard viscous–plastic rheology of NEMO. When compared to satellite data, our simulations show that our implementation of BBM leads to a fairly good representation of sea ice deformations.
Joseph P. Hollowed, Christiane Jablonowski, Hunter Y. Brown, Benjamin R. Hillman, Diana L. Bull, and Joseph L. Hart
Geosci. Model Dev., 17, 5913–5938, https://doi.org/10.5194/gmd-17-5913-2024, https://doi.org/10.5194/gmd-17-5913-2024, 2024
Short summary
Short summary
Large volcanic eruptions deposit material in the upper atmosphere, which is capable of altering temperature and wind patterns of Earth's atmosphere for subsequent years. This research describes a new method of simulating these effects in an idealized, efficient atmospheric model. A volcanic eruption of sulfur dioxide is described with a simplified set of physical rules, which eventually cools the planetary surface. This model has been designed as a test bed for climate attribution studies.
Hong Li, Yi Yang, Jian Sun, Yuan Jiang, Ruhui Gan, and Qian Xie
Geosci. Model Dev., 17, 5883–5896, https://doi.org/10.5194/gmd-17-5883-2024, https://doi.org/10.5194/gmd-17-5883-2024, 2024
Short summary
Short summary
Vertical atmospheric motions play a vital role in convective-scale precipitation forecasts by connecting atmospheric dynamics with cloud development. A three-dimensional variational vertical velocity assimilation scheme is developed within the high-resolution CMA-MESO model, utilizing the adiabatic Richardson equation as the observation operator. A 10 d continuous run and an individual case study demonstrate improved forecasts, confirming the scheme's effectiveness.
Matthias Nützel, Laura Stecher, Patrick Jöckel, Franziska Winterstein, Martin Dameris, Michael Ponater, Phoebe Graf, and Markus Kunze
Geosci. Model Dev., 17, 5821–5849, https://doi.org/10.5194/gmd-17-5821-2024, https://doi.org/10.5194/gmd-17-5821-2024, 2024
Short summary
Short summary
We extended the infrastructure of our modelling system to enable the use of an additional radiation scheme. After calibrating the model setups to the old and the new radiation scheme, we find that the simulation with the new scheme shows considerable improvements, e.g. concerning the cold-point temperature and stratospheric water vapour. Furthermore, perturbations of radiative fluxes associated with greenhouse gas changes, e.g. of methane, tend to be improved when the new scheme is employed.
Yibing Wang, Xianhong Xie, Bowen Zhu, Arken Tursun, Fuxiao Jiang, Yao Liu, Dawei Peng, and Buyun Zheng
Geosci. Model Dev., 17, 5803–5819, https://doi.org/10.5194/gmd-17-5803-2024, https://doi.org/10.5194/gmd-17-5803-2024, 2024
Short summary
Short summary
Urban expansion intensifies challenges like urban heat and urban dry islands. To address this, we developed an urban module, VIC-urban, in the Variable Infiltration Capacity (VIC) model. Tested in Beijing, VIC-urban accurately simulated turbulent heat fluxes, runoff, and land surface temperature. We provide a reliable tool for large-scale simulations considering urban environment and a systematic urban modelling framework within VIC, offering crucial insights for urban planners and designers.
Jeremy Carter, Erick A. Chacón-Montalván, and Amber Leeson
Geosci. Model Dev., 17, 5733–5757, https://doi.org/10.5194/gmd-17-5733-2024, https://doi.org/10.5194/gmd-17-5733-2024, 2024
Short summary
Short summary
Climate models are essential tools in the study of climate change and its wide-ranging impacts on life on Earth. However, the output is often afflicted with some bias. In this paper, a novel model is developed to predict and correct bias in the output of climate models. The model captures uncertainty in the correction and explicitly models underlying spatial correlation between points. These features are of key importance for climate change impact assessments and resulting decision-making.
Anna Martin, Veronika Gayler, Benedikt Steil, Klaus Klingmüller, Patrick Jöckel, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 17, 5705–5732, https://doi.org/10.5194/gmd-17-5705-2024, https://doi.org/10.5194/gmd-17-5705-2024, 2024
Short summary
Short summary
The study evaluates the land surface and vegetation model JSBACHv4 as a replacement for the simplified submodel SURFACE in EMAC. JSBACH mitigates earlier problems of soil dryness, which are critical for vegetation modelling. When analysed using different datasets, the coupled model shows strong correlations of key variables, such as land surface temperature, surface albedo and radiation flux. The versatility of the model increases significantly, while the overall performance does not degrade.
Hugo Banderier, Christian Zeman, David Leutwyler, Stefan Rüdisühli, and Christoph Schär
Geosci. Model Dev., 17, 5573–5586, https://doi.org/10.5194/gmd-17-5573-2024, https://doi.org/10.5194/gmd-17-5573-2024, 2024
Short summary
Short summary
We investigate the effects of reduced-precision arithmetic in a state-of-the-art regional climate model by studying the results of 10-year-long simulations. After this time, the results of the reduced precision and the standard implementation are hardly different. This should encourage the use of reduced precision in climate models to exploit the speedup and memory savings it brings. The methodology used in this work can help researchers verify reduced-precision implementations of their model.
David Fuchs, Steven C. Sherwood, Abhnil Prasad, Kirill Trapeznikov, and Jim Gimlett
Geosci. Model Dev., 17, 5459–5475, https://doi.org/10.5194/gmd-17-5459-2024, https://doi.org/10.5194/gmd-17-5459-2024, 2024
Short summary
Short summary
Machine learning (ML) of unresolved processes offers many new possibilities for improving weather and climate models, but integrating ML into the models has been an engineering challenge, and there are performance issues. We present a new software plugin for this integration, TorchClim, that is scalable and flexible and thereby allows a new level of experimentation with the ML approach. We also provide guidance on ML training and demonstrate a skillful hybrid ML atmosphere model.
Minjin Lee, Charles A. Stock, John P. Dunne, and Elena Shevliakova
Geosci. Model Dev., 17, 5191–5224, https://doi.org/10.5194/gmd-17-5191-2024, https://doi.org/10.5194/gmd-17-5191-2024, 2024
Short summary
Short summary
Modeling global freshwater solid and nutrient loads, in both magnitude and form, is imperative for understanding emerging eutrophication problems. Such efforts, however, have been challenged by the difficulty of balancing details of freshwater biogeochemical processes with limited knowledge, input, and validation datasets. Here we develop a global freshwater model that resolves intertwined algae, solid, and nutrient dynamics and provide performance assessment against measurement-based estimates.
Hunter York Brown, Benjamin Wagman, Diana Bull, Kara Peterson, Benjamin Hillman, Xiaohong Liu, Ziming Ke, and Lin Lin
Geosci. Model Dev., 17, 5087–5121, https://doi.org/10.5194/gmd-17-5087-2024, https://doi.org/10.5194/gmd-17-5087-2024, 2024
Short summary
Short summary
Explosive volcanic eruptions lead to long-lived, microscopic particles in the upper atmosphere which act to cool the Earth's surface by reflecting the Sun's light back to space. We include and test this process in a global climate model, E3SM. E3SM is tested against satellite and balloon observations of the 1991 eruption of Mt. Pinatubo, showing that with these particles in the model we reasonably recreate Pinatubo and its global effects. We also explore how particle size leads to these effects.
Deifilia Aurora To, Julian Quinting, Gholam Ali Hoshyaripour, Markus Götz, Achim Streit, and Charlotte Debus
EGUsphere, https://doi.org/10.5194/egusphere-2024-1714, https://doi.org/10.5194/egusphere-2024-1714, 2024
Short summary
Short summary
Pangu-Weather is a breakthrough machine learning model in medium-range weather forecasting that considers three-dimensional atmospheric information. We show that using a simpler 2D framework improves robustness, speeds up training, and reduces computational needs by 20–30%. We introduce a training procedure that varies the importance of atmospheric variables over time to speed up training convergence. Decreasing computational demand increases accessibility of training and working with the model.
Carl Svenhag, Moa K. Sporre, Tinja Olenius, Daniel Yazgi, Sara M. Blichner, Lars P. Nieradzik, and Pontus Roldin
Geosci. Model Dev., 17, 4923–4942, https://doi.org/10.5194/gmd-17-4923-2024, https://doi.org/10.5194/gmd-17-4923-2024, 2024
Short summary
Short summary
Our research shows the importance of modeling new particle formation (NPF) and growth of particles in the atmosphere on a global scale, as they influence the outcomes of clouds and our climate. With the global model EC-Earth3 we show that using a new method for NPF modeling, which includes new detailed processes with NH3 and H2SO4, significantly impacts the number of particles in the air and clouds and changes the radiation balance of the same magnitude as anthropogenic greenhouse emissions.
Mengjie Han, Qing Zhao, Xili Wang, Ying-Ping Wang, Philippe Ciais, Haicheng Zhang, Daniel S. Goll, Lei Zhu, Zhe Zhao, Zhixuan Guo, Chen Wang, Wei Zhuang, Fengchang Wu, and Wei Li
Geosci. Model Dev., 17, 4871–4890, https://doi.org/10.5194/gmd-17-4871-2024, https://doi.org/10.5194/gmd-17-4871-2024, 2024
Short summary
Short summary
The impact of biochar (BC) on soil organic carbon (SOC) dynamics is not represented in most land carbon models used for assessing land-based climate change mitigation. Our study develops a BC model that incorporates our current understanding of BC effects on SOC based on a soil carbon model (MIMICS). The BC model can reproduce the SOC changes after adding BC, providing a useful tool to couple dynamic land models to evaluate the effectiveness of BC application for CO2 removal from the atmosphere.
Kalyn Dorheim, Skylar Gering, Robert Gieseke, Corinne Hartin, Leeya Pressburger, Alexey N. Shiklomanov, Steven J. Smith, Claudia Tebaldi, Dawn L. Woodard, and Ben Bond-Lamberty
Geosci. Model Dev., 17, 4855–4869, https://doi.org/10.5194/gmd-17-4855-2024, https://doi.org/10.5194/gmd-17-4855-2024, 2024
Short summary
Short summary
Hector is an easy-to-use, global climate–carbon cycle model. With its quick run time, Hector can provide climate information from a run in a fraction of a second. Hector models on a global and annual basis. Here, we present an updated version of the model, Hector V3. In this paper, we document Hector’s new features. Hector V3 is capable of reproducing historical observations, and its future temperature projections are consistent with those of more complex models.
Fangxuan Ren, Jintai Lin, Chenghao Xu, Jamiu A. Adeniran, Jingxu Wang, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Larry W. Horowitz, Steven T. Turnock, Naga Oshima, Jie Zhang, Susanne Bauer, Kostas Tsigaridis, Øyvind Seland, Pierre Nabat, David Neubauer, Gary Strand, Twan van Noije, Philippe Le Sager, and Toshihiko Takemura
Geosci. Model Dev., 17, 4821–4836, https://doi.org/10.5194/gmd-17-4821-2024, https://doi.org/10.5194/gmd-17-4821-2024, 2024
Short summary
Short summary
We evaluate the performance of 14 CMIP6 ESMs in simulating total PM2.5 and its 5 components over China during 2000–2014. PM2.5 and its components are underestimated in almost all models, except that black carbon (BC) and sulfate are overestimated in two models, respectively. The underestimation is the largest for organic carbon (OC) and the smallest for BC. Models reproduce the observed spatial pattern for OC, sulfate, nitrate and ammonium well, yet the agreement is poorer for BC.
Yi Xi, Chunjing Qiu, Yuan Zhang, Dan Zhu, Shushi Peng, Gustaf Hugelius, Jinfeng Chang, Elodie Salmon, and Philippe Ciais
Geosci. Model Dev., 17, 4727–4754, https://doi.org/10.5194/gmd-17-4727-2024, https://doi.org/10.5194/gmd-17-4727-2024, 2024
Short summary
Short summary
The ORCHIDEE-MICT model can simulate the carbon cycle and hydrology at a sub-grid scale but energy budgets only at a grid scale. This paper assessed the implementation of a multi-tiling energy budget approach in ORCHIDEE-MICT and found warmer surface and soil temperatures, higher soil moisture, and more soil organic carbon across the Northern Hemisphere compared with the original version.
Maria Rosa Russo, Sadie L. Bartholomew, David Hassell, Alex M. Mason, Erica Neininger, A. James Perman, David A. J. Sproson, Duncan Watson-Parris, and Nathan Luke Abraham
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-73, https://doi.org/10.5194/gmd-2024-73, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Observational data and modelling capabilities are expanding in recent years, but there are still barriers preventing these two data sources to be used in synergy. Proper comparison requires generating, storing and handling a large amount of data. This manuscript describes the first step in the development of a new set of software tools, the ‘VISION toolkit’, which can enable the easy and efficient integration of observational and model data required for model evaluation.
Georgia Lazoglou, Theo Economou, Christina Anagnostopoulou, George Zittis, Anna Tzyrkalli, Pantelis Georgiades, and Jos Lelieveld
Geosci. Model Dev., 17, 4689–4703, https://doi.org/10.5194/gmd-17-4689-2024, https://doi.org/10.5194/gmd-17-4689-2024, 2024
Short summary
Short summary
This study focuses on the important issue of the drizzle bias effect in regional climate models, described by an over-prediction of the number of rainy days while underestimating associated precipitation amounts. For this purpose, two distinct methodologies are applied and rigorously evaluated. These results are encouraging for using the multivariate machine learning method random forest to increase the accuracy of climate models concerning the projection of the number of wet days.
Xu Yue, Hao Zhou, Chenguang Tian, Yimian Ma, Yihan Hu, Cheng Gong, Hui Zheng, and Hong Liao
Geosci. Model Dev., 17, 4621–4642, https://doi.org/10.5194/gmd-17-4621-2024, https://doi.org/10.5194/gmd-17-4621-2024, 2024
Short summary
Short summary
We develop the interactive Model for Air Pollution and Land Ecosystems (iMAPLE). The model considers the full coupling between carbon and water cycles, dynamic fire emissions, wetland methane emissions, biogenic volatile organic compound emissions, and trait-based ozone vegetation damage. Evaluations show that iMAPLE is a useful tool for the study of the interactions among climate, chemistry, and ecosystems.
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024, https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary
Short summary
The scientific community is considering new scenarios to succeed RCPs and SSPs for the next generation of Earth system model runs to project future climate change. To contribute to that effort, we reflect on relevant policy and scientific research questions and suggest categories for representative emission pathways. These categories are tailored to the Paris Agreement long-term temperature goal, high-risk outcomes in the absence of further climate policy and worlds “that could have been”.
Seung H. Baek, Paul A. Ullrich, Bo Dong, and Jiwoo Lee
EGUsphere, https://doi.org/10.5194/egusphere-2024-1456, https://doi.org/10.5194/egusphere-2024-1456, 2024
Short summary
Short summary
We evaluate downscaled products by examining locally relevant covariances during convective and frontal precipitation events. Common statistical downscaling techniques preserve expected covariances during convective precipitation. However, they dampen future intensification of frontal precipitation captured in global climate models and dynamical downscaling. This suggests statistical downscaling may not fully resolve non-stationary hydrologic processes as compared to dynamical downscaling.
Emmanuel Nyenah, Petra Döll, Daniel S. Katz, and Robert Reinecke
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-97, https://doi.org/10.5194/gmd-2024-97, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Research software is crucial for scientific progress but is often developed by scientists with limited training, time, and funding, leading to software that is hard to understand, (re)use, modify, and maintain. Our study across 10 research sectors highlights strengths in version control, open-source licensing, and documentation while emphasizing the need for containerization and code quality. Recommendations include workshops, code quality metrics, funding, and adherence to FAIR standards.
Yilin Fang, Hoang Viet Tran, and L. Ruby Leung
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-70, https://doi.org/10.5194/gmd-2024-70, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Hurricanes may worsen the water quality in the lower Mississippi River Basin (LMRB) by increasing nutrient runoff. We found that runoff parameterizations greatly affect nitrate-nitrogen runoff simulated using an Earth system land model. Our simulations predicted increased nitrogen runoff in LMRB during Hurricane Ida in 2021, but less pronounced than the observations, indicating areas for model improvement to better understand and manage nutrient runoff loss during hurricanes in the region.
Giovanni G. Seijo-Ellis, Donata Giglio, Gustavo M. Marques, and Frank O. Bryan
EGUsphere, https://doi.org/10.5194/egusphere-2024-1378, https://doi.org/10.5194/egusphere-2024-1378, 2024
Short summary
Short summary
A CESM/MOM6 regional configuration of the Caribbean Sea was developed as a response to the rising need of high-resolution models for climate impact studies. The configuration is validated for the period of 2000–2020 and improves significant errors in a low resolution model. Oceanic properties are well represented. Patterns of freshwater associated with the Amazon river are well captured and the mean flows across the multiple passages in the Caribbean Sea agree with observations.
Ross Mower, Ethan D. Gutmann, Glen E. Liston, Jessica Lundquist, and Soren Rasmussen
Geosci. Model Dev., 17, 4135–4154, https://doi.org/10.5194/gmd-17-4135-2024, https://doi.org/10.5194/gmd-17-4135-2024, 2024
Short summary
Short summary
Higher-resolution model simulations are better at capturing winter snowpack changes across space and time. However, increasing resolution also increases the computational requirements. This work provides an overview of changes made to a distributed snow-evolution modeling system (SnowModel) to allow it to leverage high-performance computing resources. Continental simulations that were previously estimated to take 120 d can now be performed in 5 h.
Catherine Guiavarc'h, Dave Storkey, Adam T. Blaker, Ed Blockley, Alex Megann, Helene T. Hewitt, Michael J. Bell, Daley Calvert, Dan Copsey, Bablu Sinha, Sophia Moreton, Pierre Mathiot, and Bo An
EGUsphere, https://doi.org/10.5194/egusphere-2024-805, https://doi.org/10.5194/egusphere-2024-805, 2024
Short summary
Short summary
GOSI9 is the new UK’s hierarchy of global ocean and sea ice models. Developed as part of a collaboration between several UK research institutes it will be used for various applications such as weather forecast and climate prediction. The models, based on NEMO, are available at three resolutions 1°, ¼° and 1/12°. GOSI9 improves upon previous version by reducing global temperature and salinity biases and enhancing the representation of the Arctic sea ice and of the Antarctic Circumpolar Current.
Cited articles
Asseng, S., Ewert, F., Rosenzweig, C., Jones, J., Hatfield, J., Ruane, A.,
Boote, K. J., Thorburn, P. J., Rötter, R. P., Cammarano, D., Brisson, N.,
Basso, B., Martre, P., Aggarwal, P. K., Angulo, C., Bertuzzi, P., Biernath,
C., Challinor, A. J., Doltra, J., Gayler, S., Goldberg, R., Grant, R., Heng,
L., Hooker, J., Hunt, L. A., Ingwersen, J., Izaurralde, R. C., Kersebaum, K.
C., Müller, C., Naresh Kumar, S., Nendel, C., O'Leary, G., Olesen, J. E.,
Osborne, T. M., Palosuo, T., Priesack, E., Ripoche, D., Semenov, M. A.,
Shcherbak, I., Steduto, P., Stöckle, C., Stratonovitch, P., Streck, T.,
Supit, I., Tao, F., Travasso, M., Waha, K., Wallach, D., White, J. W.,
Williams, J. R., and Wolf, J.: Uncertainty in simulating wheat yields under
climate change, Nat. Clim. Change, 3, 827–832, 2013.
Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B.,
Cammarano, D., Kimball, B. A., Ottman, M. J., Wall, G. W., White, J. W.,
Reynolds, M. P., Alderman, P. D., Prasad, P. V. V., Aggarwal, P. K., Anothai,
J., Basso, B., Biernath, C., Challinor, A. J., De Sanctis, G., Doltra, J.,
Fereres, E., Garcia-Vila, M., Gayler, S., Hoogenboom, G., Hunt, L. A.,
Izaurralde, R. C., Jabloun, M., Jones, C. D., Kersebaum, K. C., Koehler,
A.-K., Müller, C., Naresh Kumar, S., Nendel, C., O'Leary, G., Olesen, J.
E., Palosuo, T., Priesack, E., Eyshi Rezaei, E., Ruane, A. C., Semenov, M.
A., Shcherbak, I., Stöckle, C., Stratonovitch, P., Streck, T., Supit, I.,
Tao, F., Thorburn, P. J., Waha, K., Wang, E., Wallach, D., Wolf, J., Zhao,
Z., and Zhu, Y.: Rising temperatures reduce global wheat production, Nature
Climate Change, 5, 143–147, 2015.
Bassu, S., Brisson, N., Durand, J.-L., Boote, K., Lizaso, J., Jones, J. W.,
Rosenzweig, C., Ruane, A. C., Adam, M., Baron, C., Basso, B., Biernath, C.,
Boogaard, H., Conijn, S., Corbeels, M., Deryng, D., Sanctis, G., Gayler, S.,
Grassini, P., Hatfield, J., Hoek, S., Izaurralde, C., Jongschaap, R.,
Kemanian, A. R., Kersebaum, K. C., Kim, S., Kumar, N. S., Makowski, D.,
Müller, C., Nendel, C., Priesack, E., Pravia, M. V., Sau, F., Shcherbak,
I., Tao, F., Teixeira, E., Timlin, D., and Waha, K.: How do various maize
crop models vary in their responses to climate change factors?, Glob. Change
Biol., 20, 2301–2320, 2014.
Blanc, É.: Statistical emulators of maize, rice, soybean and wheat yields
from global gridded crop models, Agr. Forest Meteorol., 236, 145–161, 2017.
Bond-Lamberty, B., Calvin, K., Jones, A. D., Mao, J., Patel, P., Shi, X. Y.,
Thomson, A., Thornton, P., and Zhou, Y.: On linking an Earth system model to
the equilibrium carbon representation of an economically optimizing land use
model, Geosci. Model Dev., 7, 2545–2555, https://doi.org/10.5194/gmd-7-2545-2014,
2014.
Calvin, K. and Fisher-Vanden, K.: Quantifying the indirect impacts of climate
on agriculture: an inter-method comparison, Environ. Res. Lett., 12, 115004,
https://doi.org/10.1088/1748-9326/aa843c, 2017.
Calvin, K., Patel, P., Clarke, L., Asrar, G., Bond-Lamberty, B., Cui, R. Y.,
Di Vittorio, A., Dorheim, K., Edmonds, J., Hartin, C., Hejazi, M., Horowitz,
R., Iyer, G., Kyle, P., Kim, S., Link, R., McJeon, H., Smith, S. J., Snyder,
A., Waldhoff, S., and Wise, M.: GCAM v5.1: representing the linkages between
energy, water, land, climate, and economic systems, Geosci. Model Dev., 12,
677–698, https://doi.org/10.5194/gmd-12-677-2019, 2019.
Davies, L. and Gather, U.: The identification of multiple outliers, J. Am.
Stat. Assoc., 88, 782–792, 1993.
Durand, J.-L., Delusca, K., Boote, K., Lizaso, J., Manderscheid, R., Weigel,
H. J., Ruane, A. C., Rosenzweig, C., Jones, J., Ahuja, L., et al.: How
accurately do maize crop models simulate the interactions of atmospheric
CO2 concentration levels with limited water supply on water use and
yield?, Eur. J. Agron., 100, 67–75, 2018.
Elliott, J., Müller, C., Deryng, D., Chryssanthacopoulos, J., Boote, K.
J., Büchner, M., Foster, I., Glotter, M., Heinke, J., Iizumi, T.,
Izaurralde, R. C., Mueller, N. D., Ray, D. K., Rosenzweig, C., Ruane, A. C.,
and Sheffield, J.: The Global Gridded Crop Model Intercomparison: data and
modeling protocols for Phase 1 (v1.0), Geosci. Model Dev., 8, 261–277,
https://doi.org/10.5194/gmd-8-261-2015, 2015.
Fronzek, S., Pirttioja, N., Carter, T. R., Bindi, M., Hoffmann, H., Palosuo,
T., Ruiz-Ramos, M., Tao, F., Trnka, M., Acutis, M., Asseng, S., Baranowski,
P., Basso, B., Bodin, P., Buis, S.,Cammarano, D., Deligios, P., Destain,
M.-F., Dumont, B., Ewert, F., Ferrise, R., François, L., Gaiser, T.,
Hlavinka, P., Jacquemin, I., Kersebaum, K. C., Kollas, C., Krzyszczak, J.,
Lorite, I. J., Minet, J., Minguez, M. I., Montesino, M., Moriondo, M.,
Müller, C., Nendel, C., Öztürk, I., Perego, A., Rodríguez,
A., Ruane, A. C., Ruget, F., Sanna, M., Semenov, M. A., Slawinski, C.,
Stratonovitch, P., Supit, I., Waha, K., Wang, E., Wu, L., Zhao, Z., and
Rötter, R. P.: Classifying multi-model wheat yield impact response
surfaces showing sensitivity to temperature and precipitation change, Agr.
Syst., 159, 209–224, 2018.
Gelman, A., Stern, H. S., Carlin, J. B., Dunson, D. B., Vehtari, A., and
Rubin, D. B.: Bayesian data analysis, Chapman and Hall/CRC, CRC Press, Boca
Raton, FL, USA, 2013.
Gelman, A., Hwang, J., and Vehtari, A.: Understanding predictive information
criteria for Bayesian models, Stat. Comput., 24, 997–1016, 2014.
Hartin, C. A., Patel, P., Schwarber, A., Link, R. P., and Bond-Lamberty, B.
P.: A simple object-oriented and open-source model for scientific and policy
analyses of the global climate system – Hector v1.0, Geosci. Model Dev., 8,
939–955, https://doi.org/10.5194/gmd-8-939-2015, 2015.
Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D.,
Hunt, L., Wilkens, P. W., Singh, U., Gijsman, A. J., and Ritchie, J. T.: The
DSSAT cropping system model, Eur. J. Agron., 18, 235–265, 2003.
Kyle, G. P., Luckow, P., Calvin, K. V., Emanuel, W. R., Nathan, M., and Zhou,
Y.: GCAM 3.0 agriculture and land use: data sources and methods, Technical
Report PNNL-21025, Pacific Northwest National Laboratory (PNNL), Richland,
WA, USA, 60 pp., 2011.
Leakey, A. D., Bishop, K. A., and Ainsworth, E. A.: A multi-biome gap in
understanding of crop and ecosystem responses to elevated CO2, Curr.
Opin. Plant Biol., 15, 228–236, 2012.
Legates, D. R. and McCabe, G. J.: Evaluating the use of “goodness-of-fit”
measures in hydrologic and hydroclimatic model validation, Water Resour.
Res., 35, 233–241, 1999.
Lobell, D. B.: Errors in climate datasets and their effects on statistical
crop models, Agr. Forest Meteorol., 170, 58–66, 2013.
Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J. W., Rötter,
R. P., Boote, K. J., Ruane, A. C., Thorburn, P. J., Cammarano, D., Hatfield,
J. L., Rosenzweig, C., Aggarwal, P. K., Angulo, C., Basso, B., Bertuzzi, P.,
Biernath, C., Brisson, N., Challinor, A. J., Doltra, J., Gayler, S.,
Goldberg, R., Grant, R. F., Heng, L., Hooker, J. , Hunt, L. A., Ingwersen,
J., Izaurralde, R. C., Kersebaum, K. C., Müller, C., Kumar, S. N.,
Nendel, C., O'leary, G., Olesen, J. E., Osborne, T. M., Palosuo, T.,
Priesack, E., Ripoche, D., Semenov, M. A., Shcherbak, I., Steduto, P.,
Stöckle, C. O., Stratonovitch, P., Streck, T. , Supit, I., Tao, F.,
Travasso, M., Waha, K., White, J. W., and Wolf, J.: Multimodel ensembles of
wheat growth: many models are better than one, Glob. Change Biol., 21,
911–925, 2015.
McDermid, S. P., Ruane, A. C., Rosenzweig, C., et al.: The AgMIP coordinated
climate-crop modeling project (C3MP): methods and protocols, in: Handbook of
Climate Change and Agroecosystems: The Agricultural Model Intercomparison and
Improvement Project Integrated Crop and Economic Assessments, Part 1, World
Scientific, Singapore, 191–220, 2015.
McElreath, R.: Statistical Rethinking: A Bayesian Course with Examples in R
and Stan, CRC Press, 122, 289 pp., 2016.
Mistry, M. N.: Impacts of climate change and variability on crop yields using
emulators and empirical models, thesis, Università Ca'Foscari Venezia,
Venice, Italy, 2017.
Mistry, M. N., Wing, I. S., and De Cian, E.: Simulated vs. empirical weather
responsiveness of crop yields: US evidence and implications for the
agricultural impacts of climate change, Environ. Res. Lett., 12, 075007,
https://doi.org/10.1088/1748-9326/aa788c, 2017.
Monfreda, C., Ramankutty, N., and Foley, J. A.: Farming the planet: 2.
Geographic distribution of crop areas, yields, physiological types, and net
primary production in the year 2000, Global Biogeochem. Cy., 22, GB1022,
https://doi.org/10.1029/2007GB002947, 2008.
Moore, F. C., Baldos, U., Hertel, T., and Diaz, D.: New science of climate
change impacts on agriculture implies higher social cost of carbon, Nat.
Commun., 8, 1607, https://doi.org/10.1038/s41467-017-01792-x, 2017.
Müller, C., Elliott, J., Chryssanthacopoulos, J., Arneth, A., Balkovic,
J., Ciais, P., Deryng, D., Folberth, C., Glotter, M., Hoek, S., Iizumi, T.,
Izaurralde, R. C., Jones, C., Khabarov, N., Lawrence, P., Liu, W., Olin, S.,
Pugh, T. A. M., Ray, D. K., Reddy, A., Rosenzweig, C., Ruane, A. C., Sakurai,
G., Schmid, E., Skalsky, R., Song, C. X., Wang, X., de Wit, A., and Yang, H.:
Global gridded crop model evaluation: benchmarking, skills, deficiencies and
implications, Geosci. Model Dev., 10, 1403–1422,
https://doi.org/10.5194/gmd-10-1403-2017, 2017.
Nelson, G. C., Valin, H., Sands, R. D., Havlík, P., Ahammad, H., Deryng,
D., Elliott, J., Fujimori, S., Hasegawa, T., Heyhoe, E., Kyle, P., Von Lampe,
M., Lotze-Campen, H., Mason d'Croz, D., van Meijl, H., van der Mensbrugghe,
D., Müller, C., Popp, A., Robertson, R., Robinson, S., Schmid, E.,
Schmitz, C., Tabeau, A., and Willenbockel, D.: Climate change effects on
agriculture: Economic responses to biophysical shocks, P. Natl. Acad. Sci.
USA, 111, 3274–3279, 2014.
Ostberg, S., Schewe, J., Childers, K., and Frieler, K.: Changes in crop
yields and their variability at different levels of global warming, Earth
Syst. Dynam., 9, 479–496, https://doi.org/10.5194/esd-9-479-2018, 2018.
Oyebamiji, O. K., Edwards, N. R., Holden, P. B., Garthwaite, P. H.,
Schaphoff, S., and Gerten, D.: Emulating global climate change impacts on
crop yields, Stat. Model., 15, 499–525, 2015.
Pirttioja, N., Carter, T. R., Fronzek, S., Bindi, M., Hoffmann, H., Palosuo,
T., Ruiz-Ramos, M., Tao, F., Trnka, M., Acutis, M., Asseng, S., Baranowski,
P., Basso, B., Bodin, P., Buis, S., Cammarano, D., Deligios, P., Destain, M.
F., Dumont, B., Ewert, F., Ferrise, R., François, L., Gaiser, T.,
Hlavinka, P., Jacquemin, I., Kersebaum, K. C., Kollas, C., Krzyszczak, J.,
Lorite, I. J., Minet, J., Minguez, M. I., Montesino, M., Moriondo, M.,
Müller, C., Nendel, C., Öztürk, I., Perego, A., Rodríguez,
A., Ruane, A. C., Ruget, F., Sanna, M., Semenov, M. A., Slawinski, C.,
Stratonovitch, P., Supit, I., Waha, K., Wang, E., Wu, L., Zhao, Z., and
Rötter, R. P.: Temperature and precipitation effects on wheat yield
across a European transect: a crop model ensemble analysis using impact
response surfaces, Clim. Res., 65, 87–105, https://doi.org/10.3354/cr01322, 2015.
Portmann, F. T., Siebert, S., and Döll, P.: MIRCA2000 – Global monthly
irrigated and rainfed crop areas around the year 2000: A new high-resolution
data set for agricultural and hydrological modeling, Global Biogeochem. Cy.,
24, GB1011, https://doi.org/10.1029/2008GB003435, 2010.
Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J.,
Thorburn, P., Antle, J. M., Nelson, G. C., Porter, C., Janssen, S., Asseng,
S., Basso, B., Ewert, F., Wallach, D., Baigorria, G., and Winter, J. M.: The
agricultural model intercomparison and improvement project (AgMIP): protocols
and pilot studies, Agr. Forest Meteorol., 170, 166–182, 2013.
Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C.,
Arneth, A., Boote, K. J., Folberth, C., Glotter, M., Khabarov, N., Neumann,
K., Piontek, F., Pugh, T. A. M., Schmid, E., Stehfest, E., Yang, H., and
Jones, J. W.: Assessing agricultural risks of climate change in the 21st
century in a global gridded crop model intercomparison, P. Natl. Acad. Sci.
USA, 111, 3268–3273, 2014.
Ruane, A. C., McDermid, S., Rosenzweig, C., Baigorria, G. A., Jones, J. W.,
Romero, C. C., and DeWayne Cecil, L.: Carbon–Temperature–Water change
analysis for peanut production under climate change: a prototype for the
AgMIP Coordinated Climate-Crop Modeling Project (C3MP), Glob. Change Biol.,
20, 394–407, 2014.
Ruane, A. C., Goldberg, R., and Chryssanthacopoulos, J.: Climate forcing
datasets for agricultural modeling: Merged products for gap-filling and
historical climate series estimation, Agr. Forest Meteorol., 200, 233–248,
2015.
Ruane, A. C., Rosenzweig, C., Asseng, S., Boote, K. J., Elliott, J., Ewert,
F., Jones, J. W., Martre, P., McDermid, S. P., Müller, C., Snyder, A.,
and Thorburn, P. J.: An AgMIP framework for improved agricultural
representation in integrated assessment models, Environ. Res. Lett., 12,
125003, https://doi.org/10.1088/1748-9326/aa8da6, 2017.
Ruane, A. C., Phillips, M. M., and Rosenzweig, C.: Climate shifts within
major agricultural seasons for +1.5 and +2.0 °C worlds: HAPPI
projections and AgMIP modeling scenarios, Agr. Forest Meteorol., 259,
329–344, 2018.
Schlenker, W. and Roberts, M. J.: Nonlinear temperature effects indicate
severe damages to US crop yields under climate change, P. Natl. Acad. Sci.
USA, 106, 15594–15598, 2009.
Sivia, D. and Skilling, J.: Data analysis: a Bayesian tutorial, Oxford
University Press (OUP), Oxford, United Kingdom, 2006.
Snyder, A.: JGCRI/persephone: Persephone v1.0 pre-release, Zenodo,
https://doi.org/10.5281/zenodo.1415487, 2018.
Snyder, A. C., Link, R. P., and Calvin, K. V.: Evaluation of integrated
assessment model hindcast experiments: a case study of the GCAM 3.0 land use
module, Geosci. Model Dev., 10, 4307–4319, https://doi.org/10.5194/gmd-10-4307-2017,
2017.
Snyder, A., Calvin, K. V., Phillips, M., and Ruane, A. C.: Data for “A crop
yield change emulator for use in GCAM and similar models: Persephone v1.0”,
https://doi.org/10.5281/zenodo.1414423, 2018.
Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., and
Schewe, J.: The inter-sectoral impact model intercomparison project
(ISI–MIP): project framework, P. Natl. Acad. Sci. USA, 111, 3228–3232,
2014.
Wiebe, K., Lotze-Campen, H., Sands, R., Tabeau, A., van der Mensbrugghe, D.,
Biewald, A., Bodirsky, B., Islam, S., Kavallari, A., Mason-D'Croz, D.,
Müller, C., Popp, A., Robertson, R., Robinson, S., van Meijl, H., and
Willenbockel, D.: Climate change impacts on agriculture in 2050 under a range
of plausible socioeconomic and emissions scenarios, Environ. Res. Lett., 10,
085010, https://doi.org/10.1088/1748-9326/10/8/085010, 2015.
Williams, C. K. and Rasmussen, C. E.: Gaussian processes for machine
learning, MIT Press, Cambridge, MA, USA, ISBN 026218253X, 2006.
Willmott, C. J.: On the evaluation of model performance in physical
geography, in: Spatial statistics and models, Springer, Dordrecht,
Netherlands, 443–460, 1984.
Wise, M., Calvin, K., Kyle, P., Luckow, P., and Edmonds, J.: Economic and
physical modeling of land use in GCAM 3.0 and an application to agricultural
productivity, land, and terrestrial carbon, Climate Change Economics, 5,
1–22, https://doi.org/10.1142/S2010007814500031, 2014.
You, L., Wood-Sichra, U., Fritz, S., Guo, Z., See, L., and Koo, J.: Spatial
Production Allocation Model (SPAM) 2005 v2.0, available at:
http://mapspam.info (last access: 13 March 2019), 2014.
Short summary
Future changes in Earth system state will impact agricultural yields and therefore the global economy. Global gridded crop models estimate the influence of these Earth system changes on future crop yields, but are often too computationally intensive to dynamically couple into global multi-sector economic models, such as GCAM and other similar-in-scale models. This work describes a new crop yield change emulator, Persephone, that can capture yield changes in a computationally efficient way.
Future changes in Earth system state will impact agricultural yields and therefore the global...