Articles | Volume 11, issue 3
https://doi.org/10.5194/gmd-11-989-2018
https://doi.org/10.5194/gmd-11-989-2018
Development and technical paper
 | 
16 Mar 2018
Development and technical paper |  | 16 Mar 2018

Revised mineral dust emissions in the atmospheric chemistry–climate model EMAC (MESSy 2.52 DU_Astitha1 KKDU2017 patch)

Klaus Klingmüller, Swen Metzger, Mohamed Abdelkader, Vlassis A. Karydis, Georgiy L. Stenchikov, Andrea Pozzer, and Jos Lelieveld

Related authors

Evaluation of the coupling of EMACv2.55 to the land surface and vegetation model JSBACHv4
Anna Martin, Veronika Gayler, Benedikt Steil, Klaus Klingmüller, Patrick Jöckel, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 17, 5705–5732, https://doi.org/10.5194/gmd-17-5705-2024,https://doi.org/10.5194/gmd-17-5705-2024, 2024
Short summary
Impact of mineral dust on the global nitrate aerosol direct and indirect radiative effect
Alexandros Milousis, Klaus Klingmüller, Alexandra P. Tsimpidi, Jasper F. Kok, Maria Kanakidou, Athanasios Nenes, and Vlassis A. Karydis
EGUsphere, https://doi.org/10.5194/egusphere-2024-1579,https://doi.org/10.5194/egusphere-2024-1579, 2024
Short summary
Data-driven aeolian dust emission scheme for climate modelling evaluated with EMAC 2.55.2
Klaus Klingmüller and Jos Lelieveld
Geosci. Model Dev., 16, 3013–3028, https://doi.org/10.5194/gmd-16-3013-2023,https://doi.org/10.5194/gmd-16-3013-2023, 2023
Short summary
Climate-model-informed deep learning of global soil moisture distribution
Klaus Klingmüller and Jos Lelieveld
Geosci. Model Dev., 14, 4429–4441, https://doi.org/10.5194/gmd-14-4429-2021,https://doi.org/10.5194/gmd-14-4429-2021, 2021
Short summary
Weaker cooling by aerosols due to dust–pollution interactions
Klaus Klingmüller, Vlassis A. Karydis, Sara Bacer, Georgiy L. Stenchikov, and Jos Lelieveld
Atmos. Chem. Phys., 20, 15285–15295, https://doi.org/10.5194/acp-20-15285-2020,https://doi.org/10.5194/acp-20-15285-2020, 2020
Short summary

Related subject area

Climate and Earth system modeling
Architectural insights into and training methodology optimization of Pangu-Weather
Deifilia To, Julian Quinting, Gholam Ali Hoshyaripour, Markus Götz, Achim Streit, and Charlotte Debus
Geosci. Model Dev., 17, 8873–8884, https://doi.org/10.5194/gmd-17-8873-2024,https://doi.org/10.5194/gmd-17-8873-2024, 2024
Short summary
Evaluation of global fire simulations in CMIP6 Earth system models
Fang Li, Xiang Song, Sandy P. Harrison, Jennifer R. Marlon, Zhongda Lin, L. Ruby Leung, Jörg Schwinger, Virginie Marécal, Shiyu Wang, Daniel S. Ward, Xiao Dong, Hanna Lee, Lars Nieradzik, Sam S. Rabin, and Roland Séférian
Geosci. Model Dev., 17, 8751–8771, https://doi.org/10.5194/gmd-17-8751-2024,https://doi.org/10.5194/gmd-17-8751-2024, 2024
Short summary
Evaluating downscaled products with expected hydroclimatic co-variances
Seung H. Baek, Paul A. Ullrich, Bo Dong, and Jiwoo Lee
Geosci. Model Dev., 17, 8665–8681, https://doi.org/10.5194/gmd-17-8665-2024,https://doi.org/10.5194/gmd-17-8665-2024, 2024
Short summary
Software sustainability of global impact models
Emmanuel Nyenah, Petra Döll, Daniel S. Katz, and Robert Reinecke
Geosci. Model Dev., 17, 8593–8611, https://doi.org/10.5194/gmd-17-8593-2024,https://doi.org/10.5194/gmd-17-8593-2024, 2024
Short summary
fair-calibrate v1.4.1: calibration, constraining, and validation of the FaIR simple climate model for reliable future climate projections
Chris Smith, Donald P. Cummins, Hege-Beate Fredriksen, Zebedee Nicholls, Malte Meinshausen, Myles Allen, Stuart Jenkins, Nicholas Leach, Camilla Mathison, and Antti-Ilari Partanen
Geosci. Model Dev., 17, 8569–8592, https://doi.org/10.5194/gmd-17-8569-2024,https://doi.org/10.5194/gmd-17-8569-2024, 2024
Short summary

Cited articles

Abdelkader, M., Metzger, S., Mamouri, R. E., Astitha, M., Barrie, L., Levin, Z., and Lelieveld, J.: Dust–air pollution dynamics over the eastern Mediterranean, Atmos. Chem. Phys., 15, 9173–9189, https://doi.org/10.5194/acp-15-9173-2015, 2015. a, b, c
Abdelkader, M., Metzger, S., Steil, B., Klingmüller, K., Tost, H., Pozzer, A., Stenchikov, G., Barrie, L., and Lelieveld, J.: Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes, Atmos. Chem. Phys., 17, 3799–3821, https://doi.org/10.5194/acp-17-3799-2017, 2017. a, b
AERONET: available at: http://aeronet.gsfc.nasa.gov, last access: 31 August 2016. a
Albani, S., Mahowald, N. M., Perry, A. T., Scanza, R. A., Zender, C. S., Heavens, N. G., Maggi, V., Kok, J. F., and Otto-Bliesner, B. L.: Improved dust representation in the Community Atmosphere Model, J. Adv. Model. Earth Sy., 6, 541–570, https://doi.org/10.1002/2013MS000279, 2014. a, b
Allen, C. J. T., Washington, R., and Engelstaedter, S.: Dust emission and transport mechanisms in the central Sahara: Fennec ground-based observations from Bordj Badji Mokhtar, June 2011, J. Geophys. Res.-Atmos., 118, 6212–6232, https://doi.org/10.1002/jgrd.50534, 2013. a
Download
Short summary
More than 1 billion tons of mineral dust particles are raised into the atmosphere every year, which has a significant impact on climate, society and ecosystems. The location, time and amount of dust emissions depend on surface and wind conditions. In the atmospheric chemistry–climate model EMAC, we have updated the relevant surface data and equations. Our validation shows that the updates substantially improve the agreement of model results and observations.