Articles | Volume 11, issue 2
https://doi.org/10.5194/gmd-11-611-2018
https://doi.org/10.5194/gmd-11-611-2018
Model description paper
 | 
15 Feb 2018
Model description paper |  | 15 Feb 2018

Multi-scale modeling of urban air pollution: development and application of a Street-in-Grid model (v1.0) by coupling MUNICH (v1.0) and Polair3D (v1.8.1)

Youngseob Kim, You Wu, Christian Seigneur, and Yelva Roustan

Related authors

Population exposure to outdoor NO2, black carbon, and ultrafine and fine particles over Paris with multi-scale modelling down to the street scale
Soo-Jin Park, Lya Lugon, Oscar Jacquot, Youngseob Kim, Alexia Baudic, Barbara D'Anna, Ludovico Di Antonio, Claudia Di Biagio, Fabrice Dugay, Olivier Favez, Véronique Ghersi, Aline Gratien, Julien Kammer, Jean-Eudes Petit, Olivier Sanchez, Myrto Valari, Jérémy Vigneron, and Karine Sartelet
Atmos. Chem. Phys., 25, 3363–3387, https://doi.org/10.5194/acp-25-3363-2025,https://doi.org/10.5194/acp-25-3363-2025, 2025
Short summary
To what extent is the description of streets important in estimating local air quality: a case study over Paris
Alexis Squarcioni, Yelva Roustan, Myrto Valari, Youngseob Kim, Karine Sartelet, Lya Lugon, Fabrice Dugay, and Robin Voitot
Atmos. Chem. Phys., 25, 93–117, https://doi.org/10.5194/acp-25-93-2025,https://doi.org/10.5194/acp-25-93-2025, 2025
Short summary
Validation and analysis of the Polair3D v1.11 chemical transport model over Quebec
Shoma Yamanouchi, Shayamilla Mahagammulla Gamage, Sara Torbatian, Jad Zalzal, Laura Minet, Audrey Smargiassi, Ying Liu, Ling Liu, Forood Azargoshasbi, Jinwoong Kim, Youngseob Kim, Daniel Yazgi, and Marianne Hatzopoulou
Geosci. Model Dev., 17, 3579–3597, https://doi.org/10.5194/gmd-17-3579-2024,https://doi.org/10.5194/gmd-17-3579-2024, 2024
Short summary
A two-way coupled regional urban–street network air quality model system for Beijing, China
Tao Wang, Hang Liu, Jie Li, Shuai Wang, Youngseob Kim, Yele Sun, Wenyi Yang, Huiyun Du, Zhe Wang, and Zifa Wang
Geosci. Model Dev., 16, 5585–5599, https://doi.org/10.5194/gmd-16-5585-2023,https://doi.org/10.5194/gmd-16-5585-2023, 2023
Short summary
Modelling concentration heterogeneities in streets using the street-network model MUNICH
Thibaud Sarica, Alice Maison, Yelva Roustan, Matthias Ketzel, Steen Solvang Jensen, Youngseob Kim, Christophe Chaillou, and Karine Sartelet
Geosci. Model Dev., 16, 5281–5303, https://doi.org/10.5194/gmd-16-5281-2023,https://doi.org/10.5194/gmd-16-5281-2023, 2023
Short summary

Related subject area

Atmospheric sciences
Indian Institute of Tropical Meteorology (IITM) High-Resolution Global Forecast Model version 1: an attempt to resolve monsoon prediction deadlock
R. Phani Murali Krishna, Siddharth Kumar, A. Gopinathan Prajeesh, Peter Bechtold, Nils Wedi, Kumar Roy, Malay Ganai, B. Revanth Reddy, Snehlata Tirkey, Tanmoy Goswami, Radhika Kanase, Sahadat Sarkar, Medha Deshpande, and Parthasarathi Mukhopadhyay
Geosci. Model Dev., 18, 1879–1894, https://doi.org/10.5194/gmd-18-1879-2025,https://doi.org/10.5194/gmd-18-1879-2025, 2025
Short summary
Cell-tracking-based framework for assessing nowcasting model skill in reproducing growth and decay of convective rainfall
Jenna Ritvanen, Seppo Pulkkinen, Dmitri Moisseev, and Daniele Nerini
Geosci. Model Dev., 18, 1851–1878, https://doi.org/10.5194/gmd-18-1851-2025,https://doi.org/10.5194/gmd-18-1851-2025, 2025
Short summary
NeuralMie (v1.0): an aerosol optics emulator
Andrew Geiss and Po-Lun Ma
Geosci. Model Dev., 18, 1809–1827, https://doi.org/10.5194/gmd-18-1809-2025,https://doi.org/10.5194/gmd-18-1809-2025, 2025
Short summary
Simulation performance of planetary boundary layer schemes in WRF v4.3.1 for near-surface wind over the western Sichuan Basin: a single-site assessment
Qin Wang, Bo Zeng, Gong Chen, and Yaoting Li
Geosci. Model Dev., 18, 1769–1784, https://doi.org/10.5194/gmd-18-1769-2025,https://doi.org/10.5194/gmd-18-1769-2025, 2025
Short summary
FootNet v1.0: development of a machine learning emulator of atmospheric transport
Tai-Long He, Nikhil Dadheech, Tammy M. Thompson, and Alexander J. Turner
Geosci. Model Dev., 18, 1661–1671, https://doi.org/10.5194/gmd-18-1661-2025,https://doi.org/10.5194/gmd-18-1661-2025, 2025
Short summary

Cited articles

AIRPARIF: Surveillance et information sur la qualité de l'air en Île-de-France en 2014, Tech. rep., AIRPARIF, 2015 (in French).
André, M., Carteret, M., Pasquier, A., and Liu, Y.: Methodology for characterizing vehicle fleet composition and its territorial variability, needed for assessing Low Emission Zones, Transp. Res. Proc., 25, 3286–3298, https://doi.org/10.1016/j.trpro.2017.05.174, 2017.
Berkowicz, R.: OSPM – a parameterised street pollution model, Environ. Monit. Assess., 65, 323–331, https://doi.org/10.1023/A:1006448321977, 2000.
Briant, R. and Seigneur, C.: Multi-scale modeling of roadway air quality impacts: Development and evaluation of a Plume-in-Grid model, Atmos. Environ., 68, 162–173, https://doi.org/10.1016/j.atmosenv.2012.11.058, 2013.
Cariolle, D., Caro, D., Paoli, R., Hauglustaine, D. A., Cuénot, B., Cozic, A., and Paugam, R.: Parameterization of plume chemistry into large-scale atmospheric models: Application to aircraft NOx emissions, J. Geophys. Res., 114, D19302, https://doi.org/10.1029/2009JD011873, 2009.
Download
Short summary
A new multi-scale model of urban air pollution is presented. This model combines a regional chemical transport model (CTM) with spatial scales down to 1 km and a street-network model. The street-network model MUNICH is coupled to the Polair3D CTM to constitute the Street-in-Grid (SinG) model. SinG and MUNICH are used to simulate the concentrations of NOx and ozone in a Paris suburb. SinG shows better performance than MUNICH for NO2 measured at monitoring stations within a street canyon.
Share