Articles | Volume 11, issue 2
Geosci. Model Dev., 11, 611–629, 2018
https://doi.org/10.5194/gmd-11-611-2018

Special issue: Air quality research at street level (ACP/GMD inter-journal...

Geosci. Model Dev., 11, 611–629, 2018
https://doi.org/10.5194/gmd-11-611-2018

Model description paper 15 Feb 2018

Model description paper | 15 Feb 2018

Multi-scale modeling of urban air pollution: development and application of a Street-in-Grid model (v1.0) by coupling MUNICH (v1.0) and Polair3D (v1.8.1)

Youngseob Kim et al.

Related authors

Influence of emission size distribution and nucleation on number concentrations over Greater Paris
Karine Sartelet, Youngseob Kim, Florian Couvidat, Maik Merkel, Tuukka Petäjä, Jean Sciare, and Alfred Wiedensohler
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-22,https://doi.org/10.5194/acp-2022-22, 2022
Preprint under review for ACP
Short summary
Simulation of O3 and NOx in São Paulo street urban canyons with VEIN (v0.2.2) and MUNICH (v1.0)
Mario Eduardo Gavidia-Calderón, Sergio Ibarra-Espinosa, Youngseob Kim, Yang Zhang, and Maria de Fatima Andrade
Geosci. Model Dev., 14, 3251–3268, https://doi.org/10.5194/gmd-14-3251-2021,https://doi.org/10.5194/gmd-14-3251-2021, 2021
Short summary
Nonstationary modeling of NO2, NO and NOx in Paris using the Street-in-Grid model: coupling local and regional scales with a two-way dynamic approach
Lya Lugon, Karine Sartelet, Youngseob Kim, Jérémy Vigneron, and Olivier Chrétien
Atmos. Chem. Phys., 20, 7717–7740, https://doi.org/10.5194/acp-20-7717-2020,https://doi.org/10.5194/acp-20-7717-2020, 2020
Short summary
Precursors and formation of secondary organic aerosols from wildfires in the Euro-Mediterranean region
Marwa Majdi, Karine Sartelet, Grazia Maria Lanzafame, Florian Couvidat, Youngseob Kim, Mounir Chrit, and Solene Turquety
Atmos. Chem. Phys., 19, 5543–5569, https://doi.org/10.5194/acp-19-5543-2019,https://doi.org/10.5194/acp-19-5543-2019, 2019
Modeling the effect of non-ideality, dynamic mass transfer and viscosity on SOA formation in a 3-D air quality model
Youngseob Kim, Karine Sartelet, and Florian Couvidat
Atmos. Chem. Phys., 19, 1241–1261, https://doi.org/10.5194/acp-19-1241-2019,https://doi.org/10.5194/acp-19-1241-2019, 2019
Short summary

Related subject area

Atmospheric sciences
Evaluation of the COSMO model (v5.1) in polarimetric radar space – impact of uncertainties in model microphysics, retrievals and forward operators
Prabhakar Shrestha, Jana Mendrok, Velibor Pejcic, Silke Trömel, Ulrich Blahak, and Jacob T. Carlin
Geosci. Model Dev., 15, 291–313, https://doi.org/10.5194/gmd-15-291-2022,https://doi.org/10.5194/gmd-15-291-2022, 2022
Short summary
Development of aerosol optical properties for improving the MESSy photolysis module in the GEM-MACH v2.4 air quality model and application for calculating photolysis rates in a biomass burning plume
Mahtab Majdzadeh, Craig A. Stroud, Christopher Sioris, Paul A. Makar, Ayodeji Akingunola, Chris McLinden, Xiaoyi Zhao, Michael D. Moran, Ihab Abboud, and Jack Chen
Geosci. Model Dev., 15, 219–249, https://doi.org/10.5194/gmd-15-219-2022,https://doi.org/10.5194/gmd-15-219-2022, 2022
Short summary
The sensitivity of simulated aerosol climatic impact to domain size using regional model (WRF-Chem v3.6)
Xiaodong Wang, Chun Zhao, Mingyue Xu, Qiuyan Du, Jianqiu Zheng, Yun Bi, Shengfu Lin, and Yali Luo
Geosci. Model Dev., 15, 199–218, https://doi.org/10.5194/gmd-15-199-2022,https://doi.org/10.5194/gmd-15-199-2022, 2022
Short summary
WOMBAT v1.0: a fully Bayesian global flux-inversion framework
Andrew Zammit-Mangion, Michael Bertolacci, Jenny Fisher, Ann Stavert, Matthew Rigby, Yi Cao, and Noel Cressie
Geosci. Model Dev., 15, 45–73, https://doi.org/10.5194/gmd-15-45-2022,https://doi.org/10.5194/gmd-15-45-2022, 2022
Short summary
Analysis of the MODIS above-cloud aerosol retrieval algorithm using MCARS
Galina Wind, Arlindo M. da Silva, Kerry G. Meyer, Steven Platnick, and Peter M. Norris
Geosci. Model Dev., 15, 1–14, https://doi.org/10.5194/gmd-15-1-2022,https://doi.org/10.5194/gmd-15-1-2022, 2022
Short summary

Cited articles

AIRPARIF: Surveillance et information sur la qualité de l'air en Île-de-France en 2014, Tech. rep., AIRPARIF, 2015 (in French).
André, M., Carteret, M., Pasquier, A., and Liu, Y.: Methodology for characterizing vehicle fleet composition and its territorial variability, needed for assessing Low Emission Zones, Transp. Res. Proc., 25, 3286–3298, https://doi.org/10.1016/j.trpro.2017.05.174, 2017.
Berkowicz, R.: OSPM – a parameterised street pollution model, Environ. Monit. Assess., 65, 323–331, https://doi.org/10.1023/A:1006448321977, 2000.
Briant, R. and Seigneur, C.: Multi-scale modeling of roadway air quality impacts: Development and evaluation of a Plume-in-Grid model, Atmos. Environ., 68, 162–173, https://doi.org/10.1016/j.atmosenv.2012.11.058, 2013.
Cariolle, D., Caro, D., Paoli, R., Hauglustaine, D. A., Cuénot, B., Cozic, A., and Paugam, R.: Parameterization of plume chemistry into large-scale atmospheric models: Application to aircraft NOx emissions, J. Geophys. Res., 114, D19302, https://doi.org/10.1029/2009JD011873, 2009.
Download
Short summary
A new multi-scale model of urban air pollution is presented. This model combines a regional chemical transport model (CTM) with spatial scales down to 1 km and a street-network model. The street-network model MUNICH is coupled to the Polair3D CTM to constitute the Street-in-Grid (SinG) model. SinG and MUNICH are used to simulate the concentrations of NOx and ozone in a Paris suburb. SinG shows better performance than MUNICH for NO2 measured at monitoring stations within a street canyon.