Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
Volume 11, issue 2
Geosci. Model Dev., 11, 611–629, 2018
https://doi.org/10.5194/gmd-11-611-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Air Quality Research at Street-Level (ACP/GMD inter-journal...

Geosci. Model Dev., 11, 611–629, 2018
https://doi.org/10.5194/gmd-11-611-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Model description paper 15 Feb 2018

Model description paper | 15 Feb 2018

Multi-scale modeling of urban air pollution: development and application of a Street-in-Grid model (v1.0) by coupling MUNICH (v1.0) and Polair3D (v1.8.1)

Youngseob Kim et al.

Model code and software

Street-in-Grid (v1.0) Y. Kim, Y. Wu, C. Seigneur, and Y. Roustan https://doi.org/10.5281/zenodo.1025629

Publications Copernicus
Download
Short summary
A new multi-scale model of urban air pollution is presented. This model combines a regional chemical transport model (CTM) with spatial scales down to 1 km and a street-network model. The street-network model MUNICH is coupled to the Polair3D CTM to constitute the Street-in-Grid (SinG) model. SinG and MUNICH are used to simulate the concentrations of NOx and ozone in a Paris suburb. SinG shows better performance than MUNICH for NO2 measured at monitoring stations within a street canyon.
A new multi-scale model of urban air pollution is presented. This model combines a regional...
Citation