Articles | Volume 11, issue 12
https://doi.org/10.5194/gmd-11-4843-2018
https://doi.org/10.5194/gmd-11-4843-2018
Development and technical paper
 | 
04 Dec 2018
Development and technical paper |  | 04 Dec 2018

A Lagrangian approach towards extracting signals of urban CO2 emissions from satellite observations of atmospheric column CO2 (XCO2): X-Stochastic Time-Inverted Lagrangian Transport model (“X-STILT v1”)

Dien Wu, John C. Lin, Benjamin Fasoli, Tomohiro Oda, Xinxin Ye, Thomas Lauvaux, Emily G. Yang, and Eric A. Kort

Related authors

A simplified non-linear chemistry transport model for analyzing NO2 column observations: STILT–NOx
Dien Wu, Joshua L. Laughner, Junjie Liu, Paul I. Palmer, John C. Lin, and Paul O. Wennberg
Geosci. Model Dev., 16, 6161–6185, https://doi.org/10.5194/gmd-16-6161-2023,https://doi.org/10.5194/gmd-16-6161-2023, 2023
Short summary
Theoretical assessment of the ability of the MicroCarb satellite city-scan observing mode to estimate urban CO2 emissions
Kai Wu, Paul I. Palmer, Dien Wu, Denis Jouglet, Liang Feng, and Tom Oda
Atmos. Meas. Tech., 16, 581–602, https://doi.org/10.5194/amt-16-581-2023,https://doi.org/10.5194/amt-16-581-2023, 2023
Short summary
Towards sector-based attribution using intra-city variations in satellite-based emission ratios between CO2 and CO
Dien Wu, Junjie Liu, Paul O. Wennberg, Paul I. Palmer, Robert R. Nelson, Matthäus Kiel, and Annmarie Eldering
Atmos. Chem. Phys., 22, 14547–14570, https://doi.org/10.5194/acp-22-14547-2022,https://doi.org/10.5194/acp-22-14547-2022, 2022
Short summary
The Information Content of Dense Carbon Dioxide Measurements from Space: A High-Resolution Inversion Approach with Synthetic Data from the OCO-3 Instrument
Dustin Roten, John C. Lin, Lewis Kunik, Derek Mallia, Dien Wu, Tomohiro Oda, and Eric A. Kort
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-315,https://doi.org/10.5194/acp-2022-315, 2022
Preprint under review for ACP
Short summary
A model for urban biogenic CO2 fluxes: Solar-Induced Fluorescence for Modeling Urban biogenic Fluxes (SMUrF v1)
Dien Wu, John C. Lin, Henrique F. Duarte, Vineet Yadav, Nicholas C. Parazoo, Tomohiro Oda, and Eric A. Kort
Geosci. Model Dev., 14, 3633–3661, https://doi.org/10.5194/gmd-14-3633-2021,https://doi.org/10.5194/gmd-14-3633-2021, 2021
Short summary

Related subject area

Atmospheric sciences
Comprehensive evaluation of typical planetary boundary layer (PBL) parameterization schemes in China – Part 1: Understanding expressiveness of schemes for different regions from the mechanism perspective
Wenxing Jia, Xiaoye Zhang, Hong Wang, Yaqiang Wang, Deying Wang, Junting Zhong, Wenjie Zhang, Lei Zhang, Lifeng Guo, Yadong Lei, Jizhi Wang, Yuanqin Yang, and Yi Lin
Geosci. Model Dev., 16, 6635–6670, https://doi.org/10.5194/gmd-16-6635-2023,https://doi.org/10.5194/gmd-16-6635-2023, 2023
Short summary
Evaluating 3 decades of precipitation in the Upper Colorado River basin from a high-resolution regional climate model
William Rudisill, Alejandro Flores, and Rosemary Carroll
Geosci. Model Dev., 16, 6531–6552, https://doi.org/10.5194/gmd-16-6531-2023,https://doi.org/10.5194/gmd-16-6531-2023, 2023
Short summary
Implementation of a satellite-based tool for the quantification of CH4 emissions over Europe (AUMIA v1.0) – Part 1: forward modelling evaluation against near-surface and satellite data
Angel Liduvino Vara-Vela, Christoffer Karoff, Noelia Rojas Benavente, and Janaina P. Nascimento
Geosci. Model Dev., 16, 6413–6431, https://doi.org/10.5194/gmd-16-6413-2023,https://doi.org/10.5194/gmd-16-6413-2023, 2023
Short summary
The capabilities of the adjoint of GEOS-Chem model to support HEMCO emission inventories and MERRA-2 meteorological data
Zhaojun Tang, Zhe Jiang, Jiaqi Chen, Panpan Yang, and Yanan Shen
Geosci. Model Dev., 16, 6377–6392, https://doi.org/10.5194/gmd-16-6377-2023,https://doi.org/10.5194/gmd-16-6377-2023, 2023
Short summary
Rapid O3 assimilations – Part 1: Background and local contributions to tropospheric O3 changes in China in 2015–2020
Rui Zhu, Zhaojun Tang, Xiaokang Chen, Xiong Liu, and Zhe Jiang
Geosci. Model Dev., 16, 6337–6354, https://doi.org/10.5194/gmd-16-6337-2023,https://doi.org/10.5194/gmd-16-6337-2023, 2023
Short summary

Cited articles

Andres, R. J., Gregg, J. S., Losey, L., Marland, G. and Boden, T. A.: Monthly, global emissions of carbon dioxide from fossil fuel consumption, Tellus, Ser. B Chem. Phys. Meteorol., 63, 309–327, https://doi.org/10.1111/j.1600-0889.2011.00530.x, 2011. 
Andres, R. J., Boden, T. A., and Higdon, D.: A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide emission, Tellus B, 66, 23616, https://doi.org/10.3402/tellusb.v66.23616, 2014. 
Andres, R. J., Boden, T. A., and Higdon, D. M.: Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example, Atmos. Chem. Phys., 16, 14979–14995, https://doi.org/10.5194/acp-16-14979-2016, 2016. 
Asefi-Najafabad, S., Rayner, P. J., Gurney, K. R., Mcrobert, A., Song, Y., Coltin, K., Huang, J., Elvidge, C. and Baugh, K.: A multiyear, global gridded fossil fuel emission data product: Evaluation and analysis of results, J. Geophys. Res.-Atmos., 119, 10213–10231, https://doi.org/10.1002/2013JD021296, 2014. 
Basu, S., Guerlet, S., Butz, A., Houweling, S., Hasekamp, O., Aben, I., Krummel, P., Steele, P., Langenfelds, R., Torn, M., Biraud, S., Stephens, B., Andrews, A., and Worthy, D.: Global CO2 fluxes estimated from GOSAT retrievals of total column CO2, Atmos. Chem. Phys., 13, 8695–8717, https://doi.org/10.5194/acp-13-8695-2013, 2013. 
Download
Short summary
Urban CO2 enhancement signals can be derived using satellite column CO2 concentrations and atmospheric transport models. However, uncertainties due to model configurations, atmospheric transport, and defined background values can potentially impact the derived urban signals. In this paper, we present a modified Lagrangian model framework that extracts urban CO2 signals from satellite observations and determines potential error impacts.