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Abstract. Urban regions are responsible for emitting signif-
icant amounts of fossil fuel carbon dioxide (FFCO2), and
emissions at the finer, city scales are more uncertain than
those aggregated at the global scale. Carbon-observing satel-
lites may provide independent top-down emission evalua-
tions and compensate for the sparseness of surface CO2 ob-
serving networks in urban areas. Although some previous
studies have attempted to derive urban CO2 signals from
satellite column-averaged CO2 data (XCO2) using simple
statistical measures, less work has been carried out to link
upwind emission sources to downwind atmospheric columns
using atmospheric models. In addition to Eulerian atmo-
spheric models that have been customized for emission esti-
mates over specific cities, the Lagrangian modeling approach
– in particular, the Lagrangian particle dispersion model
(LPDM) approach – has the potential to efficiently determine
the sensitivity of downwind concentration changes to upwind
sources. However, when applying LPDMs to interpret satel-
lite XCO2, several issues have yet to be addressed, including
quantifying uncertainties in urban XCO2 signals due to re-
ceptor configurations and errors in atmospheric transport and
background XCO2.

In this study, we present a modified version of the Stochas-
tic Time-Inverted Lagrangian Transport (STILT) model, “X-
STILT”, for extracting urban XCO2 signals from NASA’s

Orbiting Carbon Observatory 2 (OCO-2) XCO2 data. X-
STILT incorporates satellite profiles and provides compre-
hensive uncertainty estimates of urban XCO2 enhancements
on a per sounding basis. Several methods to initialize re-
ceptor/particle setups and determine background XCO2 are
presented and discussed via sensitivity analyses and compar-
isons. To illustrate X-STILT’s utilities and applications, we
examined five OCO-2 overpasses over Riyadh, Saudi Arabia,
during a 2-year time period and performed a simple scal-
ing factor-based inverse analysis. As a result, the model is
able to reproduce most observed XCO2 enhancements. Er-
ror estimates show that the 68 % confidence limit of XCO2
uncertainties due to transport (horizontal wind plus vertical
mixing) and emission uncertainties contribute to ∼ 33 % and
∼ 20 % of the mean latitudinally integrated urban signals,
respectively, over the five overpasses, using meteorological
fields from the Global Data Assimilation System (GDAS).
In addition, a sizeable mean difference of −0.55 ppm in
background derived from a previous study employing simple
statistics (regional daily median) leads to a ∼ 39 % higher
mean observed urban signal and a larger posterior scaling
factor. Based on our signal estimates and associated error im-
pacts, we foresee X-STILT serving as a tool for interpreting
column measurements, estimating urban enhancement sig-
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nals, and carrying out inverse modeling to improve quantifi-
cation of urban emissions.

1 Introduction

Carbon dioxide (CO2) is a major atmospheric greenhouse gas
in terms of radiative forcing, with its concentration having
increased significantly over the past century (Dlugokencky
and Tans, 2015). The largest contemporary net source of
CO2 to the atmosphere over decadal timescales is anthro-
pogenic emissions, namely fossil fuel burning and net land-
use change (Ciais et al., 2013). Urban areas play significant
roles in the global carbon cycle and are responsible for over
70 % of the global energy-related CO2 emissions (Rosen-
zweig et al., 2010). Global fossil fuel CO2 (FFCO2) emission
uncertainty (8.4 %, 2σ , Andres et al., 2014) may be smaller
than other less-constrained emissions such as emissions from
wildfire (Brasseur and Jacob, 2017). Still, uncertainties asso-
ciated with national FFCO2 emissions derived from bottom-
up inventories typically range from 5 % to 20 % per year
(Andres et al., 2014). These estimated emission uncertain-
ties primarily result from differences in emission invento-
ries, such as the emission factors and energy consumptions
data used. Moreover, heightened interests in regional- and
urban-scale emissions require modelers to investigate FFCO2
emissions at finer spatiotemporal resolutions (Lauvaux et al.,
2016; Mitchell et al., 2018) as well as uncertainties in grid-
ded emissions (Andres et al., 2016; Gately and Hutyra, 2017;
Hogue et al., 2016; Oda et al., 2018). Dramatic increases in
emission uncertainties are associated with finer scales, with
these uncertainties being biases due to different methods dis-
aggregating national-level emissions (Marland, 2008; Oda
and Maksyutov, 2011). For instance, emission uncertainties
of 20 % at regional scales increased to 50 %–250 % at city
scales even for the northeastern United States (Gately and
Hutyra, 2017), an area that is considered relatively “data-
rich”.

Given the large differences/discrepancies in emission in-
ventories at urban scales, the use of atmospheric top-down
constraints could be helpful for quantifying urban emissions
and possibly providing monitoring support (Pacala et al.,
2010). Observed concentrations used in the top-down ap-
proach can often be obtained from ground-based instruments
(Kim et al., 2013; Mallia et al., 2015; Wunch et al., 2011) and
aircraft observations (Gerbig et al., 2003; Lin et al., 2006).
Each type of measurement offers valuable information and
has both advantages and disadvantages. Most ground-based
measurements provide reliable, continuous CO2 concentra-
tions from fixed locations/heights. Unfortunately, current
ground-based observing sites are too sparse to constrain ur-
ban emissions around the globe. Most sites as part of the
National Oceanic and Atmospheric Administration (NOAA)
network are designed to measure background concentrations

relatively unaffected by urban emissions. Other than a few
notable examples (Feng et al., 2016; Lauvaux et al., 2016;
Mitchell et al., 2018; Verhulst et al., 2017; Wong et al., 2015;
Wunch et al., 2009), near-surface CO2 measurements may
not be available over many cities around the world. Alterna-
tively, airborne measurements from field campaigns provide
vertical and regional coverage (Cambaliza et al., 2014); how-
ever, continuous airborne operations over months to years are
often impractical due to limited resources, which restricts re-
searchers’ capability to track the temporal variability of an-
thropogenic carbon emissions (Sweeney et al., 2015).

The carbon cycle community has entered a new era with
advanced carbon-observing satellites routinely in orbit to
measure variations in the atmospheric column-averaged CO2
mole fraction (XCO2), such as the Greenhouse gases Ob-
serving SATellite (GOSAT; Yokota et al., 2009), TanSat
(Liu et al., 2013), and the Orbiting Carbon Observatory
(OCO-2) satellite (Crisp et al., 2012). Although most carbon-
observing satellites have revisit times of multiple days (e.g.,
3 days for GOSAT and 16 days for OCO-2), their global
coverage, large number of retrievals, and multi-year observa-
tions may further complement the current surface observing
networks. Space-borne CO2 measurements, in combination
with surface CO2 networks, may help reduce emission un-
certainties and benefit urban emissions analysis, especially
over regions with no surface observations (Duren and Miller,
2012; Houweling et al., 2004; Rayner and O’Brien, 2001).

Previous studies have demonstrated the potential for de-
tecting and deriving urban CO2 emission signals from satel-
lite CO2 observations, in the form of XCO2 enhancements
above the background, without making use of much atmo-
spheric transport information (Hakkarainen et al., 2016; Kort
et al., 2012; Schneising et al., 2013; Silva and Arellano,
2017; Silva et al., 2013). However, due to this simplification,
the linkage between derived urban CO2 emission signals
and upstream sources is tenuous, as downwind XCO2 can
be enhanced not only by near-field upwind urban activities
(e.g., traffic, houses, and power plants/industries), but also
by regional-scale advection of upwind sources/sinks. Simu-
lations using transport models are able to isolate the portion
of satellite observations influenced by urban regions from
the portion affected by natural fluxes or long-range transport
(e.g., Ye et al., 2017). Therefore, accurate knowledge of at-
mospheric transport is essential in top-down assessment. As
importantly, transport modeling is a necessary step within in-
verse modeling, which can help improve fossil fuel emission
estimates and shed light on CO2 emission monitoring net-
works (Kort et al., 2013; Lauvaux et al., 2009). Uncertainties
in transport modeling have been identified as a significant er-
ror source that affects inferred surface fluxes (Peylin et al.,
2011; Stephens et al., 2007; Ye et al., 2017). However, by
analyzing an increased number of satellite overpasses, uncer-
tainties from atmospheric inversions due to non-systematic
transport errors in emission estimates can be reduced (Ye et
al., 2017).

Geosci. Model Dev., 11, 4843–4871, 2018 www.geosci-model-dev.net/11/4843/2018/



D. Wu et al.: Towards extracting signals of urban CO2 emissions from satellite observations 4845

Two main approaches can be considered for atmospheric
transport modeling. Eulerian models, in which fixed grid
cells are adopted and CO2 concentrations within the grid
cells are calculated by forward numerical integrations, have
been widely utilized and customized to understand urban
emissions and quantify model uncertainties over specific
metropolitan regions worldwide (Deng et al., 2017; Lauvaux
et al., 2013; Palmer, 2008; Ye et al., 2017). The Lagrangian
approach, especially the time-reversed approach in which
atmospheric transport is represented by air parcels moving
backward in time from the measurement location (“recep-
tor”), is efficient in locating upwind sources and facilitating
the construction and calculation of the “footprint” (e.g., Lin
et al., 2003) or “source–receptor matrix” (Seibert and Frank,
2004) – i.e., the sensitivity of downwind CO2 variations to
upwind fluxes.

In particular, the receptor-oriented Stochastic Time-
Inverted Lagrangian Transport (STILT) model, a Lagrangian
particle dispersion model (LPDM), has the ability to more re-
alistically resolve the sub-grid scale transport and near-field
influences (Lin et al., 2003). STILT has been used to interpret
CO2 observations within the planetary boundary layer (PBL)
(Gerbig et al., 2006; Kim et al., 2013; Lin et al., 2017) and,
in recent years, to analyze column observations, i.e., XCO2
(Fischer et al., 2017; Heymann et al., 2017; Macatangay et
al., 2008; Reuter et al., 2014). Among STILT-based XCO2
studies, most aim at either natural CO2 sources and sinks like
wildfire emissions and biospheric fluxes, or anthropogenic
emissions at regional or state scales. Very few studies have
focused on city-scale FFCO2 using column data and LPDMs.
Moreover, when applying LPDMs to interpret column CO2
data, three key issues have yet to be carefully examined and
will be addressed in this paper:

1. Uncertainty of modeled XCO2 enhancements due to
model configurations. Very few studies have examined
model uncertainties resulting from model configura-
tions, i.e., receptors and particles in LPDMs. A negli-
gible amount to ∼ 20 % of the modeled enhancements
are reported as the error impact due to the STILT par-
ticle number (released from a fixed level), depending
on adopted particle numbers, examined species, and
their components/sources (Zhao et al., 2009; Gerbig
et al., 2003; Mallia et al., 2015). When it comes to
representing an atmospheric column using particle en-
sembles, many studies describe their setups for recep-
tors/particles without detailed explanations of why the
setups were chosen or the error impact on modeling
XCO2 due to model configurations. Although this error
impact may be small, we still perform a set of sensi-
tivity tests to provide more guidance regarding placing
column receptors.

2. Horizontal and vertical transport error impact on XCO2
simulations. Flux inversions, e.g., Bayesian inversion
(Rodgers, 2000) involving LPDMs have been widely

adopted to constrain emissions. Approaches to quantify
errors in horizontal wind fields and vertical mixing have
been proposed followed by comprehensive error char-
acterizations on atmospheric simulations (Gerbig et al.,
2008; Jeong et al., 2013; Lauvaux et al., 2016; Lin and
Gerbig, 2005; Zhao et al., 2009). Recent efforts (e.g.,
Lauvaux and Davis, 2014; Ye et al., 2017) have been
made to rigorously examine the column transport errors.
The uncertainties in horizontal wind fields and vertical
mixing within X-STILT will be propagated into column
CO2 space in this study.

3. Determining background XCO2 and characterizing its
uncertainties. We define the background value as the
CO2 “uncontaminated” by fossil fuel emissions from
the city of interest. As urban emission signals are de-
fined as the enhancements of XCO2 over the back-
ground, errors in the background value introduce first-
order errors into the derived urban XCO2 signal from
total XCO2, with such errors propagating directly into
fluxes calculated from atmospheric inversions (e.g.,
Göckede et al., 2010). Consequently, background deter-
mination is another critical task.

One commonly used method to determine model
boundary conditions of various species in LPDMs is the
“trajectory-endpoint” method that establishes the back-
ground based on CO2 extracted at endpoints of back
trajectories from modeled regional/global concentration
fields (Lin et al., 2017; Macatangay et al., 2008; Mallia
et al., 2015). The aforementioned studies (adopting the
trajectory-endpoint method) aim at extracting relatively
large CO2 anomalies (e.g., at a fixed level within the
PBL or due to large emissions such as of wildfire)
from the total measured CO2. However, for studying
XCO2 that is less variable than near-surface CO2 (Olsen
and Randerson, 2004), potential errors in modeled con-
centration fields and atmospheric transport may pose a
more significant adverse impact on derived urban sig-
nals. Other ways of defining the background include ge-
ographic definitions (Kort et al., 2012; Schneising et al.,
2013) and simple statistical estimates (Hakkarainen et
al., 2016; Silva and Arellano, 2017). These simple sta-
tistical methods often neglect atmospheric transport and
may use a less accurate upwind region to select mea-
surements for deriving background values. Lastly, but
more importantly, recent column studies (Nassar et al.,
2017; Fischer et al., 2017) have examined the impact
of potential errors/biases in the background values on
their emission or fluxes estimates. In this work, we in-
troduce a new background determination that combines
OCO-2 observations and the STILT-based atmospheric
transport, and we account for errors in our background
estimates.
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Figure 1. A schematic of X-STILT in five steps (represented by the arrows on the right of the figure). Pink and purple dots and arrows
represent the air parcels and overall air flows based on forward-time box runs and backward-time column runs with the wind error component
accounted for. The “rainbow band” (running diagonally through the figure) is an example of one OCO-2 overpass with warmer colors
indicating higher observed XCO2 values. M1 includes modeled-derived biospheric, oceanic XCO2 changes, CO2 boundary conditions, and
the prior CO2 portion from OCO-2. M3 requires an enhanced latitude range based on either backward-time XCO2 enhancements or the
forward-time urban plume.

In general, we attempt to address the aforementioned is-
sues by extending STILT with column features and com-
prehensive error analyses, referred to as the column-enabled
STILT, “X-STILT”. We illustrate the model’s application
regarding extracting urban XCO2 signals from OCO-2 re-
trievals (Fig. 1) and evaluate model performance via a case
study focused on Riyadh, Saudi Arabia. Riyadh, which had
a population of over 6 million people in 2014 (WUP, 2014),
is chosen as the city of interest because of its low cloud in-
terference, limited vegetation coverage, and isolated, barren
location; these factors lead to higher data recovery rates and
facilitate the background determination. Saudi Arabia has the
highest CO2 emissions among Middle Eastern countries and
ranked eighth globally in 2016 (Boden et al., 2017; BP, 2017;
UNFCCC, 2017). We examine several satellite overpasses
and focus on a small spatial domain adjacent to Riyadh for
each overpass.

2 Data and methodology

Before demonstrating the model details, Fig. 1 highlights
several X-STILT characteristics, e.g., column transport er-
ror quantifications, background XCO2 approximations, and
the identification of upwind emitters using backward-time
runs from column receptors. Our goal is to evaluate the
model by comparing both the latitude-dependent model–
data XCO2 urban enhancements (Sect. 3.4) and the over-
all latitude-integrated urban signals within a small latitudi-
nal range (Sect. 3.5). We selected and examined five OCO-
2 overpasses during the time period from September 2014
to December 2016, based on four stringent criteria (Ap-
pendix A).

2.1 STILT-based approach for XCO2 simulation
(“X-STILT”)

The OCO-2 column averaging kernel is the product of nor-
malized averaging kernel (AKnorm) and the pressure weigh-
ing (PW) function and represents the sensitivity of the change
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in retrieved XCO2 due to the CO2 anomaly at each retrieved
grid. Column AKnorm peaks near the surface and exhibits val-
ues near unity throughout most of the troposphere (Boesch
et al., 2011). Lower AKnorm values are mainly found aloft,
which means that more information is required in the a pri-
ori CO2 profiles (CO2,prior; Fig. 2a). For direct comparisons
against OCO-2 retrieved XCO2, CO2 anomalies at model
grids should be properly weighted using the satellite’s col-
umn averaging kernels (Basu et al., 2013; Lin et al., 2004).
Thus, the final AK-weighted simulated XCO2 (XCO2.sim.ak)
are weighted between model-derived CO2 profiles and OCO-
2 a priori profiles (O’Dell et al., 2012):

XCO2.sim.ak =

nlevel∑
n=1

(
AKnorm,nPWnCO2.sim,n

+
(
1−AKnorm,n

)
PWnCO2.prior,n

)
. (1)

In the abovementioned equation, n stands for the combined
vertical levels of STILT plus OCO-2. Specifically, we re-
placed OCO-2 levels with denser model release levels for the
lower part of the troposphere (red circles from the surface
in Fig. 2), while we kept OCO-2 levels for upper part of the
troposphere (blue circles in Fig. 2). To reduce computational
cost, the air column is only simulated up to the maximum
release height (MAXAGL, in meters above ground level –
m a.g.l.; Fig. 2).

Interpolations are further needed to resolve the mismatch
between prescribed OCO-2 retrieval grids and model lev-
els for the lower part of the troposphere. Our intention is
to preserve the finer modeled CO2 variations by perform-
ing interpolations of satellite profiles from retrieval grids to
model levels. Vertical profiles of AKnorm, PW and CO2,prior
are treated as continuous functions and interpolated linearly
to model grids (red circles in Fig. 2). Note that the initial
OCO-2 PW functions have a steady value of∼ 0.052 (except
for the very bottom and top levels; black dots in Fig. 2b),
which results from constant pressure spacings (dp_oco2) be-
tween two adjacent OCO-2 levels. However, X-STILT levels
are much denser with smaller pressure spacings (dp_stilt) or
less air mass between their two adjacent levels. Therefore,
the linearly interpolated PW (red circles in Fig. 2b) needs ad-
ditional scaling via a set of “scaling factors” representing the
ratios of pressure spacings in STILT versus OCO-2 retrieval
(dp_stilt/dp_oco2), to arrive at the correct PW for each finer
model grid (orange circles in Fig. 2b).

Equation (1) can further be rewritten as Eq. (2), as the sim-
ulated CO2 profile in Eq. (1) is comprised of a CO2 boundary
condition plus CO2 anomalies due to sources/sinks (FFCO2,
biospheric, and oceanic fluxes):

XCO2.sim.ak = XCO2.sim.ff+XCO2.sim.bio+XCO2.sim.ocean

+XCO2.sim.bound+XCO2.prior

= XCO2.sim.ff+XCO2.bg. (2)

Given our focus, we defined the background value as the
XCO2 portion not “contaminated” by urban emissions. Thus,
XCO2.sim.ak is the sum of the XCO2 enhancement due to
FFCO2 (XCO2.sim.ff) and the estimated background value
(XCO2.bg). Estimates of XCO2 anomalies are further ex-
plained in Sect. 2.1.2, and four ways to estimate background
values (XCO2.bg) are proposed in Sect. 2.3.

2.1.1 X-STILT setup (“column receptors”)

The linkage between the observed XCO2 concentration from
a given OCO-2 sounding and upwind CO2 sources and sinks
is determined by atmospheric transport. We adopt the STILT
model to describe this connection. Fictitious particles, rep-
resenting air parcels, are released from a “receptor” (loca-
tion of interest) and are dispersed backward in time. The
Lagrangian air parcels within STILT are transported along
with the mean wind (u), turbulent wind component (u′), and
other meteorological variables, which are derived from Eu-
lerian meteorological fields. In this study, we used meteoro-
logical fields simulated by the Weather Research and Fore-
casting (WRF; Skamarock and Klemp, 2008) model and the
0.5◦×0.5◦ Global Data Assimilation System (GDAS; Rolph
et al., 2017; Stein et al., 2015). Hourly WRF fields contain 51
vertical levels with boundary conditions from 6 h 0.5◦×0.5◦

NCEP FNL (final) operational global analysis data (Ye et al.,
2017) and are customized and utilized for the first two of the
five total overpasses over Riyadh. We note that the primary
focus is on assessing the resulting errors given the choice of
a particular wind field (i.e., GDAS 0.5◦), rather than on car-
rying out detailed analyses of differences between WRF and
GDAS.

To represent the air arriving at the atmospheric column of
each OCO-2 sounding, we release air parcels from multiple
vertical levels, “column receptors” (Fig. 3e), using the same
lat/long coordinates as the satellite sounding at the same time
and allow those parcels to disperse backward for 72 h (see
Appendix D2 for model impact from backward durations).
About 10–20 satellite soundings are selected for simulations
over every 0.5◦ latitude with data filtering using the crite-
ria explained in Sect. 2.2. Sensitivity tests are conducted re-
garding different configurations – the maximum release level
(MAXAGL), the vertical spacing of release levels (dh), and
the particle number per level (dpar) – when placing column
receptors (Sect. 2.5).

2.1.2 Modeling XCO2 anomalies

Air parcels traveling back in time provide valuable informa-
tion about how upwind sources and sinks impact the air ar-

www.geosci-model-dev.net/11/4843/2018/ Geosci. Model Dev., 11, 4843–4871, 2018



4848 D. Wu et al.: Towards extracting signals of urban CO2 emissions from satellite observations

Figure 2. Demonstrations of interpolations on the (a) normalized averaging kernel (AKnorm) profile, (b) pressure weighing (PW) function,
and (c) the CO2 boundary conditions (derived from CarbonTracker – CT-NRT) and OCO-2 a priori profile, given one sounding (with the same
lat/long coordinates as column receptors). The red and blue shading denotes the X-STILT release levels from the surface up to MAXAGL
and upper OCO-2 levels, respectively.

riving at a receptor. However, since particles within the en-
semble are subject to stochastic motion, the surface fluxes
observed by any single particle caries limited information.
The influence of upstream surface fluxes on a receptor is
given by summing the sensitivities of all particles in the en-
semble over a surface grid f (x,y, t), which is referred to
as the “footprint” (Lin et al., 2003; Fasoli et al., 2018) or
the “source–receptor matrix” (Seibert and Frank, 2004). For-
mally, the sensitivity of the receptor located at xr at time tr
to surface fluxes originating from xi,yj is given by summing
1tp,i,j,z≤h, the time spent by particle p over grid position ij
within the surface layer of height h for each discrete time step
m:

f
(
xr , tr |xi,yj , tm

)
=

mair

hρ
(
xi,yj , tm

) 1
Ntot

Ntot∑
p=1

1tp,i,j,z≤h, (3)

where Ntot is the total number of particles in the ensemble,
mair is the molar mass of dry air, and ρ is the average air
density below h. The dilution of surface fluxes to half of the
PBL height h= 0.5zpbl is often used. In general, f increases
if particles travel at heights z ≤ h and if h is low, concentrat-
ing surface fluxes within a shallower atmospheric column.

To reduce grid noise caused by the aggregation of a finite
number of dispersed particles, a kernel density estimator is
used to variably smooth f as a function of elapsed time and
particle location uncertainty. The reader is referred to Fasoli

et al. (2018) for additional details pertaining to the formula-
tion of f .

We introduce the weighted column footprint fw that de-
scribes the sensitivity of changes in column concentration
due to potential upstream sources/sinks and incorporates
satellite profiles. The formulation of fw is similar to Eq. (3)
but scales the sensitivity with AKnorm (n,r) and PW(n,r):

fw
(
xn,r , tn,r |xi,yj , tm

)
=

mair

hρ
(
xi,yj , tm

) 1
Ntot

Ntot∑
p=1

1tp,i,j,z≤hAKnorm (n,r)PW(n,r) , (4)

where xn,r , tn,r denotes a column receptor. Multiplying fw
by gridded flux estimates yields a change in CO2 at the down-
wind column receptor. Thus, surface fluxes F

(
xi,yj , tm

)
cause a change in column integrated mole fraction 1XCO2
as follows:

1XCO2
(
xn,r , tn,r |xi,yj , tm

)
= F

(
xi,yj , tm

)
fw
(
xr , tr |xi,yj , tm

)
. (5)

For this study, modeled XCO2 enhancements due to FFCO2
emissions are derived from the convolution of spatially vary-
ing fw and ODIAC emissions (Sect. 2.4.1). Also, we account
for modeled uncertainties that include errors in prior FFCO2
emissions (Sect. 2.4.1), receptor configurations (Sect. 2.5),
and atmospheric transport (Sect. 2.6).
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Figure 3. A 3-D scatterplot of STILT ensembles that are initially released from a fixed receptor of 500 m(a), 3 km(c), and column receptors(e)
for Riyadh at 10:00 UTC on 29 December 2014. The different colors represent the number of minutes/hours backwards (−2 min, −12, −24,
−36,−48,−60, and−72 h) for each trajectory. Column receptors (e) are placed every 100 m within 3 km and every 500 m from 3 to 6 km. (b,
d, f) Modeled fixed footprints versus column footprints are plotted using a blue to red gradient. Column footprints are weighted by pressure
weighing functions. Only footprint values > 1E-8 ppm / (µmol m−2 s−1) are displayed.

2.2 OCO-2 retrieved XCO2 and data preprocessing

The OCO-2 algorithm for retrieving XCO2 from radiances
employs an optimal estimation approach (Rodgers, 2000) in-
volving a forward model, an inverse model, and prior in-
formation regarding the vertical CO2 profiles (O’Dell et al.,
2012). We used the bias-corrected XCO2 values from OCO-

2 lite files (version 7R; OCO-2 Science Team/Michael Gun-
son, Annmarie Eldering, 2015). The impacts of different ver-
sions of the OCO-2 datasets on our results are briefly dis-
cussed in Sect. 5. Satellite measurements over Riyadh were
carried out in “land nadir” and “glint” modes. Soundings
with quality flags equal zero (QF= 0) were selected; this
implied that the selected observations had passed the cloud

www.geosci-model-dev.net/11/4843/2018/ Geosci. Model Dev., 11, 4843–4871, 2018
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and aerosol screening (with removal of albedo > 0.4) and
that their retrievals had converged (Mandrake et al., 2013;
Patra et al., 2017). For smoothing noisy observations, we
binned the screened XCO2 data according to the lat/long co-
ordinates of model receptors (that served as the midpoints
of each bin) and calculated the mean and standard devia-
tion of screened measurements within each bin. Next, back-
ground values were defined (Sect. 2.3) and subtracted from
the bin-averaged observed XCO2 to estimate the increase in
observed XCO2 (step 3 in Fig. 1). The impacts of different
bin-widths on the bin-averaged observed signals are shown in
Appendix E1. Total observed errors contain the spatial and
natural variation of observed XCO2 in each bin, the back-
ground uncertainties (Sect. 2.3.3), and the retrieval errors
provided by lite files. Retrieval error variances per sound-
ing are then averaged within each observed bin to obtain the
bin-averaged retrieval error variances.

2.3 Estimates of background XCO2

Definitions of “background” vary among studies with dif-
ferent applications. Here, we define the background values
as atmospheric XCO2 that is not “contaminated” by the ur-
ban emissions around our study site. The determination of
background XCO2 is crucial, as it can significantly affect the
magnitude of inferred observed anthropogenic signals. If the
background is underestimated, then the detected signal may
be overestimated, and vice versa. In this study, we seek to de-
velop the best-estimated background values given five tracks,
where three methods are proposed and investigated as fol-
lows:

– M1. a “trajectory-endpoint” method is investigated by
assigning CO2 values extracted from global models to
trajectory endpoints including simulating biospheric,
oceanic, and prior components (Sect. 2.3.1);

– M2. statistical methods estimate the background values
solely from XCO2 observations based on two previous
studies (Sect. 2.3.2);

– M3. an “overpass-specific” background that requires a
model-defined urban plume and measurements outside
the plume is examined (Sect. 2.3.3).

We compare the aforementioned three methods (Sect. 3.3)
and investigate the background impact on model–data com-
parisons and emission estimates (Sect. 4.2). We choose the
M3-based background for the following analysis as it is
specifically designed for examining a particular city and spe-
cific overpasses downwind of the city.

2.3.1 Trajectory-endpoint method (M1)

Modeled background XCO2 comprises a simulated boundary
condition confined by 4-D CO2 fields from a global model
(CT-NRT; see Sect. 2.4.2) and contributions from biospheric

fluxes, oceanic fluxes, and OCO-2 prior profiles (M1 in Fig. 1
and Eq. 2). Specific for modeling CO2 boundary conditions,
CO2 values for upper levels, above MAXAGL, are estimated
based on CT CO2 at those OCO-2 pressure levels (purple cir-
cles in Fig. 2c). Averaged CO2 values from the global model
extracted at trajectory endpoints are used for boundary condi-
tions at model release levels (orange circles in Fig. 2c). Then,
modeled boundary conditions at vertical levels are weighted
accordingly via OCO-2’s column averaging kernel (red and
blue circles in Fig. 2c). Model trajectories are properly sub-
setted according to the boundary of the footprint domain (i.e.,
20◦× 20◦) used for simulating the XCO2 anomalies.

We note that for the trajectory-endpoint method, poten-
tial uncertainties in transport may strongly influence the dis-
tribution of Lagrangian parcels as backward duration time
increases and may lead to potential spatial mismatch of the
background region. Furthermore, potential biases and the rel-
atively coarse resolution of the adopted global product may
add inaccuracies to CO2 values at trajectory-endpoints.

2.3.2 Statistical method (M2)

Hakkarainen et al. (2016) (referred to as M2H) extracted
local XCO2 anomalies from the daily median of screened,
measured XCO2 within a relatively broad region (0–60◦ N,
15◦W–60◦ E over the Middle East; Fig. S7 in the Supple-
ment). Their detected anomalies vary from 1 to 2 ppm over
0.5◦×0.5◦ grid cells near Riyadh. Silva and Arellano (2017)
(referred to as M2S) used measurements within a 4◦× 4◦

combustion region centered around “urban and dense settle-
ments” inferred from the anthropogenic biomes dataset (“an-
thromes”; Ellis and Ramankutty, 2008). Then, they derived
the background as the mean minus 1 standard deviation of
the available observations within their studied urban extents.

While both statistical methods are highly efficient in esti-
mating background values, they can be limited to certain ap-
plications. For instance, M2H may be not suitable for deter-
mining background values when zooming into specific cities.
Measurements within their broad spatial domain are lumped
together, regardless of their locations (whether over rural
or urban areas) and atmospheric transport. Silva and Arel-
lano (2017) have also pointed out that their defined 4◦× 4◦

combustion region is suitable for studying the “bulk” charac-
teristics and may be too coarse for studying urban emissions.
Furthermore, the Gaussian statistics assumed in M2S may be
less applicable when multiple observed peaks are merged due
to close proximity between clusters of multiple cities. There-
fore, without incorporating much atmospheric transport in-
formation, it may be difficult for either statistical method to
locate the exact XCO2 peak elevated by target city or back-
ground region. These difficulties motivate us to introduce a
new approach in the next subsection.

Geosci. Model Dev., 11, 4843–4871, 2018 www.geosci-model-dev.net/11/4843/2018/



D. Wu et al.: Towards extracting signals of urban CO2 emissions from satellite observations 4851

Figure 4. Monthly ODIAC emissions (yellow to orange) in log-
scale at 1km×1km grid spacing for December 2014. White crosses
and the triangle denote the radiosonde networks used to provide
the wind error statistics and our study site of Riyadh, respectively.
Small emissions (< 1 µmol m−2 s−1) are shaded in gray.

2.3.3 Overpass-specific background (M3)

A few space-based studies have defined the background val-
ues as the averaged observed XCO2 values over a “clean” up-
wind region. For instance, Kort et al. (2012) and Schneising
et al. (2013) defined the “clean” region based on geographic
information (e.g., rural area to the north of the Los Angeles
basin). Although OCO-2 has relatively narrow swaths, trans-
port models can be used to differentiate the enhanced versus
background portions along an overpass. For example, Janar-
danan et al. (2016) calculated background XCO2 as the av-
eraged GOSAT observations among grid cells with modeled
anthropogenic signals < 0.1 ppm. This 0.1 ppm threshold is
determined from the average simulated fossil fuel abundance
over desert areas worldwide using the FLEXible PARTicle
dispersion model (FLEXPART; Stohl et al., 2005), a model
similar to STILT in that both are time-reversed LPDMs.
Nassar et al. (2017) derived the overpass-dependent back-
ground and its uncertainty based on the averaged OCO-2 ob-
servations within four different tested background latitudinal
ranges.

We present an alternative method using a forward-time
run from an urban box to reveal the urban influence on
satellite soundings, which are more straightforward and ef-
ficient than relying solely on backward-time runs. Fictitious
particles are released from a box around the city center
(pink dots in Fig. 1) as a feature implemented with STILT

(Thomas Nehrkorn, personal communication, 2017) to track
air parcels over a city and the transport of the urban plume.
Specifically, the model continuously releases air parcels over
a 30 min window from a 0.4◦×0.4◦ box around the city cen-
ter, with multiple 30 min releases of 1000-particle ensem-
bles over the 10 h before the satellite overpass hour (00:00–
10:00 UTC). An urban plume can then be derived from the
parcels’ distribution during the∼ 3 min OCO-2 passing win-
dow (purple dots in Fig. 5a). Note that air parcels are tracked
forward in time for 12 h, allowing for equal contributions
from parcels that were initially released from different time
intervals (every 30 min) into the defined urban plume. We
are aware of potential model errors and their adverse impacts
on the defined urban plume. Therefore, a wind error compo-
nent (Sect. 2.6) is also added in the forward run to broaden
the polluted range (solid black line in Fig. 5a). Next, 2-D
kernel density estimation (Venables and Ripley, 2002) is ap-
plied to determine the boundary of the city plume based on
the air parcels’ distributions. We normalized the 2-D kernel
density by its maximum value and sketched the boundary of
the city plume based on a threshold kernel density value of
0.05, which is sufficient to include most air parcels. No dra-
matic change in the shape/size of the resultant urban plume
was found when testing other thresholds < 0.05. The urban-
influenced latitude range is defined as the intersection of the
urban plume and the OCO-2 overpass (Fig. 5a). Overall, the
urban-influenced latitudinal band represented by 5 % of the
maximum kernel density covers the area from 23.5 to 26◦ N,
given multiple overpasses for Riyadh (Fig. S2). The back-
ground latitudinal range unaffected by Riyadh’s urban plume
for the estimating background then extends ∼ 100 km from
the northernmost and/or southernmost limits of the derived
urban plume (Fig. 5b). We neglect observations with lati-
tudes> 26 and< 23◦ N, because these retrievals are too scat-
tered (black triangles in Fig. 5b) and may indicate a second
peak during other overpasses. If the near-field wind vectors
point more toward the north, screened measurements over the
southern background latitudinal range are utilized, and vice
versa. Eventually, the background value is calculated as the
mean value of the screened observations over the background
region (dashed green line in Fig. 5b). Two error sources are
incorporated into the background error: the measured (stan-
dard deviation, SD) and the retrieval errors of background
observations.

In addition to random errors accounted for by the inclusion
of the aforementioned wind error component and broadening
of the city plume, potential large biases in near-field wind di-
rection may lead to a mismatch in the modeled and observed
background regions and may bring relatively higher XCO2
values into background XCO2. However, we do not explic-
itly account for the potential impact of near-field wind biases
on the forward-trajectories defined urban plume due to the
following considerations. Firstly, we attempted to propagate
a near-field wind bias into the modeled plume by rotating
the forward trajectories, whereas the robustness of this near-
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Figure 5. Demonstration of the overpass-specific background using the 29 December 2014 overpass for Riyadh as an example. (a) Forward
particle distributions with random transport error included (blue and purple dots) and their derived normalized kernel density (solid purple
contours) during the OCO-2 overpass time (∼ 3 mins) with observed XCO2 (blue to red dots). Urban plumes are defined based on 5 % of
the max 2-D kernel density estimated from parcels’ distributions without (gray dashed line) and with (black solid line) transport errors. (b)
Latitude-series of observed XCO2 with the demonstration of background estimates. Smooth splines (solid blue lines) are drawn to visually
reveal the variation of observed XCO2 over the background latitudinal band. The background uncertainty (green shaded area) includes both
the spatial uncertainty and the retrieval uncertainty of observations over the background latitude range.

field bias can be affected by the rare wind measurements near
Riyadh (further explained in Sect. 2.6.1). Secondly, the back-
ground latitude range defined by M3 with the broadening ef-
fect (blue curves in Fig. 5b) generally matches well with that
observed from OCO-2 for most overpasses, which implies
that the overall wind bias around our study site is not signif-
icant. Lastly, even if the potential wind bias may result in a

less accurate background range and could potentially bring
elevated XCO2 into the background, the background uncer-
tainty implicitly contains information about the spatial vari-
ation in background measurements (green shaded region in
Fig. 5b). Furthermore, the M3-derived background is gener-
ally the mean value of hundreds of background observations
(numbers of observations shown in Fig. 6e), which may not
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be greatly affected by a few potential urban-enhanced mea-
surements.

2.4 Sources of information for CO2 fluxes

2.4.1 Fossil fuel emission (ODIAC) and prior emission
uncertainties

To calculate modeled XCO2 enhancements, we used the lat-
est (2017) version of the Open-Data Inventory for Anthro-
pogenic Carbon dioxide (ODIAC2017 dataset, Oda et al.,
2018; Oda and Maksyutov, 2011, 2015) with monthly fossil
fuel CO2 emissions at a 1×1 km resolution (Fig. 4). ODIAC
starts with annual national emission estimates, separated by
fuel type, from the Carbon Dioxide Information Analysis
Center (CDIAC, Andres et al., 2011), which are then re-
categorized into specific ODIAC emission categories on a
monthly basis, i.e., point source, non-point source, cement
production, international aviation, and marine bunker (Oda et
al., 2018). Because CDIAC only covers the years up to 2013,
ODIAC extrapolates emissions in 2013 for emissions in 2014
and 2015 based on BP (i.e., the British Petroleum Company)
global fuel statistical data (BP, 2017). ODIAC also estimates
point source emissions according to a global power plants
database – the Carbon Monitoring and Action (CARMA)
database (Wheeler and Ummel, 2008), and collects and dis-
tributes non-point source emissions using an advanced night-
time lights dataset from the Defense Meteorological Satellite
Program Operational Line Scanner (DMSP/OLS). The use
of the nightlight dataset allows ODIAC to characterize the
spatial patterns of the anthropogenic sources such as point
sources, line sources, and diffuse sources.

To estimate emission uncertainties, we followed a method
similar to those reported in Oda et al. (2015) and Fischer
et al. (2017). Three emission inventories derived from dif-
ferent methods are intercompared: ODIAC, the Fossil Fuel
Data Assimilation System (FFDASv2; Asefi-Najafabad et
al., 2014; Rayner et al., 2010) and the Emission Database for
Global Atmospheric Research (EDGARv4.2; http://edgar.
jrc.ec.europa.eu, last access: 10 December 2013; Janssens-
Maenhout et al., 2017). To resolve different spatial grid
spacing among the three inventories, we aggregated ODIAC
emissions from 1 km to 0.1◦ grid cells. The fractional un-
certainty for gridded emissions is characterized by the emis-
sion spread (1σ , among three inventories) and mean values
(µ) of estimated emissions for each grid cell within a given
region (10–40◦ N, 25–60◦ E; Fig. S3). In general, fractional
uncertainties in gridded emissions mostly range from 60 % to
130 % (Fig. S3) around Riyadh. Ultimately, these fractional
emission uncertainties and ODIAC emissions are convolved
with X-STILT’s weighted column footprints to provide the
XCO2 uncertainties due to prior emission uncertainties.

2.4.2 Natural fluxes (CarbonTracker)

The trajectory-endpoint method (M1 in Sect. 2.3.1) requires
the oceanic and terrestrial biospheric fluxes from the 3 h
product – CarbonTracker Near-Real Time (CT-NRT.v2016
and CT-NRT.v2017, http://carbontracker.noaa.gov, last ac-
cess: 27 July 2017). CT-NRT, an extension of the standard
CarbonTracker (Peters et al., 2007), is designed for the OCO-
2 program and uses different prior flux models and “real-
time” ERA-Interim reanalysis in its transport model than
regular CT, which allows for more timely model results. To
calculate oceanic and biospheric XCO2 changes, we multi-
plied these natural fluxes by the column weighted footprint
according to Eq. (5). Although wildfire emissions can greatly
modify atmospheric XCO2 (e.g., Heymann et al., 2017), we
expected relatively small XCO2 contributions from wild-
fire; hence, we excluded wildfire-elevated XCO2 estimations,
considering the periods studied (wintertime overpasses) and
the study region (the Middle East). Note that the horizontal
grid spacing of oceanic and biospheric fluxes provided by
CT-NRT is 1◦× 1◦; while the grid spacing of the CT-NRT
4-D CO2 fields previously mentioned in Sect. 2.3.1 is 2◦×3◦

over the Middle East.

2.5 Sensitivity analyses for X-STILT column receptors

The goal of carrying out sensitivity tests is to understand
any systematic/random errors of STILT simulations caused
by receptor configurations. Under the premise of limited
computational resources, proper column receptors are set
up with allowable random errors. The total number of par-
ticles (NUMPAR) released from column receptors are de-
composed into three parameters: the maximum release level
(MAXAGL), the vertical spacing of release levels (dh), and
the particle number per level (dpar).

Instead of regenerating model trajectories (Jeong et al.,
2013; Mallia et al., 2015), we adopted the bootstrap method
to resample model ensembles. The bootstrap approach helps
construct hypothesis tests and infer error statistics (Efron and
Tibshirani, 1986). The initial sample size before the boot-
strap should be large enough to ensure the performance of
the bootstrap method and its related statistics. Thus, a “base
run” of trajectories starting from the surface to 10 km with a
vertical spacing of 25 m and 200 particles per level is gener-
ated and stored. For testing each parameter (MAXAGL, dh,
or dpar), we fixed the other two parameters and randomly se-
lected/resampled model particles from the base run 100 times
allowing for repetitions. A hundred urban enhancements are
calculated from 100 new sets of trajectories for each test. Ba-
sic statistics – i.e., mean values and standard deviations (or
fractional uncertainty, i.e., SD/mean) among these 100 en-
hancements – are used to infer systematic and random uncer-
tainties in each test, respectively (the results are displayed in
Sect. 3.1).
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2.6 X-STILT column transport errors

Uncertainty in atmospheric transport modeling has been
identified to significantly affect emission constraints (Cui et
al., 2017; Lauvaux et al., 2016; Stephens et al., 2007). Here
we quantify uncertainties in modeled XCO2 due to transport
errors caused by uncertainties in both horizontal wind fields
(Sect. 2.6.1) and vertical mixing (Sect. 2.6.2).

2.6.1 Horizontal transport errors

Previous studies (Lin and Gerbig, 2005; Mallia et al., 2017)
have aimed at estimating transport error at one particular
level, whereas for XCO2 we account for transport error in
a column sense (i.e., column transport error). Macatangay
et al. (2008) briefly explained the column transport error as
the weighting of transport error variances with respect to
pressures. Similarly, we treat each model level separately
and calculate one CO2 transport error per level, denoted as
σ 2
ε

(
CO2.sim.ak,n

)
, following Lin and Gerbig (2005). In short,

an additional wind error component (uε) is added to the mean
wind (u) and turbulent wind component (u′) that are embed-
ded in normal STILT runs (Lin et al., 2003), to randomly
perturb air parcels for each level. RMS errors of the u- and
v-component modeled wind, error correlation timescales and
length scales describe the uε in space and time. Details about
the wind error calculations are given in Appendix B.

For each model level (n), we obtained two sets of parcel
distributions: one without and one with the wind error com-
ponent (uε). Then, the difference in the spread of these two
distributions, or mathematically the difference in the vari-
ances of derived CO2 distributions among air parcels (Lin
and Gerbig, 2005), serve as the XCO2 uncertainty (in ppm)
due to transport error. We tested both the normal and log-
normal statistics for describing this XCO2 transport uncer-
tainty. Since transport error using log-normal statistics did
not show very distinct improvement from that using normal
statistics, we ended up adopting normal statistics for the con-
sideration of benefiting inverse modeling. Because the par-
cel distribution with uε (orange dots in Fig. S4) is more dis-
persed than the parcel distribution without uε (blue dots in
Fig. S4), the increase in CO2 variance with uε compared to
that without uε describes the transport error for each level.
However, negative values of transport error can occasionally
occur due to statistical sampling from insufficient model par-
cel trajectories. To resolve this technical issue, we modified
Lin and Gerbig (2005) using a regression-based approach.
A weighted linear regression slope is used to describe the
increase in CO2 variances and then estimate transport er-
ror. More information about this regression-based method
is given in Appendix B. Overall, transport errors at levels
within the PBL are expected to be larger than those at higher
levels that approach zero.

Lastly, vertical profiles of transport errors were weighted
against OCO-2’s weighting functions. Following the defini-

tion of modeled AK-weighted XCO2 in Eq. (1), the weighted
column transport error follows Eq. (6):

σ 2
ε (XCO2.sim.ak)=

nlevel∑
n=1

w2
nσ

2
ε

(
CO2.sim.ak,n

)
+2

∑
1≤n<m≤nlevel

wnwmcovε
(
CO2.sim.ak,n,CO2.sim.ak,m

)
, (6)

where wn denotes the product of AKnorm and PW at level
n, and covε represents the correlation of transport errors be-
tween every two levels n and m (1≤ n < m≤ nlevel). To
calculate a typical vertical error correlation length scale, we
fit an exponential variogram according to transport errors
and their separation distances between levels. Results of the
transport error at each sounding and its latitudinal integration
for each track are shown in Sect. 3.4 and 3.5.

In addition to the random error component mentioned
above, we are aware of potential systematic wind errors in
certain areas, e.g., positive wind speed bias reported over
Los Angeles (Ye et al., 2017), and their impacts on both
the forward- and backward- time simulations. As an attempt
to resolve these obstacles, X-STILT can incorporate a near-
field wind bias correction (to both backward- and forward-
time simulations). By rotating model trajectories, this bias
correction aims at “correcting” air parcel distributions and
the resultant footprints, given the knowledge that the near-
field wind bias can be properly interpolated. Details about
this wind bias correction are described in Appendix C. Un-
fortunately, only two radiosonde stations around Riyadh with
three vertical pressure levels within the PBL (and sometimes
with missing data) may be insufficient to correctly interpo-
late the near-field vertical wind biases. However, cities with
meteorological profiles sampling more levels within the PBL
and a higher temporal frequency in reporting observed verti-
cal winds (such as Los Angeles) may be more suitable sites
for retrieving the near-field wind errors. Other methods in-
clude the rotation and stretching of urban plumes derived
from WRF-Chem (Ye et al., 2017), similar to the rotation
of X-STILT air parcels, to quantify errors in wind direc-
tions and speeds. Deng et al. (2017) sought the correction
of wind biases in a sophisticated manner via data assimila-
tion. However, the near-field correction within X-STILT can
potentially be utilized in the future as a quick bias correction
for the near-field wind in LPDMs, given denser wind obser-
vations and relatively flat terrains. Therefore, we decided to
reduce the potential impact of wind bias on model–data com-
parisons using a latitudinal integration (further information
in Sect. 3.5).

2.6.2 Vertical transport errors

Vertical turbulent mixing dominates the vertical transport of
air parcels and controls the dilution of surface emissions
within the PBL (e.g., Gerbig et al., 2008). Uncertainties in
the vertical mixing or PBL height can affect both the foot-
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print magnitude and the its spatial distribution via differ-
ent horizontal advections at each altitude. Although column-
integrated measurements may be less sensitive to the verti-
cal distribution of air particles than in situ measurements,
vertical transport errors can nonetheless have some impacts
on column simulations, due to wind shear and its interac-
tion with vertical redistribution of air parcels (Lauvaux and
Davis, 2014). Comprehensive quantifications of the vertical
transport errors in a column sense are performed in Lauvaux
and Davis (2014) using an ensemble of surface and plane-
tary boundary layer (SBL-PBL) parameterizations involving
a regional inverse modeling framework.

Here, we made use of the stochastic nature of STILT
and propagated typical PBL height errors in the model.
Changes in STILT-modeled mixed layer height modify the
vertical profiles of turbulent statistics that directly control the
stochastic motions of the Lagrangian air parcels (Lin et al.,
2003). Thus, we obtained different air parcel trajectories with
rescaled PBL heights. The resultant vertical transport error
in XCO2 space is calculated as the root-mean-squared errors
(RMSEs) between two sets of XCO2 enhancements among
different receptors for each overpass. Due to this calcula-
tion, vertical transport errors are only provided at the over-
pass level (results in Sect. 3.5). Gerbig et al. (2008) reported
typical relative PBL errors in the range of ±20 %. Thus, we
rescaled the PBL heights higher and lower by 20 % and eval-
uated the scaling’s impact on XCO2 enhancements. Due to
our focus on the urban emissions and potential small XCO2
enhancement contributions beyond 1 day backward in time,
we only rescaled the PBL within the first 24 h of transport
before arrival of the air parcels at the column receptors.

3 Results

3.1 X-STILT sensitivity tests with column receptors

Figure 6 shows test results from a sounding on 29 Decem-
ber 2014 around Riyadh. In general, urban enhancements
increase as MAXAGL increases from 1 to 2 km and then
stabilize (Fig. 6a). When MAXAGL is small (< 2 km), the
model fails to fully capture the CO2 enhancements within
the mixing height and causes underestimations of the ele-
vated XCO2. Random errors reflect the stochastic nature of
the model particles leading to small fluctuations in parcel dis-
tributions and resultant signals. In this experiment, dpar and
dh are fixed to 100 particles and 100 m. For testing parti-
cle number per level (dpar), MAXAGL is set to 6 km (well
above the top of the PBL; see Appendix D for the choice of
6 km). No obvious bias is associated with mean XCO2 en-
hancements. The random error reduces as particle numbers
increases (error bars in Fig. 6b). We ended up placing 100
particles for each level, as random errors do not change dra-
matically from 100 to 200 particles.

In addition, we conducted two experiments using constant
and uneven vertical spacings with a fixed MAXAGL of 6 km
and a dpar of 100. Vertical spacing in the constant dh exper-
iment ranges from 50 m to 1 km. Mean enhancements gen-
erally decrease as the vertical spacing increases (red dots in
Fig. 6c), likely because fewer release levels are insufficient to
represent air parcels in a column and their interactions with
surface emissions, especially under strong wind shear. We
further performed two cases with uneven vertical spacing be-
low and above a “cutoff level”. Both cases tested three differ-
ent lower spacings (of 50, 100, or 150 m) with a fixed upper
spacing of 500 m. The two cases differ only in their cutoff
levels (2 or 3 km). The comparison of the uneven dh with the
constant dh experiment shows that their XCO2 enhancement
results are fairly similar; this suggests that the lower spac-
ing below the cutoff level matters most with respect to the
model results, because most anthropogenic XCO2 enhance-
ments are confined within the PBL. Furthermore, results for
the uneven dh case with the cutoff level of 3 km (blue trian-
gles in Fig. 6c) are more closed to the “truth” implied by the
constant dh case (red dots in Fig. 6c). To be safe, column re-
ceptors are placed from 0 to 3 km with a spacing of 100 m
and from 3 to 6 km with a spacing of 500 m. See Appendix D
for the derivation of the cutoff level.

To summarize, the fractional uncertainties in modeled
XCO2 enhancements reduce rapidly as total particle number
increases (blue triangles in Fig. 6d). Our choice of column
receptors and particle numbers has no noticeable bias and a
fractional uncertainty of ∼ 4 % per simulation (dashed green
line in Fig. 6d). Overall changes in X-STILT column recep-
tors have a fairly small impact on the modeled anthropogenic
signals, which is consistent with the finding (for biospheric
signals) in Reuter et al. (2014).

3.2 X-STILT column footprints and upwind emission
contributions

Upstream source regions and their contributions to the down-
wind air column can be identified as the “footprint” us-
ing backward-time simulations. Here we illustrate the dif-
ferences in parcel distributions and footprint patterns de-
rived from 500 m, 3 km, and multiple levels, for one sound-
ing at 24.4961◦ N on 29 December 2014 (when southwestern
winds dominated). Air parcels released at 500 m are asso-
ciated with large footprints in the adjacent area of Riyadh
(Fig. 3b). While parcels released from a higher level of
3 km travel backwards much faster to upwind regions, most
parcels hardly get entrained back into the PBL (Fig. 3c) and
make minimal contact with the surface (implied from the
zero footprint values in Fig. 3d). When air parcels are re-
leased from multiple levels, the column footprints (Fig. 3f)
cover a broader spatial domain with relatively smaller val-
ues than footprints derived from 500 m (Fig. 3b). Thus Fig. 3
highlights the difference in upwind influences from a PBL-
based, tower-like measurement versus a column-integrated
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Figure 6. Results of sensitivity tests for one sounding (a–d) and background comparisons for five tracks (e) over Riyadh. The random error
for each simulation is indicated using dashed red error bars (a–d); potential biases are shown as the trend of the mean XCO2 enhancements
(red dots; a–d) derived from 100 bootstraps. (c) Vertical spacing tests include several tests with constant dh (red dots and error bars) and two
tests with uneven dh above/below the cutoff level. The two uneven dh tests both use three different lower dh (50, 100, and 150 m) and a fixed
upper dh of 500 m, but with two different cutoff levels, i.e., 2 km (yellow-green triangles and error bars) and 3 km (blue triangles and error
bars). (d) A summary plot of the mean and SD of the XCO2 enhancements (red dots and dashed red error bars) and fractional uncertainties
(%; blue triangles and dashed line) as functions of total particle number (NUMPAR). The green dashed vertical line denotes the configuration
used in this study. (e) Background comparisons using different methods (M1, M2H, M2S, and M3) for five tracks. The number of screened
observations used for M3 background is noted in dark green. M3 background errors (including spatial variation and retrieval errors over the
background region) are indicated as dashed green error bars.

measurement. As expected, surface influence arriving at an
air column can be 1 or a few orders of magnitude smaller
than that arriving at a given location. Consequently, CO2
changes within the PBL are expected to be larger than col-
umn changes.

3.3 Comparisons between methods used to calculate
background XCO2

As Silva and Arellano (2017) have pointed out, their 4◦× 4◦

urban extent may be too coarse for studying urban emissions.
Thus, we adopted their statistical method (µ− σ ) and used
a smaller 2◦× 2◦ domain instead for computing the back-
ground of M2S. M2S and M3 calculate background values
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from local observations. Therefore, M2S may agree better
with M3 in their derived background regarding both the tem-
poral variations and their magnitudes (black diamonds and
green squares in Fig. 6e). The M1 modeled background dif-
fers significantly from the other three and exhibits positive
biases spanning roughly from 0.5 to 1.5 ppm (orange dots in
Fig. 6e). Reasons for this large bias may be the accumulated
transport errors as the backward duration increases in combi-
nation with potential errors in the global concentration fields,
due to its coarse resolution.

We now focus on the comparison between M3 and M2H.
On average, the M2H-derived background is lower than
our localized “overpass-specific” background by 0.55 ppm
(Fig. 6e), which can primarily be attributed to different de-
fined background regions. M3 defined the background re-
gion from the same track as the one over Riyadh; thus,
the M3-defined background air contains variations due to
long-term atmospheric transport, natural sources/sinks, and
FFCO2 emissions except for local urban emissions. There-
fore, the subtraction of the M3-defined background from the
enhanced air correctly represent the XCO2 portion enhanced
by the local emissions. On the contrary, M2H use a fairly
broad background region (0–60◦ N, 15◦W–60◦ E in Fig. S7)
to estimate gridded anomalies over all locations in Europe,
the Middle East, and North Africa. Although the broad spa-
tial region may yield more data, it may also misrepresent the
correct upwind region because the wind regime can be quite
different between different overpass dates or seasons.

The M3-defined background can be affected by potential
large wind biases over cities other than Riyadh, where at-
mospheric transport may be more difficult to simulate. How-
ever, the impact is implicitly considered in the background
uncertainty (Sect. 2.3.3). In contrast, all regional OCO-2
measurements are lumped into the M2H background cal-
culation. For example, some measurements on the eastern-
most overpass in Fig. S7 are affected by Riyadh’s emissions,
whereas atmospheric columns at soundings along the two
westernmost overpasses in Fig. S7 may not necessarily be
the background air that eventually arrives at region around
Riyadh. Thus, the regional median of XCO2 may not phys-
ically indicate the accurate background that is supposed to
isolate local-scale fluxes. Therefore, the localized overpass-
specific background (M3) is designed specifically for extract-
ing local-scale XCO2 anomalies. Given relatively small ur-
ban enhancements around our study site, this 0.55 ppm dif-
ference between M3 and M2H leads to large differences in
estimated observed urban signals and emission evaluations
(Sect. 4.2).

3.4 Latitude-dependent urban enhancements and
associated uncertainties

We compare the modeled and observed anthropogenic en-
hancements along the satellite track. Models using GDAS
and WRF report fairly similar XCO2 peaks as bin-averaged

observations for the 29 December 2014 overpass (Fig. 8). Al-
though XCO2 contributions using GDAS and WRF can differ
in their spatial distributions for some receptors (Fig. 7b ver-
sus Fig. 7f), the overall XCO2 contributions integrated from
all receptors along the overpass (Fig. 7d versus Fig. 7h) share
fairly similar spatial distributions and magnitudes and indi-
cate large contributions due to urban emissions from Riyadh
and small contributions from regions to the south of Riyadh.
Regarding the shape of latitude-dependent XCO2 enhance-
ments, large enhancements inferred from bin-averaged ob-
servations (solid black line in Fig. 8) cover a wider range
compared to narrower modeled enhancements (dashed blue
or purple lines in Fig. 8). Furthermore, modeled versus ob-
served enhancements exhibit a 0.1◦ latitudinal shift for the
event on 29 December 2014 (Fig. 8) and vary from 0.1 to 0.4◦

for other events (Fig. S8). Column simulations with strong
near-field influences can be sensitive to potential errors in
the near-field wind speeds and directions along with errors in
the gridded emissions. The limited wind observations within
the near-field land surface around Riyadh render difficult es-
timation of representative wind statistics that can be directly
linked with model–data mismatches in XCO2. All of these
challenges led us to perform a latitude integration on the ur-
ban XCO2 enhancements over a certain latitudinal band to
reduce near-field sensitivity on model–data comparisons and
emission evaluations (further discussed in Sect. 3.5).

Based on available radiosonde sites over the Middle East
with relatively flat terrain (white crosses in Fig. 4), regional
RMS errors associated with the GDAS u- and v-component
winds are predominantly < 2 m s−1 (Fig. S1) and generally
smaller than those from previous studies over regions with
relatively more complex terrains (Henderson et al., 2015;
Lin et al., 2017). Even though positive/negative biases may
exist per overpass, the averaged wind bias over a dozen
tracks is fairly small, with absolute values close to zero. In
other words, no obvious systematic error over times is found
in the GDAS wind field around Riyadh. Similarly, Ye et
al. (2017) also reported no bias in the transport for Riyadh
using WRF-Chem. Due to the spatial inhomogeneity in ur-
ban emissions, wider parcel distributions after randomiza-
tion may have a higher possibility of making contact with
more emission sources than those before randomization. The
29 December 2014 track is a prime example of this. Small
transport errors can often be found over less polluted lati-
tudinal ranges (< 24.3 and > 24.9◦ N in Fig. 8). Transport
errors then start to increase as a few randomized parcels in-
tersect with some emission sources, even though simulated
enhancements are still small (24–24.5 and 24.7–24.8◦ N in
Fig. 8). Although air parcels at higher altitudes are also un-
der perturbations, the change in the parcel distribution barely
affects the column transport errors due to the minimal con-
tact of those parcels with surface emissions. As a result, the
transport error per sounding for this overpass ranges from
0.07 to 2.87 ppm (Fig. 8). For the other tracks with more in-
tense urban enhancements, the maximum transport error per
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Figure 7. Spatial maps of 1km× 1km modeled XCO2 contributions (ppm; log-scale) from three selected soundings along with screened
observations (QF= 0) at 10:00 UTC on 29 December 2014 over Riyadh, with meteorological fields driven by WRF (a–d) and GDAS (e–
h). Panel (d) and (h) denote the latitude-integrated XCO2.ff contributions (with weights of receptor spacings, e.g., 0.02◦) using WRF and
GDAS, derived from spatial XCO2 enhancements for over 60 column receptors along each overpass. The sum of the latitude-weighted spatial
XCO2 enhancements over all grid cells (in panel d or h) equals to the latitude-integrated XCO2.ff signal (ppm-degree of latitude) reported in
Sect. 3.5. Only large enhancements > 10−6 ppm are plotted.

sounding can reach> 5 ppm, e.g., 2016011510 in Fig. S8. In
addition, XCO2 errors due to the vertical mixing error are not
provided at the sounding level given our method described in
Sect. 2.6.2; however, these values are reported on a per over-
pass basis in Sect. 3.5.

Spatial fractional uncertainties in gridded emissions over
the Middle East from this work (Fig. S3) are comparable to
values reported from prior studies. For instance, several com-
monly used emission inventories differ by> 100 % over half
of the examined 0.1◦ grid cells (Gately and Hutyra, 2017) in
the northeastern US. Our resultant XCO2 uncertainties due to
prior emission errors range from 0.1 to 1.48 ppm per sound-
ing for the overpass on 29 December 2014 (Fig. 8) and from
0.04 to 2.82 ppm for all five overpasses (orange shaded re-
gion in Fig. S8).

Retrieval errors are reported for each sounding from the
OCO-2 lite files and exhibit a Gaussian-like distribution with

the most frequent values of ∼ 0.5 ppm. Background uncer-
tainty calculated from the variation of background measure-
ments and their retrieval errors varies from 0.77 to 1.00 ppm
among tracks (error bars in Fig. 6e). The overall observed
uncertainty per sounding varies from 0.8 to 1.27 ppm (gray
shading in Fig. 8). Worden et al. (2017) performed a com-
prehensive error analysis of version 7 OCO-2 XCO2 data
within small regions (100km× 10.5km). Two observed er-
ror sources they focused on included the natural variation
in XCO2 and the calculated measurement uncertainty due
to noise and interferences in the OCO-2 product. Their re-
ported precision of a typical land measurement (WL< 10)
is ∼ 0.75 ppm. Our larger observed uncertainties per sound-
ing may be attributed to the lack of WL filtering applied to
observations and the specific region examined here.

On a per sounding basis, XCO2 resulting from horizontal
wind errors is comparable to or higher than XCO2 emission
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Figure 8. Latitude-series of sounding-level signal comparisons and error estimates for Riyadh. Screened observations with QF= 0 and bin-
averaged observed XCO2 are shown using gray and black triangles. GDAS- and WRF- derived XCO2 are displayed using purple and light
blue dots, with smooth splines applied to visually reveal the main variations (purple and blue dashed lines). XCO2 errors due to errors in
emissions, transport and observation are displayed using yellow, purple, and light gray shading. Overpass-specific (M3) background XCO2
is represented using a dark green dot-dashed line with its background uncertainty displayed using light green shading. Background values
using M1, M2H, and M2S are shown as orange, gray, and black dot-dashed lines, respectively. The latitudinal range for integrating XCO2
enhancements and associated various uncertainties is ∼ 24–25◦ N in this case. The top x axis is the distance (in km) along the OCO-2 swath
from a “minimum distance sounding” that has the smallest distance from the city center.

errors. Both errors are higher than observed uncertainties.
Yet, uncertainty reductions are expected as sounding-level
uncertainties are aggregated along the track (Sect. 3.5).

3.5 Latitudinally integrated urban signals and
uncertainties

Because the shapes and the locations of XCO2 peaks be-
tween models and observations did not line up perfectly
(Sect. 3.4; Fig. 8), direct model–data comparison may lead
to significant deviations for each sounding. Thus, we com-
pare urban signals and their associated errors integrated over
a latitude band for each overpass.

Firstly, we integrated bin-averaged observed or modeled
anthropogenic enhancements (i.e., differences between total
XCO2 and overpass-specific background) along their lati-
tudes. While multiple degrees of freedom are sacrificed by
the integration, this calculation gains the larger benefit of
potentially reducing the impact of the near-field wind bias
on emission evaluations, as long as the latitude band for ag-
gregation is representative. Secondly, a representative latitu-
dinal range for integration (e.g., ∼ 24–25.2◦ N in Fig. 8) is
required. Note that negative observed urban enhancements
may occur when the bin-averaged total observed XCO2 is
slightly lower than the background value. The occurrence of
these negative values is partially caused by the natural varia-
tions in measured XCO2 and have been included as the back-

ground uncertainty. To minimize the inclusion of those nega-
tive values, we start with the widened latitudinal range (e.g.,
24.2–24.9◦ N in Fig. 5b) and further account for latitudinal
mismatch in model–data XCO2 peaks. To further include ur-
ban enhancements over the “tails” outside the distinct XCO2
peaks, we then extend the previous latitudinal range by 20 %
on both sides. We tested percentages other than 20 % and
found no dramatic changes in estimated signals due to small
enhancements outside the plume (Appendix E).

Overall, the latitude-integrated modeled XCO2 signals
range from 0.64 to 3.04 ppm-degree with a mean signal of
1.57 ppm-degree, whereas the observed signals detected by
OCO-2 vary from 1.09 to 2.92 ppm-degree with a mean value
of 1.65 ppm-degree (Table 1, Fig. 9a). The magnitudes of ob-
served signals can be slightly affected by how observations
are selected and binned up (Appendix E1).

To arrive at integrated errors per overpass, error variance–
covariance matrices can be built. For example, diago-
nal elements comprise transport error variance per sound-
ing/receptor with off-diagonal elements filled with error co-
variance between each two soundings/receptors (Fig. S9a). A
correlation length scale of transport errors (∼ 25 km) among
receptor locations is estimated by fitting exponential vari-
ograms (Fig. S9b), given the transport errors (further driven
by plume structures) and our choice of grid spacing between
receptors. Furthermore, similar calculations are performed to
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Table 1. Results of signal and error calculations for the five overpasses examined, including latitude-integrated observed versus modeled
XCO2 enhancements and errors (ppm-degree of latitude), regional wind RMSE (m s−1), and the standard deviation of the mean (SDOM) for
various errors and posterior scaling factors (unitless) of the mean modeled XCO2 signal. The GDAS and WRF regional wind speed RMSEs
from 0 to 3 km or from 3 to 6 km are shown within or outside the parentheses, respectively.

Overpass Lat-integrated observed Lat-int. GDAS u, WRF u, Lat-integrated modeled Lat-integrated observed
Dates (YYYYMMDD) XCO2 Signal (ppm-deg.) sim. XCO2 v- wind v- wind XCO2 errors (ppm-deg.) XCO2 errors (ppm-deg.)

M1 M2H M2S M3 signal RMSE RMSE Emiss u,v− PBL Tot Bg. Bin Retrieval Tot
(ppm-deg.) (m s−1) (m s−1)

20141227 0.25 2.41 2.74 1.62 1.76 1.94 (2.06) 2.15 (1.85) 0.73 1.22 0.23 1.44 0.24 0.14 0.32 0.42
20141229 0.47 1.75 1.74 1.09 0.64 1.81 (2.23) 1.75 (2.03) 0.34 0.41 0.06 0.54 0.18 0.11 0.28 0.35
20151216 1.01 2.92 3.20 2.92 3.04 1.74 (2.03) 1.04 1.83 0.36 2.14 0.26 0.21 0.39 0.51
20160115 2.04 3.63 1.54 1.47 1.06 1.81 (1.77) 0.56 0.60 0.17 0.84 0.15 0.10 0.27 0.33
20160216 0.65 0.77 2.11 1.17 1.37 1.78 (1.90) 0.70 1.05 0.16 1.27 0.24 0.15 0.33 0.43

Mean signal 0.88 2.30 2.27 1.65 1.57 0.32 0.52 0.61 0.19
or SDOM (20 % (hor. and ver.; (39 % (11 %
(ppm-deg.) of sim) 33 % of sim) of sim) of obs)

λ̂ (unitless) 0.75 (M1 obs versus sim); 1.78 (M2H obs versus sim); 1.52 (M2S obs versus sim); 1.14 (M3 obs versus sim)
Emiss. – modeled XCO2 errors due to emission errors; u, v – modeled XCO2 errors due to horizontal wind errors; PBL – modeled XCO2 errors due to vertical mixing errors; Bg. – observed XCO2 errors due to background errors;
Bin – observed XCO2 errors due to binning errors (spatial variations); and Retrieval – observed XCO2 errors due to retrieval errors.

integrate sounding-level errors to overpass-level errors due
to various error sources. Then, assuming errors are indepen-
dent given the multiple days to months between overpasses,
overpass-level XCO2 errors (Table 1) are further aggregated
to arrive at an overall error for all five overpasses.

XCO2 errors solely resulting from vertical mixing errors
are generally < 15 % of the modeled signal for each over-
pass, whereas XCO2 errors due to horizontal wind errors
dominate the overall XCO2 transport error (Table 1). The
random uncertainties due to the choices of column recep-
tors/parcels are negligible: < 1 % of the latitude-integrated
modeled XCO2 signal per track. The 68 % (1σ ) confidence
limits of the XCO2 uncertainties due to errors in prior emis-
sion and transport (i.e., horizontal wind fields and vertical
mixing) are 0.32 and 0.52 ppm-degree, which is ∼ 20 % and
33 % of the mean modeled urban signal over five tracks, re-
spectively (Table 1). The integrated XCO2 transport error per
track reflects the aggregate effect of several factors which in-
teract, given how we propagate wind errors into XCO2 space
(Sect. 2.6):

1. The magnitude of the modeled urban XCO2 enhance-
ments. In general, air parcels that are very far away
from potential upstream emitters may barely “hit” the
emission sources or gain their enhancements, even af-
ter wind perturbation. If the estimated signal is large
(e.g., 3.04 ppm-deg. on 20151216 in Table 1), its resul-
tant integrated transport error can also be fairly large
(1.83 ppm-deg. in Table 1).

2. The RMSE of the u- and v-component winds. In gen-
eral, larger wind errors will lead to larger changes in
model trajectories and a higher possibility that per-
turbed trajectories will intersect an emission source.

3. How air parcels interact with surface emissions, i.e.,
the geometry/angle between the model footprint (or the

wind direction) and satellite swaths. Changes in this
angle may fluctuate the width of the enhanced lati-
tudinal band along with the final integration latitudi-
nal ranges (i.e., 1.10–2.25◦). If the back-trajectory or
backward wind direction is more parallel to the OCO-2
swath (events on 20141227, 20151216, and 20160216
in Fig. S10), the integration range and error covariance
among soundings are usually larger, which yields larger
integrated XCO2 errors (e.g., 1.22, 1.83, and 1.05 ppm-
degree in Table 1). The averaged latitudinal range for in-
tegration is about 1.66◦ (∼ 189 km) over the five tracks.

Retrieval errors between OCO-2 soundings are found to be
correlated, in both space and time, with correlation coef-
ficients (for land nadir) of 0.45 and 0.31 as a function of
the satellite footprint and time, respectively (Worden et al.,
2017). Uncertainties of bin-averaged observed XCO2 share a
similar source to the background uncertainties, both of which
rely on spatial variation in noisy observations (in each bin
or over background region). Different types of observed un-
certainties are assumed to be uncorrelated. Because obser-
vations along with their uncertainties have been binned up,
we only account for the temporal correlation of retrieval er-
rors between soundings. As a result, the total observed un-
certainty per track varies from 0.33 to 0.50 ppm-degree and
the observed error is 0.19 ppm-degree (1σ confidence limit),
i.e., ∼ 11 % of the mean observed signals (1.65 ppm-deg.)
over the five overpasses.

4 Discussions

4.1 Model capabilities and performances

In this study, we demonstrate the application of LPDM simu-
lations within X-STILT regarding locating the urban plume,
determining background XCO2, identifying upwind sources,
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Figure 9. Correlation between observed and simulated anthropogenic XCO2 signals for five overpasses. Colors differentiate different satellite
overpass dates. Model–data comparisons using GDAS-derived XCO2 signals and observed signals based on different background methods.
Error bars along the x axis and y axis represent the overall observed uncertainty (represented as 1σ , including the XCO2 spatial variability,
background uncertainty, and retrieval errors) associated with observed signals and the overall modeled uncertainty (1σ , including emission
uncertainty and transport uncertainty) around modeled signals. The dashed line represents the 1 : 1 line. Monte Carlo experiments are per-
formed to fit linear regression lines based on sampled model–data signals and the associated errors. Regression lines with positive slopes are
shaded in light gray. Median values of the slopes and y intercepts from the multiple regression lines (with positive slopes) are used to draw a
linear regression (black solid line).

and estimating enhanced XCO2 caused by sources/sinks
(Fig. 1). Specifically, backward-time simulations over an at-
mospheric column connect upwind emission sources with
downwind atmospheric columns and generate spatial maps
of this connection with additional information from satellite
retrieval profiles. Although forward-time simulations from
an urban box are an alternative and optional portion of X-
STILT, these simulations effectively reveal information re-
garding the location and size of the time-varying urban plume
(Fig. 5a) and locate the downwind polluted range on a satel-
lite overpass.

Model sensitivity tests suggest two implications on simu-
lating urban XCO2 enhancements using LPDMs: (1) recep-
tor levels need to reach levels exceeding a typical mean PBL
height to fully capture influences from surface emissions.
(2) The model may capture a larger urban signal as the num-
ber of levels increases. However, to minimize computational
costs, researchers may adopt sparser levels above and denser
levels within a representative mean PBL height (the cutoff
level) over upwind regions. Users can adopt their own setup
of receptors in X-STILT according to combined results from
sensitivity tests (Fig. 6d).

Additionally, X-STILT offers alternative solutions for
dealing with errors in the meteorological fields, includ-
ing regional random wind error perturbations and potential
near-site wind bias corrections on model trajectories (Ap-
pendix C). For several satellite overpasses over Riyadh, me-
teorological models such as WRF and GDAS are capable
of capturing XCO2 enhancements due to urban emissions,
even though small mismatches in the locations of model–data
XCO2 peaks remain. Model-to-model discrepancies between
GDAS and WRF in latitudinally integrated urban signals are
not substantial, likely due to the models benefiting from the
relatively flat terrain around Riyadh. No noticeable differ-

ence in overall RMSE in the u- and v- component winds de-
rived from radiosonde comparisons with WRF versus GDAS
is reported in this case. Thus, global meteorological fields
such as 0.5◦ GDAS can be used for studying “flat cities” like
Riyadh.

When dealing with enhancements in the column concen-
tration with a low signal-to-noise ratio, careful attention
needs to be paid to the background XCO2 value. While
one could possibly “eyeball” the city plume from the ob-
served XCO2 (especially when a signal XCO2 peak is vi-
sually distinctive), forward-time simulations with additional
information on transport errors implemented in X-STILT
may provide a more objective and efficient method (in that
valuable human time is unnecessary) for determining the
urban-enhanced section along track and for extrapolating
the overpass-specific background. These advantages of an
overpass-specific background will become more important
as more satellite tracks are incorporated within the analyses
in addition to future flux inversions.

4.2 Implications regarding error analysis and future
inversion using LPDMs

Column transport uncertainties have hitherto not been rig-
orously examined for studies employing LPDMs such as
STILT and column measurements like OCO-2. In this work,
we conducted comprehensive analyses of observed errors in-
corporating natural and spatial XCO2 variabilities and back-
ground and retrieval uncertainties; the simulated errors in-
cluded errors resulting from model configurations, horizontal
and vertical atmospheric transport, and prior anthropogenic
emissions. On average, column transport errors contribute to
33 % (1σ confidence limit) of the mean modeled urban signal
over five overpasses, whereas the horizontal transport errors
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on a per track basis are still substantial. We also accounted
for horizontal correlations in transport errors between X-
STILT release levels and between multiple soundings. For
instance, the inclusion of horizontal covariance in transport
errors between soundings generally leads to an increase of
∼ 67 % in the latitude integrated transport errors for each
overpass, which emphasizes the importance of considering
error covariance in model evaluations (e.g., Lin and Gerbig,
2005).

Estimated background uncertainty is represented by the
spatial variation and retrieval errors of background obser-
vations. To further demonstrate X-STILT’s potential role in
inverse modeling and the potential background “bias” via
different background methods on inversed results, we con-
ducted a simple scaling factor inversion (Rodgers, 2000),
based on five pairs of model–data latitudinally integrated ur-
ban signals. Even though our sampling may seem to be small
and the gridded urban source emissions are adjusted as a
lumped total (i.e., no adjustments for emissions at grid cell
level), these integrated signals and errors are chosen to re-
duce the impact of potential near-field wind bias on model
evaluations. Also, we are partially limited by the overpasses
over Riyadh (black bars in Fig. S1). The prior emissions from
ODIAC are assumed to be “unbiased”, which yields a prior
scaling factor of unity (λa = 1). The prior error (Sa) repre-
sents the overall uncertainties of the sum and spatial spread
of ODIAC emissions around Riyadh (further calculated from
the intercomparisons against FFDAS and EDGAR). The ob-
servational error covariance matrix (Sλ) contains error vari-
ances related to observation, horizontal and vertical transport
errors (Table 1). Errors between every two overpasses sepa-
rated in time by at least multiple weeks are assumed to be
independent.

Our conservative results based on GDAS suggest that the
posterior scaling factor (λ̂; of the mean XCO2 signal) and
its posterior uncertainty (of the scaling factor) is 1.14± 0.31
using the M3 background. However, potential errors in the
background XCO2 defined by other methods may affect the
resultant observed signals and posterior scaling factors. Since
the M2H- and M1-derived background values are gener-
ally lower and higher than the M3 background, respectively,
M2H- and M1-derived background values result in a higher
and lower mean observed signal (2.30 and 0.88 ppm-degree
in Table 1) than that based on M3 (1.65 ppm-degree). Fur-
thermore, λ̂ based on M2H is about 2.30, 40 % larger than λ̂
based on M3. The λ̂ derived from the M3 background (1.14)
is more comparable to the WRF-Chem-based emission esti-
mate in Ye et al. (2017). These results again emphasize the
significant role that background definitions played in the es-
timated observed signals and emission estimates. In particu-
lar, simple statistical approaches without considering the at-
mospheric transport may lead to erroneous conclusions (as
previously discussed in Sect. 3.3).

4.3 X-STILT’s potential for broader applications

In theory, X-STILT can be applied to other column measure-
ments and other species. The underlying Lagrangian atmo-
spheric model (STILT) has been applied to simulate other at-
mospheric species, such as CO, CH4, and N2O (Mallia et al.,
2015; Kort et al., 2008). One of the key modifications to X-
STILT from STILT is the column weighting of STILT foot-
print values (Sect. 2.1.2). Specifically, X-STILT interpolates
the OCO-2 AK and PW onto each modeled level and then
applies weighting of the trajectory-level footprints before
generating a horizontal footprint map. In a similar fashion,
the X-STILT code can be easily modified to apply sensor-
specific vertical profiles of AK and PW from other satellites
or ground-based column measurements.

However, the background may need to be derived differ-
ently according to different applications, e.g., local urban
emissions versus regional fluxes. The overpass specific back-
ground (M3) aims at isolating the citywide emissions; there-
fore, M3 makes use of the measurements outside the city,
although these measurements are still quite close to the city
– within a few degrees of latitude. If the study focus is on
emissions over a much broader region (e.g., statewide emis-
sions), the background region should be defined farther from
the target region, e.g., the study may take advantage of mea-
surements from available upstream overpasses.

5 Limitations and future plans

Robust constraints on urban emission can be hampered due
to their alternating-sign nature and signals potentially com-
parable to anthropogenic emissions (Shiga et al., 2014; Ye
et al., 2017), which are also inferred from tracks we mod-
eled over Cairo with non-negligible biomass (results not
shown in this paper). When examining summertime tracks
or tracks over certain other cities, potential local gradients
in biospheric fluxes should be considered as these gradients
can affect our overpass-specific background. Although bio-
spheric fluxes or their resultant changes in XCO2 concen-
trations are beyond the scope of this work, many studies
have been working to address this challenge. Ye et al. (2017)
incorporated biospheric fluxes from the North American
Carbon Program (NACP) Multi-scale Synthesis and Terres-
trial Model Intercomparison Project (MsTMIP; Fisher et al.,
2016; Huntzinger et al., 2013) and performed downscaling
on biospheric fluxes using the MODIS-derived green vegeta-
tion fraction, to provide high-resolution biospheric flux fields
and estimated background XCO2 using modeling. In addi-
tion, radiocarbon and terrestrial solar-induced chlorophyll
fluorescence (SIF) data are helpful to isolate fossil fuel CO2
and biospheric CO2 (Fischer et al., 2017; Levin et al., 2003;
Sun et al., 2017). In particular, recent studies have identified
SIF as a better indicator/proxy of gross or net primary pro-
duction than some other greenness indices over several dif-
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ferent vegetation types (Shiga et al., 2018; Sun et al., 2017;
Zuromski et al., 2018), which then improves biospheric flux
estimation in ecosystem models and improves the interpreta-
tion of OCO-2/OCO-3 retrievals (Luus et al., 2017).

X-STILT extends previous LPDM methods to account
for transport errors, background uncertainties, and particle
statistics in a column sense within LPDMs. Admittedly, the
transport error analysis and near-field correction may work
better with the assistance of denser meteorological observ-
ing networks to characterize the error structures of transport
errors. Increasing the density of surface networks may mod-
ify the wind error statistics including the wind error variances
and horizontal correlated length-scale, and further impact the
model transport uncertainties and inversed fluxes. However,
this shortcoming is not inherent to X-STILT and also applies
to other means of quantifying the transport errors based on
real data. The trade-off of choosing a city in the Middle East,
like Riyadh, to minimize cloud and vegetation influences is
the relatively sparse observations from the surface meteoro-
logical network or aircraft. The recent OCO-2 b8 lite files
include retrieved surface winds for each sounding. Unfortu-
nately, most of those surface wind retrievals are not available
over Riyadh, although the retrieved surface winds for other
urban areas, if available, may be used for assimilation and to
assist X-STILT error analysis.

Emission evaluations for different regions can be differ-
ent and affected by different observational constraints. Even
changes in different versions of the retrieval (lite b7 versus
b8) may slightly affect the model–data comparisons and sim-
ple inversion results in this work. Modeled XCO2 enhance-
ments using the newer b8 differ slightly from those using b7
(purple dots in Fig. S8 versus in Fig. S13) due to changes
in the locations of the receptors, column averaging kernels,
and data filtering (QF) for measurements around Riyadh.
Specifically, observations from b8 may yield more over-
passes with sufficient screened soundings than those from
b7 (black and red bars in Fig. S1). However, much larger
differences in observed enhancements are found; these dif-
ferences are caused by the changes in total observed XCO2
and estimated background values. Specifically, background
uncertainty decreases by up to 0.1 ppm which is primarily
attributed to smaller spread (smaller SD) of the observed
XCO2. Positive shifts in the total observed XCO2 for b8
from b7 are found over most overpasses (Fig. S11). The M3-
derived observed enhancements may be less affected by pos-
itive shifts in total observations, given cancellation of this
effect from a similar positive shift in the overpass-specific
background near the target urban region (dark green dashed
lines in Fig. 6e versus Fig. S12).

OCO-2 observations have been utilized in several recent
studies including this work with a particular focus on rela-
tively small areas, e.g., individual power plants (Nassar et
al., 2017) and megacities (Ye et al., 2017). Even though the
XCO2 urban signal over Riyadh may generally be smaller
than those over other large cities, both the model and obser-

vations successfully detect the urban signal. Still, no sum-
mertime XCO2 signal has been derived, due to the lack of
screened observations (QF= 0) reported in the OCO-2 lite b7
file over most summertime tracks (black bars in Fig. S1). No
diurnal variation, a revisit time of 16 days, and a relatively
narrow swath of OCO-2 may still pose challenges to urban
emission estimates. We expect the inclusion of more column
observations in stationary (target) modes, e.g., by scanning
over megacities by OCO-3 (Eldering et al., 2016), which may
offer more concrete spatial and diurnal variabilities that then
benefit urban flux inversions. Many nations are devoting con-
siderable resources to launching carbon-observing satellites
that can potentially be coordinated into a larger monitoring
system (Tollefson, 2016). Given that X-STILT can poten-
tially work with most satellites (given their sensor-specific
vertical profiles), we expect enhanced capability in emission
constraints of urban emissions by combining column mea-
surements with X-STILT.

Code availability. X-STILT is built on STILT (Lin et al., 2003) and
STILT-R version 2 (Fasoli et al., 2018), which can be downloaded
from the GitHub repository (https://github.com/uataq/X-STILT,
last access: 1 November 2018). The version of the X-STILT code
coinciding with the work described in this paper is on Zenodo
https://doi.org/10.5281/zenodo.1241514 (Wu et al., 2018).
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Appendix A: Four conservative criteria to select
overpasses over Riyadh

We accounted for four factors, including (1) the prevailing
wind directions and downwind regions, (2) the portion of
soundings with QF= 0, (3) the distance between the satel-
lite track and the city center, and (4) regional wind errors in
modeled meteorological fields. In the end, we selected five
overpasses via manual check.

1. First, we defined a spatial domain (2◦ latitude by
3◦ longitude) centered around Riyadh (i.e., 24.71◦ N,
46.74◦ E) and counted the total sounding numbers that
fell into this domain for each overpass. This spatial do-
main can be determined by examining prevailing wind
directions and locating downwind regions based on
wind rose plots from radiosonde stations at the city cen-
ter and at the Riyadh airport (with four-character inter-
national ID of OERK and OERY) during each overpass
date. Alternatively, forward-time model runs starting
from a box around the center of Riyadh allowed us to
determine polluted latitudinal ranges on satellite over-
passes (Fig. 5). Detailed demonstrations of the forward-
time runs are in Sect. 2.3.3. A total of 43 overpasses
with at least one measurement fell into this allocated
spatial domain for Riyadh (gray bars in Fig. S1).

2. Next, we ensured the amount of screened observed data
using warn levels/quality flags (QF). Because a high
warn level is associated with a high total aerosol opti-
cal depth inferred from soundings (lite b7) near Riyadh,
we only used quality flags to control data quality in this
study. After selecting overpasses with > 100 soundings
with QF= 0, 11 overpasses remained. Most spring- and
summer-time tracks (from March to August) failed to
satisfy this criterion (black bars in Fig. S1). Further-
more, we ensured that enough screened observations
fell within a prescribed urban domain (1◦× 1◦ area)
around the city center (red bars in Fig. S1). Only eight
overpasses had > 50 screened soundings (red dashed
line in Fig. S1).

3. Overpasses with distinct enhancements in retrieved
XCO2 due to urban emissions were preferred. The near-
field domain affected by PBL processes may extend
from 100 to 1000 km based on the globally averaged
ventilation time for the PBL (Lin et al., 2003). We made
a conservative assumption that the impacted near-field
domain was a circle with a radius of 50 km around the
city center. Thus, we calculated the smallest distance be-
tween the soundings and the city center (orange dots in
Fig. S1) and most soundings passed this filter given our
examined spatial domain.

4. As a final step, since model results can potentially be af-
fected by meteorological fields, regional u- and v- wind

RMS errors below 3 km (derived from comparison with
radiosonde stations – white crosses in Fig. 4) were cal-
culated (numbers in brown in Fig. S1). Details regarding
the wind error calculation are given in Appendix B.

Appendix B: Wind error calculation and
regression-based transport error method in X-STILT

In terms of the wind error component (uε) mentioned in
Sect. 2.6, two sets of parameters are used to describe,
(1) σuverr, the standard deviation of horizontal wind errors
(RMSE) that describes the extent to which we should ran-
domly perturb air parcels, and (2) the horizontal and vertical
length-scales and timescales (Lx, Lz, and Lt) that determine
how wind errors are correlated and decay in space and time.
We calculated different sets of wind error statistics over three
vertical bins, i.e., 0–3, 3–6, and 6–10 km, for randomizing air
parcels. To obtain σuverr, observed winds at mandatory levels
(i.e., 925, 850, 700, 500, 400, and 300 mb) from surround-
ing radiosonde sites (Fig. 4) were compared against WRF-
or GDAS-interpolated winds. Then, we averaged wind er-
rors at different mandatory levels over the aforementioned
three vertical bins. In addition, wind errors are considered to
be spatiotemporally correlated. To determine error correla-
tion scales, differences in the wind errors are calculated and
wind errors at different radiosonde stations or different re-
ported hours (00:00 or 12:00 UTC) are paired up based on
their separation length-scales or timescales. An exponential
variogram is then applied to estimate the horizontal, verti-
cal, and temporal correlation scales, which are the separation
scales when errors become statistically uncorrelated.

Solution of negative transport errors The CO2 variance
derived from model trajectories after the randomizations
(σ 2
ε+u′

) can occasionally be smaller than the variance before
the randomization (σ 2

u′
) for a few levels, due to insufficient

parcel numbers (green dots in Fig. S5). Instead of abandon-
ing these data, we developed a regression-based method to
deal with the reduction in CO2 variances. Specifically, we
applied linear regression lines to the two sets of CO2 vari-
ances before and after the randomizations, with weights of
1/σ 2

ε+u′
. This meant that larger variances were weighted less.

Several other methods (without the weights) to apply lin-
ear regression were also tried, but extremely large regression
slopes and negative y intercept occurred, which could po-
tentially lead to unreasonably large transport errors (in ppm)
at lower levels within the PBL and negative transport errors
aloft. Next, we scaled and recalculated σ 2

ε+u′
based on the

weighted regression slope SWLR and σ 2
u′

. The regression line
indicates the overall increase in CO2 variance that serves as
transport error in ppm:

σ 2
ε

(
CO2.sim.ak,n

)
= (SWLR− 1)σ 2

u′

(
CO2.sim.ak,n

)
, (B1)

where the weighted linear regression is fitted for variances
with versus variances without the wind error component
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(dashed blue line in Fig. S5). An extremely large anthro-
pogenic enhancement (e.g., > 1000 ppm) for a given parcel
may exist in a few cases. Thus, outliers (i.e., the upper 1st
percentile of both parcel distributions before and after the
randomizations) are removed for each level, before variances
in both CO2 distributions are calculated.

Appendix C: Correcting for wind biases within
X-STILT

While we did not apply the wind bias correction for the over-
passes analyzed in this paper due to the biases being gener-
ally small (as previously explained in Sect. 2.3.3), X-STILT
has the capability to account for biases, if necessary. The
basic idea is to correct the near-field wind biases in both
forward- and backward-time trajectories. As wind error at
each observed pressure level can be quite different, vertically
weighted u- and v- wind biases were calculated by fitting
logarithmic mean wind profiles based on the available near-
field observed and simulated wind speeds and directions. We
then calculated the deviations in latitudinal and longitudinal
directions (dx, dy, with conversion from distance to degrees)
given estimated u- and v- wind biases. These deviations ac-
cumulate as air parcels travel further backward or forward in
time and are used to correct the location of each particle. Af-
ter fixing the particle locations, Fig. S6b shows that the gen-
eral distribution of backward trajectory is rotated clockwise
compared with the initial trajectory distribution in Fig. S6b.
Air parcels in Fig. S6b appear to be “noisier” than those in
Fig. S6a, due to inclusion of the random wind error com-
ponent. The new bias-corrected set of column trajectory is
then used to generate a spatial footprint. This correction can
also be performed to the forward-time trajectory to reduce
the wind bias impact on the best-estimated background value
using the M3 method.

Appendix D: The determinations of MAXAGL and the
cutoff level

MAXAGL and a cutoff level (below which more model lev-
els are placed) are the most important factors in determin-
ing modeled urban signals; these values can be determined
based on a few model trajectories starting from a few satel-
lite soundings for each overpass. Modeled mixing height h
reported for an individual air parcel at a timestamp, h(p, tm),
can be very high over the upwind desert region near Riyadh.
We determine MAXAGL to be the maximum mixing height
for each individual air parcel. To determine a cutoff level,
we calculate the averaged h over all parcels as a function of
backward time as follows:

h(tm)=
1
Ntot

Ntot∑
p=1

h(p, tm), (D1)

where tm represents the backward timestamp, ranging from
0 to 72 h back in time. The mean modeled mixing heights
among air parcels at each timestamp h(tm) exhibited a di-
urnal cycle, where expected high values were present dur-
ing the daytime. Furthermore, h(tm) typically displayed rel-
atively high values where parcels were more concentrated
within a day backward, and low values as parcels dispersed
outwards a few days back. We ended up using the maximum
value of the mean mixing heights over parcels and over time
as a representative cutoff level.

The maximum h(p, tm) and maximum h(tm) are 5816 and
2420 m, respectively, for the specific sounding shown in this
paper (Sect. 3.1, Fig. 6). Considering potential uncertainties
in the modeled PBL or mixing heights, these two numbers
are rounded to 6 and 3 km for a respective representative
MAXAGL and cutoff level. In addition, we generalize the
rules for placing column receptors to other seasons, based
on the aforementioned calculations. Maximum h(p, tm) and
maximum h(tm) over the upwind region vary slightly be-
tween different soundings during different seasons. Typi-
cally, maximum h(p, tm) are mostly under 6 km for winter-
time soundings (December, January, and February), but can
reach ∼ 7 and 10 km for soundings in spring/fall and sum-
mer, respectively. Maximum h(tm) are < 3 km for winter-
time tracks and ∼ 4 and 6 km for tracks in spring/fall and
summer. Therefore, column receptors are placed from the
surface to 3 km with 100 m spacing and from 3 to 6 km with
500 m spacing for wintertime overpasses with 100 parcels
per level (Fig. 3e). For other seasons such as the summer-
time, additional receptors are placed from 6 to 10 km with a
spacing of 1 km, to ensure that the model captures all con-
tributions from surface emissions. Although we expect rela-
tively similar MAXAGLs and cutoff levels for most sound-
ings over the Middle East, due to overlaps in upwind regions,
these values should be recalculated when other cities are ex-
amined (Eq. D1).

Appendix E: Factors that may influence observed or
modeled enhancements/signals

In Sect. 3.5, we integrated XCO2 enhancements along lati-
tudes to estimate modeled and observed signals within a cer-
tain latitudinal band for each overpass. This latitudinal band
starts with an enhanced latitudinal range, is then corrected
based on the model–data latitudinal shift in XCO2 peaks, and
finally extends by 20 % of its length. Furthermore, we tested
the impact of percentages other than 20 % on the latitudi-
nally integrated signals. Because of relatively small XCO2
enhancements over the background range, the impact due
to different percentages (i.e., 10 %, 15 %, 20 % and 25 %) is
relatively small – e.g., changes of 0.03 and 0.06 ppm in the
averaged modeled and observed signals, respectively. These
small changes show that our latitude integration band is rep-
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resentative as it does not include a second peak or miss large
XCO2 enhancements.

E1 Influences on observed signals (bin-widths, warn
levels)

These modeled and observed signals reported in Sect. 3.5
are calculated based on the uneven sampling choice for
the model receptor lat/long, i.e., with smaller bin widths of
0.025◦ and larger bin widths of 0.05◦ over which urban influ-
ences are stronger and weaker, respectively. In addition, we
tested the impact on observed signals resulting from different
bin widths with constant values starting from 0.01 to 0.5◦.
Both the latitudinal variation and the overall observed sig-
nal for an overpass generally decreased as the bin widths in-
creased, as bin-averaged observed XCO2 enhancements get
smoothed out, especially over latitudes with strong urban in-
fluences. Some information is lost in latitude-integrated ob-
served signals based on our sampling choices when compar-
ing them against the signals calculated using constant bin
widths such as 0.02◦. However, binning observations based
on the lat/long of model receptors ensures a fair comparison
with the model and our uneven sampling choices may better
resolve XCO2 enhancements within much finer grid spacing
(particularly under urban influences) on the premise of lim-
ited computational resources. In addition, warn levels (WLs)
may impact the filtering of observed data, the bin-averaged
observed XCO2, the defined background, and the conclusion
regarding the model–data comparisons. Based on three sim-
ple tests involving selecting measurements with QF= 0 and
additional WL filters (WL< 10, 12, and 15), observed sig-
nals slightly increase as more conservative WL filtering is
applied. Changes in linear regression slopes and correlation
between best-estimated modeled and observed signals due to
sample choices and WL filtering are small.

E2 Influences on modeled signals (hourly versus
monthly emissions, nhrs, averaging kernel)

An additional set of hourly scaling factors (Nassar et al.,
2013) can be applied to ODIAC to downscale the monthly
mean emissions to hourly values. In this study, we used
monthly mean FFCO2 emissions from ODIAC and applied
TIMES to only one of the five total overpasses. Simulations
including TIMES are slightly larger than simulations without
the hourly scaling factors. Also, the number of hours may im-
pact the modeled enhancements at each sounding/receptor.
We also conducted another simulation for the 27 Decem-
ber 2014 event using model trajectories with only 24 h back-
ward runs (different from the 72 h backward runs used in
main text). The decrease in the anthropogenic enhancements
is < 0.05 ppm per sounding, which is small due to the very
small surface influence from distant emission sources. Lastly,
we report the overall discrepancy in the modeled anthro-
pogenic enhancements with or without weighting by OCO-2

prior profiles to be small. The difference is about 1 %–2 % of
the weighted modeled anthropogenic enhancements, which
is much smaller than the impact caused by uncertainties in
transport, emissions, or different setups. Note that XCO2 por-
tion of OCO-2’s prior profile is zero and the averaging ker-
nel is simply unity everywhere for non-AK weighted simu-
lations.
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