Articles | Volume 11, issue 12
Development and technical paper
04 Dec 2018
Development and technical paper |  | 04 Dec 2018

A Lagrangian approach towards extracting signals of urban CO2 emissions from satellite observations of atmospheric column CO2 (XCO2): X-Stochastic Time-Inverted Lagrangian Transport model (“X-STILT v1”)

Dien Wu, John C. Lin, Benjamin Fasoli, Tomohiro Oda, Xinxin Ye, Thomas Lauvaux, Emily G. Yang, and Eric A. Kort

Model code and software

X-Stochastic Time-Inverted Lagrangian Transport model ("X-STILT" v1) D. Wu, J. Lin, and B. Fasoli

Short summary
Urban CO2 enhancement signals can be derived using satellite column CO2 concentrations and atmospheric transport models. However, uncertainties due to model configurations, atmospheric transport, and defined background values can potentially impact the derived urban signals. In this paper, we present a modified Lagrangian model framework that extracts urban CO2 signals from satellite observations and determines potential error impacts.