Articles | Volume 11, issue 9
https://doi.org/10.5194/gmd-11-3659-2018
https://doi.org/10.5194/gmd-11-3659-2018
Development and technical paper
 | 
11 Sep 2018
Development and technical paper |  | 11 Sep 2018

Requirements for a global data infrastructure in support of CMIP6

Venkatramani Balaji, Karl E. Taylor, Martin Juckes, Bryan N. Lawrence, Paul J. Durack, Michael Lautenschlager, Chris Blanton, Luca Cinquini, Sébastien Denvil, Mark Elkington, Francesca Guglielmo, Eric Guilyardi, David Hassell, Slava Kharin, Stefan Kindermann, Sergey Nikonov, Aparna Radhakrishnan, Martina Stockhause, Tobias Weigel, and Dean Williams

Related authors

The computational and energy cost of simulation and storage for climate science: lessons from CMIP6
Mario C. Acosta, Sergi Palomas, Stella V. Paronuzzi Ticco, Gladys Utrera, Joachim Biercamp, Pierre-Antoine Bretonniere, Reinhard Budich, Miguel Castrillo, Arnaud Caubel, Francisco Doblas-Reyes, Italo Epicoco, Uwe Fladrich, Sylvie Joussaume, Alok Kumar Gupta, Bryan Lawrence, Philippe Le Sager, Grenville Lister, Marie-Pierre Moine, Jean-Christophe Rioual, Sophie Valcke, Niki Zadeh, and Venkatramani Balaji
Geosci. Model Dev., 17, 3081–3098, https://doi.org/10.5194/gmd-17-3081-2024,https://doi.org/10.5194/gmd-17-3081-2024, 2024
Short summary
CPMIP: measurements of real computational performance of Earth system models in CMIP6
Venkatramani Balaji, Eric Maisonnave, Niki Zadeh, Bryan N. Lawrence, Joachim Biercamp, Uwe Fladrich, Giovanni Aloisio, Rusty Benson, Arnaud Caubel, Jeffrey Durachta, Marie-Alice Foujols, Grenville Lister, Silvia Mocavero, Seth Underwood, and Garrett Wright
Geosci. Model Dev., 10, 19–34, https://doi.org/10.5194/gmd-10-19-2017,https://doi.org/10.5194/gmd-10-19-2017, 2017
Short summary
Towards improved and more routine Earth system model evaluation in CMIP
Veronika Eyring, Peter J. Gleckler, Christoph Heinze, Ronald J. Stouffer, Karl E. Taylor, V. Balaji, Eric Guilyardi, Sylvie Joussaume, Stephan Kindermann, Bryan N. Lawrence, Gerald A. Meehl, Mattia Righi, and Dean N. Williams
Earth Syst. Dynam., 7, 813–830, https://doi.org/10.5194/esd-7-813-2016,https://doi.org/10.5194/esd-7-813-2016, 2016
Short summary
Coarse-grained component concurrency in Earth system modeling: parallelizing atmospheric radiative transfer in the GFDL AM3 model using the Flexible Modeling System coupling framework
V. Balaji, Rusty Benson, Bruce Wyman, and Isaac Held
Geosci. Model Dev., 9, 3605–3616, https://doi.org/10.5194/gmd-9-3605-2016,https://doi.org/10.5194/gmd-9-3605-2016, 2016
Short summary
Development and exploitation of a controlled vocabulary in support of climate modelling
M.-P. Moine, S. Valcke, B. N. Lawrence, C. Pascoe, R. W. Ford, A. Alias, V. Balaji, P. Bentley, G. Devine, S. A. Callaghan, and E. Guilyardi
Geosci. Model Dev., 7, 479–493, https://doi.org/10.5194/gmd-7-479-2014,https://doi.org/10.5194/gmd-7-479-2014, 2014

Related subject area

Climate and Earth system modeling
Reducing time and computing costs in EC-Earth: an automatic load-balancing approach for coupled Earth system models
Sergi Palomas, Mario C. Acosta, Gladys Utrera, and Etienne Tourigny
Geosci. Model Dev., 18, 3661–3679, https://doi.org/10.5194/gmd-18-3661-2025,https://doi.org/10.5194/gmd-18-3661-2025, 2025
Short summary
FLAME 1.0: a novel approach for modelling burned area in the Brazilian biomes using the maximum entropy concept
Maria Lucia Ferreira Barbosa, Douglas I. Kelley, Chantelle A. Burton, Igor J. M. Ferreira, Renata Moura da Veiga, Anna Bradley, Paulo Guilherme Molin, and Liana O. Anderson
Geosci. Model Dev., 18, 3533–3557, https://doi.org/10.5194/gmd-18-3533-2025,https://doi.org/10.5194/gmd-18-3533-2025, 2025
Short summary
SURFER v3.0: a fast model with ice sheet tipping points and carbon cycle feedbacks for short- and long-term climate scenarios
Victor Couplet, Marina Martínez Montero, and Michel Crucifix
Geosci. Model Dev., 18, 3081–3129, https://doi.org/10.5194/gmd-18-3081-2025,https://doi.org/10.5194/gmd-18-3081-2025, 2025
Short summary
NMH-CS 3.0: a C# programming language and Windows-system-based ecohydrological model derived from Noah-MP
Yong-He Liu and Zong-Liang Yang
Geosci. Model Dev., 18, 3157–3174, https://doi.org/10.5194/gmd-18-3157-2025,https://doi.org/10.5194/gmd-18-3157-2025, 2025
Short summary
A method for quantifying uncertainty in spatially interpolated meteorological data with application to daily maximum air temperature
Conor T. Doherty, Weile Wang, Hirofumi Hashimoto, and Ian G. Brosnan
Geosci. Model Dev., 18, 3003–3016, https://doi.org/10.5194/gmd-18-3003-2025,https://doi.org/10.5194/gmd-18-3003-2025, 2025
Short summary

Cited articles

Aad, G., Butterworth, J., Thion, J., et al.: The ATLAS experiment at the CERN large hadron collider, Jinst, 3, S08003, https://doi.org/10.1088/1748-0221/3/08/S08003, 2008.
Andrews, T., Gregory, J. M., Webb, M. J., and Taylor, K. E.: Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models, Geophys. Res. Lett., 39, L09712, https://doi.org/10.1029/2012GL051607, 2012.
Baker, A. H., Hammerling, D. M., Mickelson, S. A., Xu, H., Stolpe, M. B., Naveau, P., Sanderson, B., Ebert-Uphoff, I., Samarasinghe, S., De Simone, F., Carbone, F., Gencarelli, C. N., Dennis, J. M., Kay, J. E., and Lindstrom, P.: Evaluating lossy data compression on climate simulation data within a large ensemble, Geosci. Model Dev., 9, 4381–4403, https://doi.org/10.5194/gmd-9-4381-2016, 2016.
Balaji, V., Ansari, S., and Radhakrishnan, A.: Deploying user-developed scientific analyses on federated data archives, in: AGU Fall Meeting Abstracts, vol. 1, p. 1, 2011.
Balaji, V., Maisonnave, E., Zadeh, N., Lawrence, B. N., Biercamp, J., Fladrich, U., Aloisio, G., Benson, R., Caubel, A., Durachta, J., Foujols, M.-A., Lister, G., Mocavero, S., Underwood, S., and Wright, G.: CPMIP: measurements of real computational performance of Earth system models in CMIP6, Geosci. Model Dev., 10, 19–34, https://doi.org/10.5194/gmd-10-19-2017, 2017.
Download
Short summary
We present recommendations for the global data infrastructure needed to support CMIP scientific design and its future growth and evolution. We follow a dataset-centric design less prone to systemic failure. Scientific publication in the digital age is evolving to make data a primary scientific output, alongside articles. We design toward that future scientific data ecosystem, informed by the need for reproducibility, data provenance, future data technologies, and measures of costs and benefits.
Share