Articles | Volume 11, issue 5
https://doi.org/10.5194/gmd-11-1753-2018
https://doi.org/10.5194/gmd-11-1753-2018
Methods for assessment of models
 | 
08 May 2018
Methods for assessment of models |  | 08 May 2018

Impacts of the horizontal and vertical grids on the numerical solutions of the dynamical equations – Part 1: Nonhydrostatic inertia–gravity modes

Celal S. Konor and David A. Randall

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Celal Konor on behalf of the Authors (15 Mar 2018)  Author's response   Manuscript 
ED: Publish subject to minor revisions (review by editor) (21 Mar 2018) by Paul Ullrich
AR by Celal Konor on behalf of the Authors (26 Mar 2018)  Author's response   Manuscript 
ED: Publish as is (27 Mar 2018) by Paul Ullrich
AR by Celal Konor on behalf of the Authors (02 Apr 2018)
Short summary
We have discussed the discretizations of the three-dimensional nonhydrostatic linearized anelastic equations on the A, B, C, CD, (DC), D, E and Z horizontal grids, and on the L and CP vertical grids, with an emphasis on midlatitude inertia–gravity waves. The Z and C grids show the most accurate dispersion among the seven horizontal grids. The inertia–gravity mode solutions with the D and CD grids are almost identical. The A, B and E grids suffer from the multiple (or non-unique) physical modes.