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Abstract. We have used a normal-mode analysis to investi-
gate the impacts of the horizontal and vertical discretizations
on the numerical solutions of the nonhydrostatic anelastic
inertia–gravity modes on a midlatitude f plane. The disper-
sion equations are derived from the linearized anelastic equa-
tions that are discretized on the Z, C, D, CD, (DC), A, E and
B horizontal grids, and on the L and CP vertical grids. The
effects of both horizontal grid spacing and vertical wavenum-
ber are analyzed, and the role of nonhydrostatic effects is
discussed. We also compare the results of the normal-mode
analyses with numerical solutions obtained by running lin-
earized numerical models based on the various horizontal
grids. The sources and behaviors of the computational modes
in the numerical simulations are also examined.

Our normal-mode analyses with the Z, C, D, A, E and B
grids generally confirm the conclusions of previous shallow-
water studies for the cyclone-resolving scales (with low hor-
izontal wavenumbers). We conclude that, aided by nonhy-
drostatic effects, the Z and C grids become overall more ac-
curate for cloud-resolving resolutions (with high horizontal
wavenumbers) than for the cyclone-resolving scales.

A companion paper, Part 2, discusses the impacts of the
discretization on the Rossby modes on a midlatitude β plane.

1 Introduction

In the discretization of the governing equations of atmo-
sphere models, we try to maintain as many physically impor-
tant properties of the continuous system as possible. These
include mimetic properties, such as selected identities from

vector calculus; linear properties, such as the stability of the
discrete systems, discrete representations of the geostrophic
and hydrostatic adjustment processes, and discrete wave dis-
persion that faithfully imitates the continuous dispersion; and
nonlinear properties, such as conservation of mass, energy
and enstrophy.

The purpose of this paper to discuss the maintenance of
the linear properties of the finite-differenced nonhydrostatic
equations on selected horizontal and vertical grids, with a
particular focus on wave dispersion. Although the linear
properties of a discretized system should not be the only
factor in selecting a grid, they must be a key consideration.
There have been numerous published studies on the horizon-
tal discretization of the shallow-water equations (e.g., Win-
ninghoff, 1968; Arakawa and Lamb, 1977; Mesinger and
Arakawa, 1976; Randall, 1994; Skamarock, 2008; Thuburn,
2008; Thuburn et al., 2009; Weller et al., 2012) and on
the vertical discretization of the quasi-hydrostatic equa-
tions (e.g., Tokioka, 1978; Arakawa and Moorthi, 1988;
Hollingsworth, 1995; Arakawa and Konor, 1996; Konor and
Arakawa, 2000). There are also a few published studies of the
vertical discretization of the nonhydrostatic equations (e.g.,
Girard et al., 2014; Thuburn and Woolings, 2004; Toy and
Randall, 2009). We are not aware of any previous publica-
tions on the horizontal discretization of the nonhydrostatic
equations.

Arakawa and Winninghoff (Winninghoff, 1968; Arakawa
and Lamb, 1977; Arakawa, 1988) defined the A, B, C, D and
E grids based on the horizontal staggering of the variables.
More recently, Randall (1994) and Lin and Rood (1997)
have, respectively, added the Z grid and the CD grid to this
list. We have also examined a DC grid to aid our analysis
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1754 C. S. Konor and D. A. Randall: Impacts of the horizontal and vertical grids – Part 1

of the CD grid (defined later). For vertical discretization,
there are only two grids available, namely the Lorenz grid
(Lorenz, 1960; hereafter the L grid) and the Charney–Phillips
grid (Charney and Phillips, 1953; hereafter the CP grid). In
this paper, we discuss the discretization of the nonhydrostatic
equations on these various horizontal and vertical grids.

Our analysis is based on the three-dimensional anelastic
system introduced by Lipps and Hemler (1982) because the
curl of its pressure-gradient force vanishes, which gives an
important simplicity to our normal-mode analyses based on
the vorticity and divergence equations. The anelastic system
also excludes the physically insignificant acoustic waves and
the Lamb wave, so that we can focus on the much more
important inertia–gravity and Rossby waves. Although the
anelastic system has inaccuracies, as pointed out by Davies
et al. (2003), Arakawa and Konor (2009), Dukowicz (2013)
and Dubos and Voitus (2014), a wide range of nonhydrostatic
phenomena are accurately described by the anelastic system.
Arakawa and Konor (2009) show that among the features that
can be well simulated by the anelastic system are the fre-
quency of the inertia–gravity modes for all horizontal scales
and the frequency of the middle-latitude Rossby modes for
medium and small horizontal scales. Since discretization er-
rors are mostly confined near the shortest resolvable scales,
our findings can be directly applied to all nonhydrostatic sys-
tems.

The use of a three-dimensional nonhydrostatic system to
study the impact of the horizontal discretization on the dis-
persion of the waves has an important advantage over the
two-dimensional shallow-water system, in that it allows us
to directly assess the performance of the discretization as a
function of the vertical wavenumber, vertical resolution or
vertical grid spacing. With the shallow-water system, only an
indirect assessment can be made, based on the values of the
Rossby radius of deformation divided by the horizontal grid
spacing, as discussed by Arakawa and Lamb (1977), Ran-
dall (1994) and others. The results of our anelastic normal-
mode analyses are generally consistent with the shallow-
water analyses discussed by previous authors for the cyclone-
resolving scales. Here, we present a three-dimensional view
of the dispersion of the modes by including an accurate as-
sessment of the performance of the horizontal grids for the
nonhydrostatic cloud-resolving scales.

For large horizontal grid spacings, the results of our
analyses are also applicable to the quasi-hydrostatic sys-
tems. The normal-mode analyses presented by Arakawa and
Konor (2009) show that the frequencies of the medium-
and large-scale inertia–gravity waves, with horizontal wave
lengths of approximately 60 km and larger, are nearly identi-
cal in the anelastic and quasi-hydrostatic systems. The dis-
persion of midlatitude Rossby waves is also nearly iden-
tical in the two systems, with the exception of the ultra-
long waves. The only major difference is that the quasi-
hydrostatic system includes the Lamb wave, while the

anelastic system does not. We ignore the Lamb wave in our
analyses.

The dispersion of inertia–gravity waves leads to
geostrophic and hydrostatic adjustments in the nonhy-
drostatic system, which is key to the maintenance of the
geostrophic and hydrostatic balances, respectively. Thus, the
accurate simulation of wave dispersion, i.e., the phase and
group velocities are essential to maintain the approximate
balances and also bolster the stability of the discrete system.
Since we focus on the impact of the discretizations on the
frequency of the waves, rather than their amplitude, no
explicit diffusion is included in our analysis.

The discretization process can give rise to computational
modes. The sources and behaviors of the computational
modes differ for each horizontal and vertical grid. While a
normal-mode analysis is an excellent method to study the
modification of the physical modes with the discretization,
it is not completely adequate to study the computational
modes. This is one motivation for including in our study
analyses of the numerical solutions of the linearized anelastic
equations.

We have used second-order accurate finite-difference
schemes for simplicity. The use of higher-order schemes
would lead to minor quantitative differences in our results
by reducing errors in the well-resolved scales, but it would
not change the main conclusions of our analysis, which deal
with errors near the smallest resolvable scales.

This paper discusses the dispersion of the inertia–gravity
waves on a midlatitude f plane. Section 2 presents the lin-
earized anelastic equations. Section 3 discusses the horizon-
tal discretization of these equations on the Z, C, D, CD, (DC),
A, E and B grids, in that order. At the end of Sect. 3, we
present plots of the discrete dispersion relations and a com-
parison of the performance of the grids in simulating the
inertia–gravity waves. Vertical discretization on the L and
CP grids is discussed in Sect. 4. Section 5 presents a sum-
mary table of the discrete dispersion relations, to facilitate
comparisons. In Sect. 6, we present results from simulations
of the inertia–gravity modes obtained by running linearized
numerical models based on the various horizontal grids and
discuss the sources and behaviors of the various computa-
tional modes. Section 7 analyses the nonhydrostatic effects
on the performance of the grids by comparing the dispersion
of the inertia–gravity modes with the nonhydrostatic, quasi-
hydrostatic and shallow-water systems. A summary and con-
clusions are provided in Sect. 8. Additional details are given
in the Supplement. Finally, Part 2 (Konor and Randall, 2018)
discusses the dispersion of Rossby modes on a midlatitude β
plane.
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2 Linearized anelastic equations with an isothermal
basic state

The linearization of the Lipps and Hemler (1983) anelastic
equations is with respect to a resting isothermal basic state,
following Arakawa and Konor (2009), Davies et al. (2003)
and many others. All variables are weighted by the square
root of the basic state density ρ1/2

0 (z), so that the dispersion
relation does not have an imaginary part.

2.1 Basic equations

The linearized horizontal momentum equation is

∂v

∂t
=−f k× v−∇HP, (1)

where v is the horizontal velocity, t is time, f is the Coriolis
parameter, k is the vertical unit vector, ∇H is the horizontal
del operator, P is the pressure. Although the definition of P
is not necessary for this study, in the Lipps–Hemler anelastic
system, it is given by P ≡ ρ1/2

0 cpθ0π
′, where cp is the spe-

cific heat of dry air under constant pressure, θ0 = θ0(z) is the
basic state potential temperature, π ′ ≡ π −π0 is the pertur-
bation Exner pressure, π ≡ (p/p00)

κ is the Exner pressure,
p is the pressure, p00 is a standard pressure, κ ≡ R/cp, R is
the gas constant, π0 = π0(z) is the basic state Exner pressure,
θ ≡ T/π is the potential temperature, and T is the tempera-
ture.

By taking k · ∇H× (1), we obtain the linearized vertical
vorticity equation as

∂ωz

∂t
=−fD, (2)

where ωz ≡ k ·∇H×v is the vertical vorticity andD ≡∇H ·v

is the divergence of the horizontal wind. By applying the di-
vergence operator to Eq. (1), we obtain the linearized diver-
gence equation as

∂D

∂t
= fωz−∇

2
HP, (3)

where ∇2
H is the horizontal Laplacian operator. To predict the

horizontal velocity, we can directly integrate Eq. (1). An al-
ternative approach is to first predict vorticity and divergence
through Eqs. (2) and (3), respectively, and then obtain the
horizontal momentum by using horizontal elliptic solvers. To
study the linear modes, we will use the vorticity and diver-
gence equations instead of the momentum equation.

The vertical momentum equation is

∂w

∂t
=−

(
∂

∂z
−

1
2ρ0

∂ρ0

∂z

)
P +B, (4)

where w is the vertical velocity weighted by ρ1/2
0 and B ≡

ρ
1/2
0 gθ ′/θ0 is the buoyancy, g is the gravitational accelera-

tion, and θ ′ ≡ θ ′− θ0 is the perturbation potential tempera-
ture. Note that in Eq. (4) (1/2)(1/ρ0)(∂ρ0/∂z) appears as a

result of the weighting of the pressure term by ρ1/2
0 with the

linearization. The thermodynamic equation is

∂B

∂t
=−N2w, (5)

where N2
≡ (g/θ0)(∂θ0/∂z) is the square of the Brunt–

Väisälä frequency associated with the basic state. Both
(1/ρ0)(∂ρ0/∂z)≡−1/H and N2

= (g/θ0)(∂θ0/∂z)=

gκ/H are constants for an isothermal atmosphere, where
H ≡ RT00/g is the scale height of the isothermal basic state,
and T00 is the three-dimensionally and temporally constant
temperature of the isothermal basic state. The anelastic
continuity equation is

D+

(
∂

∂z
+

1
2ρ0

∂ρ0

∂z

)
w = 0, (6)

where D ≡∇H · v is the divergence.
Equations (4)–(6) can be combined into a single equation

by eliminating B and w, giving(
∂2

∂t2
+N2

)
D =

[
∂2

∂z2 −

(
1

2ρ0

∂ρ0

∂z

)2
]
∂P

∂t
. (7)

The three-dimensional elliptic equation that can be used to
diagnose the pressure term can be obtained by eliminating
∂D/∂t between Eq. (3) and ∂/∂t of Eq. (6) and using Eq. (4).
The result is

∇
2
HP +

[
∂2

∂z2 −

(
1

2ρ0

∂ρ0

∂z

)2
]
P = (8)

fωz+

(
∂

∂z
+

1
2ρ0

∂ρ0

∂z

)
B.

Although the elliptic equation (Eq. 8) is not needed for the
normal-mode analysis, the numerical integration of the lin-
earized equations requires the use of a discrete version of
Eq. (8).

These equations have solutions that are steady (∂/∂t = 0),
balanced (i.e., D = 0) and quasi-static, given by

0= fωz−∇2
HP (9a)

and

0=−
(
∂

∂z
−

1
2ρ0

∂ρ0

∂z

)
P +B. (9b)

By using Eq. (9a) in Eq. (9b), we find that

0=−f
(
∂

∂z
−

1
2ρ0

∂ρ0

∂z

)
ωz+∇

2
HB (9c)

is also satisfied for the steady balanced state. The ma-
jority of the discrete systems that we will discuss have
steady balanced-state solutions corresponding to Eq. (9a)–
(9c). However, we found some exceptions with the CD-grid
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discretization, depending on the time-integration scheme. We
discuss this point further later and give examples of the
schemes that do or do not have steady balanced solutions.

To obtain the dispersion relation for the inertia–gravity
modes on a middle-latitude f plane, we seek solutions of
Eqs. (2), (3) and (7) of the form

φ (x,y,z, t)= Re
{
8̂e

i
∼
(kx+`y+mz−νt)

}
, (10)

where φ represents an arbitrary variable, Re indicates the real
part of a complex function, 8̂ is the complex amplitude, i

∼
≡

√
−1, k , ` andm are the wavenumbers of waves propagating

in x, y and z directions, respectively, and ν is the frequency of
the waves. Since we assume that the upper and lower bound-
aries are material surfaces (so that wS = wT = 0), we define
the vertical wavenumber m as

m≡
πn

zT
for n= 1,2,3, . . . (11)

where n is the “integer wavenumber,” and zT is the height of
the upper boundary. The use of n is very convenient for the
study of discretization because n is equal to the number of
layers in a numerical model.

2.2 Dispersion of inertia–gravity waves on a
midlatitude f plane

By applying Eq. (10) to ωz, D and P in Eqs. (2), (3) and (7)
and seeking nontrivial solutions, we obtain the dispersion re-
lation as

ν2
=

N2 (k2
+ `2)

+ f 2
(
m2
+

1
4H 2

)
(
k2+ `2

)
+

(
m2+ 1

4H 2

) . (12)

Here, we have used (1/ρ0)(∂ρ0/∂z)≡−1/H and N2
=

(g/θ0)(∂θ0/∂z)= gκ/H . It should be noted that the disper-
sion equation (Eq. 12) is obtained by seeking nontrivial so-
lutions for D among Eqs. (2), (3) and (7). If we seek non-
trivial solutions for ωz or P , we will find an additional mode
with ν = 0, which corresponds to the steady-state balanced
solution. This comment applies to all discrete systems with
the exception of some on the CD grid. We will briefly dis-
cuss the exceptions with the CD grid. According to Eq. (12),
the frequency of inertia–gravity modes is bounded between
the Brunt–Väisälä frequency (N) and the inertial frequency
(f ). For large horizontal and small vertical wavenumbers,
the “gravitational term”, i.e., the first term in the numerator
of Eq. (12), dominates the “inertial term”. The effect of rota-
tion on these gravity modes is small.

3 Horizontal discretization of the linear anelastic
equations on different grids and discrete dispersion
equations

The modes of the continuous system will be referred to as
physical modes or true modes. The discrete solutions con-

tain versions of these physical modes that are modified by
discretization, and they may also contain additional compu-
tational modes (or solutions) that are purely the result of
discretization. In some cases, the computational modes are
dynamically inert and confined to the smallest resolvable
scales. In other cases, the computational modes appear in
the form of non-unique (or multiple) physical solutions that
do not interact in the linear system. These non-unique solu-
tions can also be dynamically inert on the smallest resolvable
scales. The generation and behavior of computational modes
in the horizontally discrete systems will be discussed in de-
tail at the end this section.

We will try to avoid the repetition of results that have
been previously presented by other authors. Many additional
aspects of the A, B, C, D and E grids are discussed by
Arakawa (2000, and the references therein). For additional
discussion on the Z grid, the reader is referred to Ran-
dall (1994) and Chen (2015). Lin and Rood (1997) and Ska-
marock (2008) can be consulted for additional discussions on
the CD grid. For recent applications of the C grid, the paper
by Weller et al. (2012) and the references therein are recom-
mended.

We use the vorticity and divergence equations in our
normal-mode analyses for all grids, since the inertia–gravity
modes are primarily controlled by the vorticity, divergence
and pressure (or mass), and the horizontal velocity is deter-
mined by the vorticity and divergence.

Next, we discuss the dispersion and modification of the
physical modes in the discrete solutions through a normal-
mode analysis similar to the one used for the continuous sys-
tem. Fig. 1 shows portions of the horizontal grids discussed
in this paper.

3.1 Solutions on the Z grid

We choose to discuss the Z grid first because, as pointed out
by Randall (1994), it yields better solutions than the A, B,
C, D and E grids in the discretization of the shallow-water
equations on an f plane. Instead of predicting the horizon-
tal velocity, a model that uses the Z grid predicts the vor-
ticity and divergence without staggering. This approach re-
quires the use of elliptic solvers to obtain the horizontal ve-
locity from the predicted vorticity and divergence. The el-
liptic solvers add 10–20 % to the computational cost of the
dynamical core.

3.1.1 Discrete dispersion of the inertia–gravity waves
on an f plane

The vertically and temporally continuous and horizontally
discrete versions of vorticity and divergence equations given
by Eqs. (2) and (3), respectively, and Eq. (7) can be written
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Figure 1. Portions of the (a) Z, (b) C, (c) D, (d) CD, (e) A, (f) E and (g) B grids on a square grid. Colored grid points in A, E and B grids
indicate the network of grid points on which the decoupled solutions exist.
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on the Z grid shown in Fig. 1a as

∂(ωz)i,j

∂t
=−fDi,j , (13)

∂Di,j

∂t
= (14)

f (ωz)i,j −
1
d2

(
Pi+1,j +Pi−1,j +Pi,j+1+Pi,j−1− 4Pi,j

)
,(

∂2

∂t2
+N2

)
Di,j =

[
∂2

∂z2 −

(
1

2ρ0

∂ρ0

∂z

)2
]
∂Pi,j

∂t
. (15)

By using

φi,j (z, t)= Re
{
8̂e

i
∼
(kdi+`dj+mz−νt)

}
(16)

in Eqs. (13)–(15), and seeking nontrivial solutions, we can
obtain the discrete dispersion relation as

ν2
=

N2 (ξ2k2
+ η2`2)

+ f 2
(
m2
+

1
4H 2

)
(
ξ2k2+ η2`2

)
+

(
m2+ 1

4H 2

) , (17)

where the factors

ξ ≡
sin
(

1
2kd

)
1
2kd

and η ≡
sin
(

1
2`d

)
1
2`d

(18)

arise from the finite-difference form of the Laplacian of P
in the divergence equation (Eq. 14). As the grid spacing ap-
proaches zero (kd, `d→ 0) and therefore ξ2

= η2
→ 1 ac-

cording to Eq. (18), the discrete dispersion relation Eq. (17)
approaches the continuous dispersion equation (Eq. 12),
which confirms that the discrete solution is consistent. This
property is shared by all of the dispersion relations that we
discuss in the paper. For the smallest resolvable horizontal
scales, for which kd = `d = π , the factors in the Laplacian
yield ξ2

= η2
= 4/π2

∼ 0.4. Since these factors are bounded
between 0 and 1, all discrete modes and all variables move or
oscillate with a single frequency that is betweenN and f . We
conclude that the discrete inertia–gravity modes are purely
physical; i.e., they correspond to solutions of the continuous
system, although they are slightly distorted by discretization
errors.

The use of a higher-order Laplacian in Eq. (14) would not
change the form of the discrete dispersion (Eq. 17), but it
would change the definitions of the factors defined in Eq. (18)
such that errors would be slightly improved near and at the
smallest resolvable horizontal scale (hereafter, SRHS). This
comment applies to all of the discrete Laplacian in the dis-
persion relations discussed in the paper.

For each grid, we present plots of the absolute value of
the frequency as a function of k∗ ≡

√
k2+ `2, as given by

the dispersion relations obtained for the various schemes for
the given integer vertical wavenumber, n. The true frequency

given by Eq. (12) is also superimposed in these plots to facili-
tate assessment of the results. We use k = ` to make the plots,
which means that the modes would be oriented diagonally
on a square horizontal grid. The scale height of the basic
state is assumed to beH = 24 km (orN2

= 1.16×10−4 s−2),
which corresponds to a typical lower-tropospheric stabil-
ity. The height of the domain is zT = 80 km, and the Cori-
olis parameter is f = 10−4 s−1. The smallest vertical grid
spacing is given by δz= zT/n. We present the frequency
plots for the four different horizontal grid spacings d = 2 km,
d = 10 km, d = 25 km and d = 100 km. A grid spacing of
2 km is selected to represent the cloud-resolving models. The
grid spacings of 10 and 25 km are selected to be representa-
tive of mesoscale and global numerical weather prediction
models. The grid spacing of 100 km is selected to be rep-
resentative of climate models. In these plots, we show the
frequency lines for 10 integer vertical wavenumbers ranging
from n= 1 to n= 1280, and the corresponding vertical grid
spacings are also indicated.

Figure 2 shows that, in the Z-grid solutions, the discrete
frequencies associated with small horizontal wavenumbers
are virtually identical to the true frequencies for all verti-
cal wavenumbers and horizontal grid spacings. This is ex-
pected because the discretization errors must be negligible
away from the SRHS. For horizontal wavenumbers that are
near and at the SRHS (indicated by thin dashed vertical lines
in the plots), the discrete frequencies deviate downward from
the true frequencies, and the deviations become larger as the
vertical scales of the modes become smaller.

The group velocity, ∂ |ν|/∂k∗, is the velocity with which
the wave energy moves. If the group velocity in the discrete
system is substantially slowed down or reversed, relative to
that of the continuous system, then wave energy can be spuri-
ously trapped in the source regions, which may lead to insta-
bility. For brevity, we only qualitatively assess the simulated
group velocity as implied by the frequency plots. The group
velocity of the inertia–gravity waves in the true solutions is
always positive (or zero) as shown by the thin lines in Fig. 2.
The Z-grid solutions maintain positive (or zero) group veloc-
ity, but near the SRHS the Z-grid group velocity is generally
smaller than the true group velocity.

These results generally support Randall’s (1994) conclu-
sions regarding the Z grid with the low horizontal wavenum-
bers. Our results suggest that the nonhydrostatic effects re-
duce the errors for the deep modes with high horizontal
wavenumbers. This will be further discussed in Sect. 7.

3.2 Solutions on the C grid

The C grid is arguably the most commonly used grid in at-
mosphere models. The Mintz–Arakawa UCLA general cir-
culation model (GCM; Arakawa, 2000), developed starting
in about 1965, was the first GCM and possibly the first at-
mospheric model to use the C grid (Akio Arakawa, personal
communication, 2017). With the C grid, the normal compo-
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Figure 2. Plots of the absolute value of frequency obtained on the Z grid (red lines) for the grid spacings at (a) 2 km, (b) 10 km, (c) 25 km
and (d) 100 km, and for the various vertical wavenumbers. The thin blue lines are the corresponding true frequencies.

nents of the horizontal velocity, i.e., u and v, are predicted at
the meridional and latitudinal walls, respectively, as shown
in Fig. 1b. The mass, vertical velocity and thermodynamic
variables are predicted at the cell centers. Following the stan-
dard practice, the vorticity and divergence are defined at the
corners and centers of the cells on the C grid, respectively
(see Fig. 1b). Since the mass and divergence are predicted at
the cell centers and the normal component of velocity is pre-

dicted at the cell walls, the C grid is well suited for control-
ling the divergent component of the velocity. Although the
same is not true for the rotational component of the veloc-
ity, some improvements have been developed in recent years
(e.g., Adcroft et al., 1999; Thuburn et al., 2009; Weller et al.,
2012).
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Discrete dispersion of the inertia–gravity waves on an f

plane

We define the discrete vorticity and divergence in terms of the
components of the horizontal velocity on the C grid (Fig. 1b)
as

(ωz)i+1/2,j+1/2 ≡ (19a)
1
d

(
ui+1/2,j − ui+1/2,j+1+ vi+1,j+1/2− vi,j+1/2

)
,

and

Di,j ≡
1
d

(
ui+1/2,j − ui−1/2,j + vi,j+1/2− vi,j−1/2

)
, (19b)

respectively. Then, the vertically and temporally continuous
and horizontally discrete versions of the vorticity and diver-
gence equations corresponding to Eqs. (2) and (3) can be
written as

∂(ωz)i+1/2,j+1/2

∂t
= (20)

− f
1
4

(
Di,j +Di+1,j +Di,j+1+Di+1,j+1

)
,

and

∂Di,j

∂t
= f

1
4

[
(ωz)i+1/2,j+1/2+ (ωz)i+1/2,j−1/2 (21)

+(ωz)i−1/2,j+1/2+ (ωz)i−1/2,j−1/2
]

−
1
d2

(
Pi+1,j +Pi−1,j +Pi,j+1+Pi,j−1− 4Pi,j

)
.

By using Eq. (16) and

φi+1/2,j+1/2 (z, t)= (22)

Re
{
8̂e

i
∼

[
k
(
i+ 1

2

)
d+`

(
j+ 1

2

)
d+mz−νt

]}
in Eqs. (20), (21) and (15), we obtain the discrete dispersion
equation for the inertia–gravity waves on the C grid as

ν2
=

N2 (ξ2k2
+ η2`2)

+µ2f 2
(
m2
+

1
4H 2

)
(
ξ2k2+ η2`2

)
+

(
m2+ 1

4H 2

) , (23)

where ξ and η are defined by Eq. (18) and

µ≡ cos
(

1
2
kd

)
cos

(
1
2
`d

)
. (24)

The factor µ2 appears in Eq. (23) as a result of the averaging
of the vorticity and divergence to each other’s grid points. As
k (and/or `) approaches kmax = `max = π/d , corresponding
to the SRHS, µ approaches zero, which reduces the effect
of rotation. For kmax = `max = π/d , so that µ= 0, the rota-
tion term completely vanishes. This means that the interac-
tions between the divergence and vorticity are broken. For

this case, the frequency obtained by Eq. (23) applies only to
the divergence and buoyancy, while the frequency associated
with the vorticity is arbitrary. We will return to this point in
Sect. 6.

The use of a higher-order Laplacian would slightly im-
prove the errors for the well-resolved modes, as discussed
earlier, but because of the presence of the averaging repre-
sented by µ, there would be no improvement of errors at the
SRHS. The same comment applies to averaging on all of the
other grids discussed in this paper.

The dispersion relations for the C grid are plotted in Fig. 3.
By comparing the four panels of the figure, the first thing
we see is that the character of the solutions changes with
the horizontal grid spacing. For the d = 2 km case shown in
Fig. 3a, the C-grid frequency solution is almost identical to
the Z-grid solution. The solutions differ for the modes with
vertical integer wavenumber n= 1947, for which the C-grid
solutions generate negative group velocities (∂ |ν|/∂k∗ < 0).
This means that the nonhydrostatic C-grid models using a
horizontal grid spacing of 2 km and a vertical grid spacing
of δz= 41 m or larger (with a domain depth of zT = 80 km)
produce wave solutions nearly as accurate as those of the
Z grid. There is one issue with the C grid that applies for
all horizontal grid spacings: the vorticity and divergence de-
couple at the SRHS (indicated with double dashed lines in the
figures) because this mode cannot recognize the effects of ro-
tation. Figure 3b–d show that for d = 10 km, d = 25 km and
d = 100 km the group velocities are reversed for modes shal-
lower than n= 390 (δz= 205 m) for 10 km horizontal grid
spacing, n= 156 (δz= 512 m) for 25 km case and n= 39
(δz= 2051 m) for 100 km horizontal grid spacing.

As the horizontal grid spacing of a C-grid model de-
creases, the solution approaches the true solution for an in-
creasingly wide range of vertical scales. This is because the
effects of rotation are unimportant for the shortest modes on
sufficiently fine horizontal grids. As a result, the effect of the
averaging factor µ2 becomes negligible in the inertial term,
and therefore the difference between the C- and Z-grid phys-
ical solutions virtually disappears. As the horizontal scale of
the modes approaches the SRHS, the coupling of vorticity
and divergence becomes weaker due to the averaging and fi-
nally disappears at the SRHS. We classify the mode with the
SRHS as dynamically inert.

These results generally support conclusions of previous
studies of the behavior of the C grid for the low horizontal
wavenumbers (Arakawa and Lamb, 1977; Randall, 1994).
However, the nonhydrostatic effects on deep modes with
small horizontal scales contribute to the reduction of the er-
rors with the C grid, as with the Z grid. The reasons for this
are discussed in Sect. 7.

The discretization of momentum equation based on the
C grid staggering on the hexagonal and triangular grids
presents the challenge of dealing with the unbalanced num-
ber of mass and velocity points. Gassmann (2011) shows that
the discrete system of linear equations can be closed for the
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Figure 3. Same as Fig. 2 but for the C grid.

hexagonal C grid yielding a similar discrete dispersion equa-
tion to the one for the Cartesian C grid given by Eq. (17).
Achieving a similar closure for the triangular C grid appears
to be more challenging than the hexagonal version, however.

3.3 Solutions on the D grid

We discuss the D grid here in preparation for a discussion
of the CD grid. The D grid was originally proposed for the

convenience of maintaining the geostrophic balance between
the wind and mass fields. The Mintz–Arakawa model devel-
oped around 1963 used the D grid (Akio Arakawa, private
communication, 2017), but we are not aware of any other at-
mospheric model that has used it since then. On the D grid,
the longitudinal component of velocity u and the meridional
component v are paired with the meridional and longitudi-
nal finite-difference derivatives of P , respectively (Fig. 1c).
However, the placement of the velocity components is con-

www.geosci-model-dev.net/11/1753/2018/ Geosci. Model Dev., 11, 1753–1784, 2018



1762 C. S. Konor and D. A. Randall: Impacts of the horizontal and vertical grids – Part 1

sistent with the placement of the divergence at the corners of
the grid cells. This leads to the most unattractive and prob-
lematic feature of the D grid: the mass and/or divergence has
to be averaged in the horizontally discrete continuity equa-
tion.

On the D grid, the vertical velocity can be placed either at
the centers with the mass and thermodynamic variables or at
the corners with the divergence. In this paper, we primarily
discuss the former option, in which the vertical velocity is
placed at the centers, but we discuss the latter at the end of
this subsection.

Discrete dispersion of the inertia–gravity waves on an f

plane

We define the discrete vorticity and divergence from the com-
ponents of the horizontal velocity on the D grid (Fig. 1c) as

(ωz)i,j ≡ (25a)
1
d

(
vi−1/2,j − vi+1/2,j + ui,j−1/2− ui,j+1/2

)
,

and

Di+1/2,j+1/2 ≡ (25b)
1
d

(
ui+1,j+1/2− ui,j+1/2+ vi+1/2,j+1− vi+1/2,j

)
,

respectively. The vertically and temporally continuous and
horizontally discrete versions of vorticity and divergence
equations that are, respectively, given by Eqs. (2) and (3) can
be written as

∂(ωz)i,j

∂t
= − f

1
4

(
Di−1/2,j−1/2+Di+1/2,j−1/2 (26)

+Di−1/2,j+1/2+Di+1/2,j+1/2
)
,

and

∂

∂t
Di+1/2,j+1/2 = (27)

f
1
4

[
(ωz)i+1,j+1+ (ωz)i,j+1+ (ωz)i+1,j + (ωz)i,j

]
−

1
d2

(
P i+3/2,j+1/2+P i+1/2,j−1/2+P i+1/2,j+3/2

+P i−1/2,j+1/2− 4P i+1/2,j+1/2
)
,

where P i+/2,j+1/2 ≡
1
4

(
Pi,j +Pi+1,j +Pi,j+1+Pi+1,j+1

)
.

The discrete version of Eq. (7) is(
∂2

∂t2
+N2

)[
1
4

(
Di−1/2,j−1/2+Di+1/2,j−1/2 (28)

+Di−1/2,j+1/2+Di+1/2,j+1/2
)]

−

[
∂2

∂z2 −

(
1

2ρ0

∂ρ0

∂z

)2
]
∂

∂t
Pi,j = 0.

Using Eqs. (16) and (22) in Eqs. (26)–(28), we obtain the
discrete dispersion relation for the inertia–gravity modes on
the D grid as

ν2
=

µ2N2 (ξ2k2
+ η2`2)

+µ2f 2
(
m2
+

1
4H 2

)
µ2
(
ξ2k2+ η2`2

)
+

(
m2+ 1

4H 2

) , (29)

where ξ and η are defined by Eq. (18), and µ is defined by
Eq. (24). As with the C grid, the inertial term is multiplied by
the averaging factor µ2 in Eq. (29). The Laplacian terms are
multiplied by µ2 because the discrete Laplacian in Eq. (27)
involves averaging. As discussed below, the multiplication of
the gravitational and inertial terms by µ2 in the numerator of
Eq. (29) creates a stationary mode at the SRHS.

The frequency plots for the D grid are shown in Fig. 4.
Since the inertia–gravity solutions are qualitatively similar
for all horizontal grid spacings (unlike the solutions on the
C grid), the following discussion applies to all grid spacings.
The D-grid solutions for all vertical scales converge to a dy-
namically inert solution in all variables at the SRHS, while
the true solutions are oscillating modes (as indicated by the
double dashed lines in Fig. 4). As mentioned above, the zero
frequency at the SRHS is a result of the factor µ2 in the nu-
merator of Eq. (29). Since all variables have zero frequency,
with or without rotation, the impact of the dynamically inert
modes can be more severe than with the C grid. As a conse-
quence, the group velocities of the D-grid solutions are badly
reversed near the SRHS.

These results are in agreement with the conclusions of
Arakawa and Lamb (1977) and Randall (1994) for the D grid.

The configuration of the D grid for which the vertical ve-
locity is defined at the corners, where the divergence is pre-
dicted, yields a dispersion relation with a numerator identical
to that of Eq. (29) but without µ2 in the denominator. The
frequency plots for this case are qualitatively similar to those
shown in Fig. 4; they are omitted here for brevity. A detailed
discussion of this version of the D grid, including the corre-
sponding frequency plots, can be found in the Supplement.

3.4 Solutions on the CD grid

The CD grid proposed by Lin and Rood (1997) was first
used in a flux-form semi-Lagrangian dynamical core. It
is now also used in Geophysical Fluid Dynamics Labo-
ratory (GFDL)’s Finite-Volume Cubed-Sphere Dynamical
Core (FV3) and in the National Center for Atmospheric
Research (NCAR) Community Atmosphere Model (CAM).
FV3 will also be used in the next-generation numerical pre-
diction model of the US National Centers for Environmen-
tal Prediction. The CD grid is built on a predictor–corrector
time-integration scheme, in which the C- and D-grid dis-
cretizations are used for the predictor and corrector steps,
respectively (see Fig. 1d). Because of this, an analysis of the
dispersion properties of the CD grid has to include temporal
discretization as well as spatial discretization.
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Figure 4. Same as Fig. 2 but for the D grid.

Lin and Rood (1997) asserted that the CD grid combines
the C grid’s superiority for the prediction of the divergent part
of velocity with the D grid’s superiority for the prediction of
the rotational part. They claimed that the solutions of the CD
grid should be close to those of the Z grid. Skamarock (2008)
examined the normal modes of the linearized shallow-water
equations discretized on the CD grid for the time-continuous
case and concluded that the linear properties of the CD grid
resemble those of the D grid rather than the Z or C grids.

In this section, we examine the performance of the CD
grid as inferred from a normal-mode analysis using second-
order accurate differences. As mentioned earlier, the main
conclusions of our analysis apply without change to systems
discretized with higher-order schemes. Guided by the two
papers mentioned above, we temporally and horizontally dis-
cretize the anelastic equations on the CD grid. For the predic-
tor step, we use the horizontally discrete vorticity and diver-
gence equations on the C grid, as given by Eqs. (20) and (21),
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respectively. Then we horizontally discretize the vertical mo-
mentum equation (Eq. 4), the buoyancy equation (Eq. 5) and
the continuity equation (Eq. 6). For the corrector step, we
use the horizontally discrete vorticity and divergence equa-
tions on the D grid, as given by Eqs. (26) and (27), respec-
tively. We also horizontally discretize the vertical momentum
equation (Eq. 4), and the buoyancy equation (Eq. 5) and con-
tinuity equation (Eq. 6) on the D grid. For the predictor and
corrector steps, the temporal discretizations can be summa-
rized in compact form as

φ(∗) = φ(n)+
1
2
τF (n), (30a)

and

φ(n+1)
= φ(n)+ τG(∗), (30b)

respectively. In Eqs. (30a) and (30b), φ is an arbitrary vari-
able, the superscripts (n) and (n+ 1) denote the time steps
(the notational conflict with the vertical wavenumber should
not be confusing), (∗) denotes a provisional value, τ is the
time step, and F and G represent the tendency terms. Equa-
tion (30a) indicates that the provisional values are obtained
by advancing a half a time step. All variables denoted by (n)
and (n+ 1) are defined on the D grid, and those denoted by
(∗) are defined on the C grid. If Eq. (30a) is applied to the
vorticity and divergence equations on the C grid, the initial
values with superscript (n) need to be averaged to the C grid
from the D grid. It should be noted that, on the D grid, the
provisional values of vorticity (and divergence) do not have
to be averaged for the use in the tendency term of the diver-
gence (and vorticity) equations. We seek solutions of these
equations in the following forms:

φ
(∗)
i,j (z)≡ Re

{
8̂(∗)e

i
∼
(kdi+`dj+mz)

}
(31a)

and

φ
(∗)
i+1/2,j+1/2(z)= Re

{
8̂(∗)e

i
∼
[k(i+1/2)d+`(j+1/2)d+mz]

}
,

and

φ
(n)
i,j (z)≡ Re

{
8̂(n)e

i
∼
(kdi+`dj+mz)

}
(31b)

and

φ
(n)
i+1/2,j+1/2 (z)= Re

{
8̂(n)e

i
∼
[k(i+1/2)d+`(j+1/2)d+mz]

}
,

where (n) is the time step counter, and (∗) denotes the provi-
sional value of the complex amplitude of the variables after
half a time step of integration in the prediction step on the
C grid.

Skipping a few derivation steps (see the Supplement), we
can write the discrete equations that predict the complex am-
plitudes as follows:

Predictor step on the C grid:

ω̂(∗)z = µω̂
(n)
z −

1
2
τf D̂(n), (32)

D̂(∗) = µD̂(n)+
1
2
τ
(
f ω̂(n)z +L

2P̂C

)
, (33)

ŵ(∗) = ŵ(n)+
1
2
τ

[
−

(
i
∼
m+

1
2H

)
P̂C+ B̂

(n)

]
, (34)

B̂(∗) = B̂(n)−
1
2
τN2ŵ(n), (35)

D̂(∗)+

(
i
∼
m−

1
2H

)
ŵ(∗) = 0, (36)

In (33), L2
≡ ξ2k2

+ η2`2, (37)

Corrector step on the D grid:

ω̂(n+1)
z = ω̂(n)z − τf D̂

(∗), (38)

D̂(n+1)
= D̂(n)+ τ

(
f ω̂(∗)z +µL

2P̂D

)
, (39)

ŵ(n+1)
= ŵ(n)+ τ

[
−

(
i
∼
m+

1
2H

)
P̂D+ B̂

(∗)

]
, (40)

B̂(n+1)
= B̂(n)− τN2ŵ(∗), (41)

µD̂(n+1)
+

(
i
∼
m−

1
2H

)
ŵ(n+1)

= 0, (42)

where ξ and ηare given by Eq. (18), µ is given by Eq. (24).
In Eqs. (32) and (33), the averaging factor µ appears as a

result of averaging of the vorticity and divergence from the D
grid to the C grid. The provisionally predicted vorticity ω̂(∗)z
and divergence D̂(∗) reside at the corners and the centers,
respectively. They are used without averaging in the diver-
gence equation (Eq. 39) and vorticity equation (Eq. 38) on
the D grid. The pressures on the two grids, denoted by the
subscripts C and D, are diagnosed at the cell centers with the
buoyancy and vertical velocity, but these two pressures are,
in principal, different from each other. Since the pressure is
a diagnostic variable, no time stamp is included.

We have tested several variations of the predictor–
corrector time-integration algorithm outlined above. There
are two main reasons for doing so. First, we do not have ac-
cess to the details of how the Lin and Rood (1997) scheme is
implemented, and second, we want to examine the extent to
which the solutions depend on the time-integration schemes.
We hope that the results of our analysis will provide some
guidance to future users of the CD grid. The construction of
the five schemes is summarized in Table 1.

Scheme I is the simplest. Its equations are given by
Eqs. (32)–(42), with the assumption that P̂ ≡ P̂C = P̂D. To
derive the dispersion equations, we first eliminate the vari-
ables with (∗) in the correction-step equations by using the
equations from the predictor step. Then we use

8̂(n+1)
= e
− i
∼
ντ
8̂(n), (43)
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Table 1. A summary of the five schemes that we constructed using the CD grid.

Scheme I Scheme II Scheme III Scheme IV Scheme V

P̂ ≡ P̂C = P̂D P̂C and P̂D are P̂C and P̂D are P̂C and P̂D are P̂C and P̂D are
treated separately treated separately treated separately treated separately

f ω̂
(∗)
z is replaced by B̂(n)is replaced by f ω̂

(∗)
z is replaced by

µf ω̂
(n+1)
z in (39) B̂(∗) in (34) µf ω̂

(n+1)
z in (39)

B̂(∗) is replaced by B̂(∗) is replaced by B̂(∗) is replaced by
B̂(n+1) in (40) B̂(n+1) in (40) B̂(n+1) in (40)

ŵ(∗) is replaced by f ω̂
(n)
z is replaced by

ŵ(n+1) in (41) µf ω̂
(∗)
z in (33)

where 8̂ represents ω̂z, D̂ and B̂, to obtain the discrete dis-
persion relation for complex frequencies as

µ2
[(
e
− i
∼
ντ
− σN

)2
+ τ 2N2

]
L2 (44)

+

[(
e
− i
∼
ντ
− σf

)2
+µ2τ 2f 2

]
σ 2
m = 0,

where we use the following definitions to shorten the equa-
tion:

σN ≡ 1−
1
2
τ 2N2, (45)

σf ≡ 1−
1
2
τ 2f 2

and σ 2
m ≡m

2
+

1
4H 2 .

The (complex) dispersion equation (Eq. 44) is obtained
by requiring nontrivial solutions for D̂. The nontrivial so-
lutions for ω̂z and B̂ produce an additional mode, satisfy-
ing e

− i
∼
ντ
− 1= 0, which corresponds to a steady and neu-

tral mode associated with the steady balanced state. By using
e
− i
∼
ντ
−1= 0 in Eq. (44), where νr and νi are the frequency

and the rate of amplification/decay of a mode, respectively,
we obtain the dispersion relations that govern the frequency
and the amplification factor as

e2νiτ
(
µ2L2

+ σ 2
m

)
cos(2νrτ) (46a)

− 2eνiτ
(
µ2σNL

2
+ σf σ

2
m

)
cos(νrτ)

+

(
σ 2
N + τ

2N2
)
µ2L2

+

(
σ 2
f + τ

2µ2f 2
)
σ 2
m = 0,

and

eνiτ =
2
(
µ2σNL

2
+ σf σ

2
m

)(
µ2L2+ σ 2

m

) sin(νrτ)
sin(2νrτ)

, (46b)

respectively.

A Newton–Raphson iteration is used to find the frequency
νr that satisfies Eqs. (46a) and (46b) simultaneously. As a
check, we also use a simple search algorithm to find the
frequency. The two methods give the virtually the same
unique solution unless the time step τ is very large. Al-
though we obtain real frequencies for moderately unsta-
ble amplification factors (eνiτ > 1), we limit the discussion
here to near-neutral cases (eνiτ ≈ 1). Before discussing the
results, we mention that the dispersion relations given by
Eqs. (46a) and (46b) yield a solution satisfying νr = 0 for the
SRHS (µ= 0), which indicates that the discrete solutions in-
clude a dynamically inert mode. The solutions of Eq. (46b)
with νr → 0 and µ= 0 show that this mode is very weakly
damped (eνiτ = σf < 1). Recall that σf ≡ 1− 1

2τ
2f 2, so that

the damping rate is considered negligible for the time steps
typically used in atmosphere models.

The steady balanced solution can be obtained by assuming
nondivergent motion (D̂(n+1) = D̂(n) = 0) and a steady and
quasi-static state (ω̂(n+1)

z − ω̂
(n)
z = 0 and B̂(n+1)− B̂(n) = 0).

To satisfy Eq. (42), the vertical velocity must also vanish
(ŵ(n+1) = ŵ(n) = 0) in the balanced state. We obtain the
unique balanced solution given by

f ω̂z =−L
2P̂ , (47)

f

(
m2
+

1
4H 2

)
ω̂z =

(
i
∼
m−

1
2H

)
L2B̂

and
(
i
∼
m+

1
2H

)
P̂ = B̂.

These are the discrete equivalents of the continuous rela-
tions given by Eq. (9a)–(9c). We conclude that the balanced-
state solution is maintained by Scheme I.

Results

The results presented in this section, as inferred from our
normal-mode analyses, demonstrate that the dispersion of the
inertia–gravity waves produced on the CD grid with various
time-integration schemes is in all cases close to the one pro-
duced by the D grid. This is in agreement with the conclu-
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Figure 5. Same as Fig. 2 but for the CD grid using Scheme I.

sions of Skamarock (2008). For some of the time-integration
choices (not discussed here), we could not uniquely deter-
mine a steady balanced-state solution. For some choices, we
could not even find real frequencies.

The frequency plots for the inertia–gravity modes on the
CD grid with Scheme I are shown in Fig. 5. The time
steps τ used in computing these frequencies are 50, 120,
150 and 210 s for the 2, 10, 25 and 100 km cases, respec-
tively. Schemes II, III, IV and V produce very similar fre-

quency plots (not shown here but included in the Supple-
ment). Schemes III and V pass the provisional values of di-
vergence from the C grid to D grid but do not pass the pro-
visional values of vorticity. Thus, the vorticity is solely pre-
dicted on the D grid with these schemes. All of these plots
show a strong qualitative resemblance to those for the D grid
shown in Fig. 4, and therefore the discussion presented for
the D-grid case can be applied to the CD grid as well.
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Solutions on the DC grid

Our normal-mode analysis shows that, in agreement with the
results of Skamarock (2008), the CD grid behaves similarly
to the D grid rather than the C grid. One possible explana-
tion is that the dispersion of the inertia–gravity waves on the
CD grid is almost entirely dominated by the corrector step.
To test this hypothesis, we constructed a “DC grid” by re-
versing the integration sequence used in the CD grid. With
the DC grid, the D and C grids are used in the predictor and
corrector steps, respectively. One of the solutions that cor-
responds to Scheme II (discussed above) produces a C-grid-
like discrete dispersion relation for the DC-grid sequence. A
detailed discussion of the DC grid can be found in the Sup-
plement.

We do not advocate the use of the DC grid because we do
not think it has any advantage over the C grid, and the C grid
is both simpler and computationally less expensive than the
DC grid.

3.5 Solutions on the A grid

The A grid is a completely unstaggered grid on which the
mass and the zonal and meridional wind components are pre-
dicted/diagnosed at the same grid points (see Fig. 1e). The
quadrilateral A grid can be viewed as the superposition of
four non-interacting C grids or Z grids (see the Supplement).
We are not aware of any major model that currently uses the
quadrilateral A grid, but the icosahedral A grid is used by the
Nonhydrostatic ICosahedral Atmospheric Model (NICAM)
(Satoh et al., 2008), and the Flow-Following Icosahedral
Model (FIM) and Nonhydrostatic Icosahedral Model (NIM)
developed at the National Oceanic and Atmospheric Ad-
ministration (NOAA) Earth System Research Laboratory
(ESRL) (Lee and MacDonald, 2009).

Discrete dispersion of the inertia–gravity waves on an f

plane

We define the discrete vorticity and divergence from the com-
ponents of the horizontal velocity on the A grid shown in
Fig. 1e as

(ωz)i,j ≡
1

2d

(
vi+1,j − vi−1,j − ui,j+1+ ui,j−1

)
, (48a)

and

Di,j ≡
1

2d

(
ui+1,j − ui−1,j + vi,j+1− vi,j−1

)
, (48b)

respectively. The vertically and temporally continuous and
horizontally discrete versions of the vorticity and divergence
equations, given by Eqs. (2) and (3), respectively, can be
written as

∂

∂t
(ωz)i,j =−fDi,j , (49)

and

∂

∂t
Di,j = (50)

f (ωz)i,j −
1

4d2

(
Pi+2,j +Pi−2,j +Pi,j+2+Pi,j−2− 4Pi,j

)
.

By including Eq. (15), which is also the discrete version of
Eq. (7) on the A grid, we obtain the discrete dispersion re-
lation for the inertia–gravity modes on the A grid (following
derivations parallel to those for the Z, C and D grids) as

ν2
=

N2 (̃ξ2k2
+ η̃2`2)

+ f 2
(
m2
+

1
4H 2

)
(̃
ξ2k2+ η̃2`2

)
+

(
m2+ 1

4H 2

) , (51)

where

ξ̃ ≡
sin(kd)
kd

and η̃ ≡
sin(`d)
`d

. (52)

The dispersion relation for the A grid resembles that of the
Z grid except that the factors ξ and η that arise with the Z grid
are replaced by ξ̃ and η̃, respectively. The factors ξ̃ and η̃ be-
come zero for the SRHS (kd = `d = π), which yields ν = f
for all vertical scales. The modes with the SRHS oscillate as
purely inertial modes. In the absence of rotation, these modes
do not propagate or oscillate. Although it cannot be detected
by the normal-mode analysis, the A grid generates multiple,
linearly decoupled (or non-unique) solutions. This point is
discussed further in Sect. 3.8. We will show the plots of the
frequencies obtained with the A grid in Sect. 3.9, along with
the corresponding plots for the E and B grids.

3.6 Solutions on the E grid

The E grid can be viewed as the superposition of two C grids,
in which the cell centers of one C grid are placed at the cor-
ners of a second C grid, as indicated by solid boundary lines
in Fig. 1f. On the resulting E grid, the zonal and meridional
components of the horizontal velocity are predicted at the
same points; this can be seen as an advantage over the C grid.
As noted by Arakawa and Lamb (1977), the E grid is identi-
cal to a B grid rotated by 45◦ (shown in Fig. 1g) with a grid
spacing of d/

√
2. The borders of the cells of the B grid are

indicated by the dashed lines in Fig. 1f. We will see next that
from the vorticity and divergence point of view the E grid
can also be viewed as a superposition of two independent
and non-interacting Z grids.

The E grid was used in operational models of the US Na-
tional Centers for Environmental Prediction for more than
three decades (Janjic, 1984). We are not aware of any model
that currently uses the E grid.

Discrete dispersion of the inertia–gravity waves on an f

plane

We first define the discrete vorticity and divergence from the
components of the horizontal velocity for the integer (i,j)
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and half-integer (i+1/2, j+1/2) center points of the E grid
shown in Fig. 1f. We than write the discrete versions of
the divergence, vorticity and mass equations, respectively,
Eqs. (2), (3) and (7), for the integer and half-integer points
as follows:

Equations for the centers (integer points) of E grid:

(ωz)i,j ≡ (53a)
1
d

(
vi+1/2,j − ui,j+1/2− vi−1/2,j + ui,j−1/2

)
,

Di,j ≡
1
d

(
ui+1/2,j − vi,j−1/2+ vi,j+1/2− ui−1/2,j

)
, (53b)

∂

∂t
(ωz)i,j =−fDi,j (54)

∂Di,j

∂t
= (55)

f (ωz)i,j −
1
d2

(
Pi+1,j +Pi−1,j +Pi,j+1+Pi,j−1− 4Pi,j

)
,(

∂2

∂t2
+N2

)
Di,j =−

(
m2
+

1
4H 2

)
∂Pi,j

∂t
, (56)

Equations for the centers (half-integer points) of E grid:

(ωz)i+1/2,j+1/2 ≡ (57a)
1
d

(
vi+1,j+1/2− ui+1/2,j+1− vi,j+1/2+ ui+1/2,j

)
,

Di+1/2,j+1/2 ≡ (57b)
1
d

(
ui+1,j+1/2− vi+1/2,j + vi+1/2,j+1− ui,j+1/2

)
,

∂

∂t
(ωz)i+1/2,j+1/2 =−fDi+1/2,j+1/2, (58)

∂Di+1/2,j+1/2

∂t
= f (ωz)i+1/2,j+1/2 (59)

−
1
d2

(
Pi+3/2,j+1/2+Pi−1/2,j+1/2

+Pi+1/2,j+3/2+Pi+1/2,j−1/2

−4Pi+1/2,j+1/2
)
,

(
∂2

∂t2
+N2

)
Di+1/2,j+1/2 = (60)

−

(
m2
+

1
4H 2

)
∂Pi+1/2,j+1/2

∂t
.

By using Eq. (16) or Eq. (22) separately in Eqs. (54)–
(56) and (58)–(60), we obtain the same discrete dispersion

relation for the inertia–gravity modes at the integer and half-
integer points as

ν2
=

N2 (ξ2k2
+ η2`2)

+ f 2
(
m2
+

1
4H 2

)
(
ξ2k2+ η2`2

)
+

(
m2+ 1

4H 2

) , (61)

where the factors ξ and η are defined by Eq. (18). The dis-
persion equation (Eq. 61) is identical to that of the Z grid
given by Eq. (17). The important difference with the E grid,
however, is that there are two solutions: one for the integer
points and the other for the half-integer points. This can be
seen by a comparison of the discrete equations for the in-
teger points (Eqs. 54–56) with the corresponding equations
for the half-integer points (Eqs. 58–60). The discrete equa-
tions for the integer points use only information from integer
points, and those for the half-integer points use only infor-
mation from the half-integer points. Of course, this means
that the solution includes computational modes arising from
multiple (or non-unique) solutions. Further discussion of the
computational-mode on the E grid is given in Sect. 3.8.

3.7 Solutions on the B grid

On the B grid, the mass and thermodynamic variables are
predicted at the cell centers while the horizontal velocity
components are predicted at the cell corners (see Fig. 1g).
The fact that the two components of the horizontal velocity
are predicted at the same points is convenient for the Coriolis
terms of the momentum equations. In the linearized system
considered here, the vorticity and divergence are both pre-
dicted at the cell centers.

A version of the Goddard Institute for Space Studies
global circulation model used the B grid (Hansen et al.,
1983). The B grid has been used in many ocean models and
can perform as well as the C grid in ocean models because
the Rossby radius of deformation can be smaller than the grid
spacing in ocean applications (Randall, 1994; Arakawa and
Lamb, 1977). This is now changing as ocean models move to
higher horizontal resolutions (e.g., Adcroft et al., 2016).

Discrete dispersion of the inertia–gravity waves on an f

plane

We define the discrete versions of the vorticity and diver-
gence on the B grid shown in Fig. 1g as

(ωz)i,j ≡
1

2d

(
vi+1/2,j+1/2+ vi+1/2,j−1/2 (62a)

−vi−1/2,j+1/2− vi−1/2,j−1/2
)

−
1

2d

(
ui+1/2,j+1/2+ ui−1/2,j+1/2

−ui+1/2,j−1/2− ui−1/2,j−1/2
)
,
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and

Di,j ≡
1

2d

(
ui+1/2,j+1/2+ ui+1/2,j−1/2 (62b)

−ui−1/2,j+1/2− ui−1/2,j−1/2
)

+
1

2d

(
vi+1/2,j+1/2+ vi−1/2,j+1/2

−vi+1/2,j−1/2− vi−1/2,j−1/2
)
,

respectively. The vorticity equation is identical to that of the
Z grid (Eq. 13) and E grid (Eq. 56). The divergence equation
for the B grid is

∂

∂t
Di,j =f (ωz)i,j −

1
2d2

(
Pi+1,j+1+Pi+1,j−1 (63)

+Pi−1,j+1+Pi−1,j−1− 4Pi,j
)
.

The discrete Laplacian in the divergence equation (Eq. 63)
uses information from the cells sharing corners instead of
walls, which distinguishes the B grid from of the all other
grids considered here. The B grid also uses the same mass
equation as the Z-grid equation (Eq. 15) and E-grid equa-
tion (Eq. 56), which are also used with C and A grids. By
using Eq. (16) in the vorticity equation (Eq. 13), divergence
equation (Eq. 63) and mass equation (Eq. 56), we obtain the
discrete dispersion relation for the inertia–gravity modes of
the B grid as

ν2
= (64)

N2
(
ξ2k2
+ η2`2

−
1
2d

2ξ2k2η2`2
)
+ f 2

(
m2
+

1
4H 2

)
(
ξ2k2+ η2`2− 1

2d
2ξ2k2η2`2

)
+

(
m2+ 1

4H 2

) ,

where the factors ξ and η are defined by Eq. (18). The Lapla-
cian term ξ2k2

+ η2`2
−

1
2d

2ξ2k2η2`2 becomes zero for the
smallest resolvable horizontal scales (kd = `d = π), which
leads to ν = f for all vertical scales. As with the A grid, the
modes with the smallest resolvable horizontal scales appear
as purely inertial modes. There are also multiple solutions
with the B grid, as well as computational modes, which will
be discussed next.

3.8 Computational modes on the A, B and E grids

The most easily recognizable feature of the computational
modes is that they are dynamically inert at the SRHS. Con-
sider the Laplacian operators of the A and B grids used on
the right-hand sides of Eqs. (50) and (63), respectively. The
Laplacian operator of the A grid yields a zero result for pat-
terns (1), (2), (3) and (4) shown in Fig. 6, presuming that the
red and blue colors correspond to same magnitudes with op-
posite signs (also see Fig. 1e). These patterns are caused by
the existence of four independent solutions as demonstrated
in the Supplement. Because these four patterns give a Lapla-
cian of zero, they remain unchanged. They are the computa-
tional modes of the A grid. On the other hand, the Laplacian

Figure 6. Computational mode patterns for the A, B and E grids.

of the B grid gives zero results for pattern (3), and therefore
this pattern is the computational mode of the B grid. The
solutions on the red and blue grid networks are completely
decoupled from each other on the A and B grids (also see
Fig. 1g). For a rotating case, the A and B grids produce iner-
tial oscillations at all grid points.

The E grid holds two decoupled solutions: one for the
network of centers (say red cells) governed by Eqs. (52)–
(56) and the other for the network of corners (say blue cells)
governed by Eqs. (58)–(60). Pattern (5) is the computational
mode of the E grid. These decoupled solutions are also indi-
cated by different colors in Fig. 1f.

The A grid can produce four independent and non-
interacting (non-unique) solutions as indicated with different
colors in Fig. 1e, and the B and E grids can produce two in-
dependent and non-interacting (non-unique) solutions as in-
dicated with different colors in Fig. 1f and g, respectively. To
avoid the separation of solutions, a horizontal mixing process
such as diffusion is needed, but such a process can have ad-
verse side effects such as unrealistic dissipation of the small-
scale physical modes.

The Z, C, D and CD grids do not have independent and
non-interacting solutions like those of the A, B and E grids.
The C, D and CD grids do have dynamically inert modes for
the SRHS because of the averaging of the variables.

3.9 An illustrative discussion of the dispersion of
modes obtained with the A, E and B grids

The dispersion relations of the A-, E- and B-grid solutions
are free from the averaging factor µ (see Eqs. 51, 61 and 64)
because these grids do not require averaging in their diver-
gence and mass equations. All these grids yield ν = f at
their SRHS, and consequently their frequency plots resemble
each other. The frequency plots of the inertia–gravity modes
for the A, E and B grids (see Fig. 1e, f and g) are shown
in Figs. 7, 8 and 9, respectively. The horizontal grid spacing√

2d is used in the E grid plots to maintain the same density
of cell centers as the other grids. The frequency of all vertical
scales, particularly deep vertical modes, makes a very sharp
change near the SRHS. This sharp change causes the group
velocity to reverse severely near the SRHS for all vertical
modes.

In light of the discussion in the previous subsection, we
conclude that the frequencies of the modes obtained using
the A, E and B grids are not unique. Solutions as shown in
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Figure 7. Same as Fig. 2 but for the A grid.

Fig. 6 at the neighboring grid points can be decoupled from
each other although they satisfy the same dispersion relation.

The conclusions of our normal-mode analysis of the non-
hydrostatic anelastic inertia–gravity wave solutions obtained
with the A, E and B grids are not substantially different from
the conclusions of earlier studies of the normal-modes of the
shallow-water equations as described by many authors, in-
cluding Arakawa and Lamb (1977) and Randall (1994).

4 Vertical discretization of linear anelastic equations
on the L and CP grids and discrete dispersion
equations

There are two vertical grids available for the vertical dis-
cretization of models based on the height and pressure verti-
cal coordinates. These are the Lorenz grid (or L grid; Lorenz,
1960) and the Charney–Phillips (or CP grid; Charney and
Phillip, 1953). The vertical grid used with isentropic coordi-
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Figure 8. Same as Fig. 2 but for the E grid.

nates is analogous to the CP grid (see Konor and Arakawa,
1997, 2000; Thuburn and Woolings, 2004; Toy and Randall,
2007). The difference between the L and CP grids is that the
L grid predicts the thermodynamic variables (in this paper the
buoyancy) at the model “layers”, which are denoted by the
dashed lines in Fig. 10, along with the horizontal momentum
or vorticity and divergence and mass variable or pressure.
The CP grid, on the other hand, predicts the thermodynamic

variables at the model “interfaces”, which are the solid lines
in Fig. 10, along with the vertical momentum.

The Lorenz (1960) grid is the most commonly used ver-
tical grid for atmospheric models. Notable examples of the
nonhydrostatic models that use the L grid are the Model
for Prediction Across Scales (MPAS) (Skamarock et al.,
2012) and NICAM (Satoh et al., 2008). Many studies (e.g.,
Arakawa and Moorthi, 1988; Hollingsworth, 1995; Arakawa
and Konor, 1996) have raised issues with the L grid. All of

www.geosci-model-dev.net/11/1753/2018/ Geosci. Model Dev., 11, 1753–1784, 2018



1772 C. S. Konor and D. A. Randall: Impacts of the horizontal and vertical grids – Part 1

Figure 9. Same as Fig. 2 but for the B grid.

these studies find evidence of a dynamically inert mode in
the vertical structure of the potential temperature. Girard et
al. (2014) report an unusually high number of occurrences
of the 2 dz wave in the vertical structure of simulations with
GEM (a nonhydrostatic model), which is consistent with a
dynamically inert mode. Arakawa and Moorthi (1988) and
Arakawa and Konor (1996) additionally find evidence of a
spurious rapid growth of short baroclinic modes in the L-grid

models. We will not discuss this subject further because it is
outside the scope of this paper.

The alternative to the L grid is the CP grid, which is free
of these problems. Examples of nonhydrostatic models that
use the CP grid are the UK Met Office models (Wood et al.,
2014) and GEM (Girard et al., 2014). Toy and Randall (2009)
also use the CP grid in their vertical discretization.

Our purpose in this section is to present a comparison of
the L and CP grids with the same normal-mode analysis that
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we used for the comparison of the horizontal grids, so that we
can assess the relative impact of the horizontal and vertical
grids on the solutions of the nonhydrostatic anelastic equa-
tions.

4.1 L grid

The vertically discrete, temporally and horizontally contin-
uous versions of the vorticity equation (Eq. 2), divergence
equation (Eq. 3), vertical momentum equation (Eq. 4), ther-
modynamic equation (Eq. 5) and continuity equation (Eq. 6)
on the L grid shown in Fig. 10 can be written as

∂(ωz)k

∂t
=−fDk, (65)

∂Dk

∂t
= f (ωz)k −∇

2
HPk, (66)

∂wk+1/2

∂t
=−

Pk+1−Pk

δz
+

(
1

2ρ0

∂ρ0

∂z

)
Pk+1+Pk

2
(67)

+
Bk +Bk+1

2
,

∂Bk

∂t
=−N2wk+1/2+wk−1/2

2
, (68)

and

Dk +
wk+1/2−wk−1/2

δz
(69)

+

(
1

2ρ0

∂ρ0

∂z

)
wk+1/2+wk−1/2

2
= 0,

respectively. Recall that (1/ρ0)(∂ρ0/∂z)=−1/H for an
isothermal atmosphere. By using

φk (x,y, t)= Re
{
8̂e

i
∼
(kx+`y+mδzk−νt)

}
(70)

and

φk+1/2 (x,y, t)= Re
{
8̂e

i
∼
[kx+`y+mδz(k+1/2)−νt]

}
in Eqs. (65)–(69), we obtain the discrete dispersion relation
for the inertia–gravity modes on the L grid as

ν2
=

µ2
zN

2 (k2
+ `2)

+ f 2
(
ζ 2m2

+µ2
z

1
4H 2

)
(
k2+ `2

)
+

(
ζ 2m2+µ2

z
1

4H 2

) , (71)

where

ζ ≡
1

1
2mδz

sin
(

1
2
mδz

)
and µz ≡ cos

(
1
2
mδz

)
. (72)

The vertical averages of buoyancy in the vertical momen-
tum equation (Eq. 67) and the vertical velocity in the ther-
modynamic equation (Eq. 68) both result in the appearance

Figure 10. The (a) L and (b) CP grids and the distribution of vari-
ables.

of the averaging factor µ2
z in the gravity term, which pre-

vents the smallest vertical scale (mδz= π) from recognizing
the stability because µ2

z = 0 for this scale. This permits a dy-
namically inert solution in which the buoyancy is completely
decoupled from the rest of the variables. The frequency ob-
tained from Eq. (71) in this case applies to the variables other
than the buoyancy. The term 1/4H 2 is multiplied by the aver-
aging factor µ2

z because the pressure and vertical velocity are
vertically averaged in Eqs. (67) and (69), respectively, which
slightly modifies the dispersion.

4.2 CP grid

The vertically discrete, and temporally and horizontally con-
tinuous, versions of the vorticity, divergence and continu-
ity equations on the CP grid shown in Fig. 10 are given by
Eqs. (65), (66) and (69), and the vertical momentum and ther-
modynamic equations can be written as

∂wk+1/2

∂t
= (73)

−
Pk+1−Pk

δz
+

(
1

2ρ0

∂ρ0

∂z

)
Pk+1+Pk

2
+Bk+1/2,

and

∂Bk+1/2

∂t
=−N2wk+1/2, (74)

respectively. Following the procedure for the L-grid case, we
obtain the discrete dispersion relation for the inertia–gravity
modes as

ν2
=

N2 (k2
+ `2)

+ f 2
(
ζ 2m2

+µ2
z

1
4H 2

)
(
k2+ `2

)
+

(
ζ 2m2+µ2

z
1

4H 2

) , (75)

where µ2
z and ζ 2 are given by Eq. (72). The main difference

between the dispersion equation for the CP grid and that for
the L grid is that the averaging factor µ2

z does not appear in
the gravity term of the CP-grid dispersion equation given by
Eq. (75), and thus the dynamically inert mode obtained with
the L grid does not exist on the CP grid.

Figure 11 shows the frequencies as functions of com-
posite horizontal wavenumber of inertia–gravity modes ob-
tained with the L and CP grids. The true frequencies are
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Figure 11. Plots of (a, d) true frequencies and discrete frequencies for the (b, e) L and (c, f) CP grids. The upper and lower panels show the
plots for the maximum vertical integer wavenumbers of nmax = 320 (δz= 250 m) and nmax = 80 (δz= 1 km), respectively.

also shown in separate panels of the figure. The figure shows
the results for two vertical integer wavenumbers (or num-
ber of layers), namely nmax = 320 and 80. We included addi-
tional frequency lines corresponding to more integer vertical
wavenumbers than were used in the plots of Sect. 3 (indicated
by thinner solid lines in the plots). In the L-grid solutions
shown in Fig. 11b and e, the frequency of the smallest verti-
cal resolvable mode, identified by nmax, deviates greatly from
the true frequency, which yields values equal to or less than
inertial frequency. As the vertical scale approaches the small-
est resolvable scale, the modes gradually lose their ability
to recognize the effects of buoyancy. For the mode with the
smallest scale, the buoyancy is completely decoupled from
the wind field; for that mode, the buoyancy is dynamically in-
ert. The group velocity of the mode is reversed for the short
horizontal scales. In contrast, the frequency of the CP-grid
solutions is generally close to the true frequency but slightly
higher.

Because the frequency errors with the L grid increase with
increasing horizontal wavenumber, we can expect that the
adverse effect of the use of the L grid on the dispersion of

the inertia–gravity waves will be more problematic in high-
resolution nonhydrostatic applications than in low-resolution
quasi-hydrostatic ones.

5 A summary of the discrete dispersion equations

Table 2 summarizes the discrete dispersion relations obtained
for the horizontal and the vertical grids. The range of the hor-
izontal and vertical wavenumbers normalized by the horizon-
tal and vertical grid spacing is indicated for each dispersion
equation.
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Table 2. A summary of the true and discrete dispersion relations for the horizontal and vertical grids discussed in this paper.

True Z grid

ν2
=
N2(k2

+`2)
+f 2

(
m2
+

1
4H2

)
(
k2+`2

)
+

(
m2+ 1

4H2

) ν2
=
N2(ξ2k2

+η2`2)
+f 2

(
m2
+

1
4H2

)
(
ξ2k2+η2`2

)
+

(
m2+ 1

4H2

) 0≤ [kd, `d]≤ π

m≡ πn/zT for n= 1,2,3, . . . ξ ≡ sin
(

1
2kd

)
/
(

1
2kd

)
and η ≡ sin

(
1
2`d

)
/
(

1
2`d

)
C grid D grid

ν2
=
N2(ξ2k2

+η2`2)
+µ2f 2

(
m2
+

1
4H2

)
(
ξ2k2+η2`2

)
+

(
m2+ 1

4H2

) ν2
=
µ2N2(ξ2k2

+η2`2)
+µ2f 2

(
m2
+

1
4H2

)
µ2
(
ξ2k2+η2`2

)
+

(
m2+ 1

4H2

)
µ≡ cos

(
1
2kd

)
cos

(
1
2`d

)
0≤ [kd, `d]≤ π 0≤ [kd, `d]≤ π

CD grid (Scheme I)

e2νiτ
(
µ2L2

+ σ 2
m

)
cos(2νrτ)− 2eνiτ

(
µ2σNL

2
+ σf σ

2
m

)
cos(νrτ) eνiτ =

2
(
µ2σNL

2
+σf σ

2
m

)(
µ2L2+σ 2

m

) sin(νrτ)
sin(2νrτ)

+

(
σ 2
N
+ τ2N2

)
µ2L2

+

(
σ 2
f
+ τ2µ2f 2

)
σ 2
m = 0

σN ≡ 1− 1
2 τ

2N2 σf ≡ 1− 1
2 τ

2f 2 σ 2
m ≡m

2
+ 1/

(
4H 2

)
0≤ [kd, `d]≤ π

A grid E grid

ν2
=
N2 (̃ξ2k2

+η̃2`2)
+f 2

(
m2
+

1
4H2

)
(̃
ξ2k2+η̃2`2

)
+

(
m2+ 1

4H2

) 0≤ [kd, `d]≤ π ν2
=
N2(ξ2k2

+η2`2)
+f 2

(
m2
+

1
4H2

)
(
ξ2k2+η2`2

)
+

(
m2+ 1

4H2

)
ξ̃ ≡ sin(kd)/(kd) and η̃ ≡ sin(`d)/(`d) 0≤ [kd, `d]≤ 2π

B grid

ν2
=

N2
(
ξ2k2
+η2`2

−
1
2 d

2ξ2k2η2`2
)
+f 2

(
m2
+

1
4H2

)
(
ξ2k2+η2`2− 1

2 d
2ξ2k2η2`2

)
+

(
m2+ 1

4H2

) 0≤ [kd, `d]≤ π

L grid CP grid

ν2
=

µ2
zN

2(k2
+`2)
+f 2

(
ζ 2m2

+µ2
z

1
4H2

)
(
k2+`2

)
+

(
ζ 2m2+µ2

z
1

4H2

) ν2
=

N2(k2
+`2)
+f 2

(
ζ 2m2

+µ2
z

1
4H2

)
(
k2+`2

)
+

(
ζ 2m2+µ2

z
1

4H2

)
ζ ≡ sin

(
1
2mδz

)
/
(

1
2mδz

)
µz ≡ cos

(
1
2mδz

)
0≤mδz= πnδz/zT ≤ π for n= 1,2,3, . . .

6 Numerical solutions

In this section, we first discuss the construction of linear
anelastic numerical models based on the various horizontal
grids and then present analyses of simulations of inertia–
gravity modes on a middle-latitude f plane. Our purpose is
to confirm the results of the normal-mode analyses of the
discrete equations and to investigate issues that are not com-
pletely revealed by the normal-mode analysis. In the main
text, we discuss only results for the Z, C, D and CD grids.
Additional discussion on the A, B and E grids is given in the
Supplement.

6.1 Equations of the C-, D- and CD-grid models

We write the horizontally discrete version equations (Eqs. 2–
6 and 8) on the C and D grids as

Equations of the C-grid model:

∂(ωz)i+1/2,j+1/2

∂t
=−fDi+1/2,j+1/2, (76)

∂Di,j

∂t
= f (ωz)i,j −

(
∇̃

2
HP

)
i,j
, (77)

∂B̃i,j

∂t
=N2Di,j , (78)(

∇̃
2
HP

)
i,j
−

(
m2
+

1
4H 2

)
Pi,j = f (ωz)i,j + B̃i,j , (79)

where
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(
∇̃

2
HP

)
i,j
≡ (80)

1
d2

(
Pi+1,j +Pi−1,j +Pi,j+1+Pi,j−1− 4Pi,j

)
,

B̃i,j ≡

(
∂

∂z
−

1
2H

)
Bi,j ,

Di+1/2,j+1/2 ≡
1
4

(
Di,j +Di+1,j +Di,j+1+Di+1,j+1

)
,

and

(ωz)i,j ≡
1
4

[
(ωz)i−1/2,j−1/2+ (ωz)i+1/2,j−1/2 (81)

+(ωz)i−1/2,j+1/2+ (ωz)i+1/2,j+1/2
]
.

Equations of the D-grid model:

∂(ωz)i,j

∂t
=−fDi,j , (82)

∂Di+1/2,j+1/2

∂t
= (83)

f (ωz)i+1/2,j+1/2−
(
∇̃

2
HP

)
i+1/2,j+1/2

,

∂B̃i,j

∂t
=N2Di,j , (84)(

∇̃
2
HP

)
i+1/2,j+1/2

−

(
m2
+

1
4H 2

)
Pi+1/2,j+1/2 = (85)

f (ωz)i+1/2,j+1/2+ B̃i+1/2,j+1/2,

where(
∇̃

2
HP

)
i+1/2,j+1/2

≡ (86)

1
d2

(
Pi+3/2,j+1/2+Pi−1/2,j+1/2+Pi+1/2,j+3/2

+Pi+1/2,j−1/2 −4Pi+1/2,j+1/2
)
,

B̃i,j ≡

(
∂

∂z
−

1
2H

)
Bi,j ,

Di,j ≡
1
4

(
Di+1/2,j+1/2+Di−1/2,j+1/2

+Di+1/2,j−1/2+Di−1/2,j−1/2
)
,

and

(ωz)i+1/2,j+1/2 ≡ (87)
1
4

[
(ωz)i+1,j+1+ (ωz)i,j+1+ (ωz)i+1,j + (ωz)i,j

]
.

The C grid involves averaging twice. First, we must aver-
ageD from the centers to the ωz points at the cell corners for
use in the vorticity equation, Eq. (76), and second, we must

average ωz from corners to the D points at the cell centers
for use in the divergence equation, Eq. (77).

Consider the perturbation patterns consisting of vertical
and horizontal stripes or a checkerboard for the buoyancy B̃
(or divergence D) on the C grid. Such a perturbation given
to D at the cell centers cannot be recognized at the cell cor-
ners where ωz is predicted. These patterns therefore behave
as pure gravity modes rather than inertia–gravity modes. We
interpret these as physical modes behaving badly.

The D grid requires four separate four-point averages in
four equations. Two of these are the averages of D from cor-
ners to the ωz and B points at cell centers. The third one
is the averaging of ωz from the centers to the D points at
the corners. The fourth one is the averaging of B̃ to the cor-
ners, for use on the right-hand side of the elliptic equation. In
comparison to the C grid, the D grid requires two additional
averages in the continuity equation and in the elliptic equa-
tion that determines the pressure, P . We can avoid averaging
in the continuity equation, but then we have to use averaging
in the thermodynamic equation. If the perturbation patterns
mentioned above are given on the D grid, they cannot be rec-
ognized, and so they appear as stationary, dynamically inert
patterns.

Now we write the temporally and horizontally discrete ver-
sion equations (Eqs. 2–6 and 8) on the CD grids as

Predictor step (*) on the C grid:

(ωz)
(∗)
i+1/2,j+1/2 = (88)

(ωz)
(n)

i+1/2,j+1/2−
1
2
τfD

(n)
i+1/2,j+1/2,

D
(∗)
i,j =D

(n)

i,j +
1
2
τ

[
f (ωz)

(∗)

i,j −

(
∇̃

2
HP

)
i,j

]
, (89)

B̃
(∗)
i,j = B̃

(n)
i,j +

1
2
τN2D

(n)

i,j , (90)(
∇̃

2
HP

)
i,j
−

(
m2
+

1
4H 2

)
Pi,j = f (ωz)

(∗)

i,j + B̃
(∗)
i,j , (91)

where
(
∇̃

2
HP

)
i,j

is given by Eq. (80). In the above equations,

(ωz)
(∗)

i,j ≡
1
4

[
(ωz)i−1/2,j−1/2+ (ωz)i+1/2,j−1/2

(ωz)i−1/2,j+1/2+ (ωz)i+1/2,j+1/2
](∗)
,

D
(n)

i,j ≡
1
4

(
Di−1/2,j−1/2+Di+1/2,j−1/2

+Di−1/2,j+1/2+Di−1/2,j−1/2
)(n)

.
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Figure 12. Initial perturbations used in the simulations with the Z-, C-, CD- and D-grid models for the grid spacings of (a) d = L/80,
(b) d = L/4 and (c) d = L/2 .

Corrector step (n + 1) on the D grid:

(ωz)
(n+1)
i,j = (ωz)

(n)
i,j − τfD

(∗)
i,j , (92)

D
(n+1)
i+1/2,j+1/2 = (93)

D
(n)
i+1/2,j+1/2+ τ

[
f (ωz)

(n+1)
−

(
∇̃

2
HP

)]
i+1/2,j+1/2

,

B̃
(n+1)
i,j = B̃

(n)
i,j + τN

2D
(n+1)
i,j , (94)

(
∇̃

2
HP

)
i+1/2,j+1/2

−

(
m2
+

1
4H 2

)
Pi+1/2,j+1/2 = (95)

f (ωz)
(n+1)
i+1/2,j+1/2+ B̃

(n+1)
i+1/2,j+1/2,

where
(
∇̃

2
HP

)
i+1/2,j+1/2 is given by Eq. (85). In the above

equations,

(ωz)
(n+1)
i+1/2,j+1/2 ≡

1
4

[
(ωz)i,j + (ωz)i+1,j + (ωz)i,j+1

+(ωz)i+1,j+1
](n+1)

,

B̃
(n+1)
i+1/2,j+1/2 ≡

1
4

(
B̃i,j + B̃i+1,j + B̃i,j+1+ B̃i+1,j+1

)(n+1)
.

On the CD grid, the principal prognostic variables that are
denoted by (n) and (n+ 1), reside on the D grid. The provi-
sional values of variables that are defined on the C grid are
denoted by (∗). The variables (ωz)

(n)

i+1/2,j+1/2 in Eq. (86) and

D
(n)

i,j in Eq. (87) are averaged to the grid points where they
are used on the C grid at the beginning of the predictor step.
At the correction step on the D grid, the provisional value of
D(∗) is directly used in the prediction of ωz.

The equations given above belong to our primary model
We also built a secondary model, in which the single-
underlined terms are replaced by (ωz)

(∗)

i,j , the double-

underlined terms are replaced by (ωz)
(∗)

i+1/2,j+1/2, and the

triple-underlined term is replaced by D(∗)i,j . The primary and
secondary models are built by closely following Schemes V

and II, respectively. These were discussed in Sect. 3. The two
models produce identical numerical solutions, as discussed
in the next section.

6.2 Checking the dispersion equations through
numerical integrations

We have integrated the models described above to check the
normal-mode solutions discussed in Sect. 3 and to illustrate
the behavior of the computational modes associated with the
different grids. For the time discretization of the all mod-
els other than the CD-grid model, we use a simple forward
time-integration scheme that produces virtually neutral (very
weakly unstable) solutions with short time steps in all mod-
els. We also tested other time-differencing schemes in a sin-
gle test case. The trapezoidal scheme produced neutral solu-
tions very similar to those obtained with the forward scheme.
A forward–backward predictor–corrector scheme was ex-
cessively dissipative, and a second-order Adams–Bashforth
scheme was slightly dissipative.

We first present results from the standing oscillation sim-
ulations, to look for the frequencies obtained through the
normal-mode analyses. The standing oscillations appear sta-
tionary because they are produced by the waves that prop-
agate with the same phase speed in all directions on the
horizontal plane. In these simulations, the vertical struc-
ture is continuous, and the vertical wavenumber n is pre-
scribed. The simulations start from the initial buoyancy fields
shown in Fig. 12, for which we have selected the horizon-
tal wavelengths of L= 4 km, L= 20 km, L= 50 km and
L= 200 km in both the x and y directions. These wave-
lengths correspond to the SRHS of d = 2 km, d = 10 km,
d = 25 km and d = 100 km, respectively, which were exam-
ined in connection with the normal-mode analyses. Here, we
discuss results for L= 4 km and L= 200 km. Similar dis-
cussions for L= 20 km and L= 50 km can be found in the
Supplement. The vertical wavenumbers used in the simula-
tions are n= 320, 640 and 1280 for L= 4 km, and n= 80,
160 and 320 for L= 200 km. The sensitivity of the numeri-
cal solutions to the grid spacing is examined by using three
different grid spacings, which are d = L/80, d = L/4 and
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Table 3. True and numerically obtained frequencies from the simulations for the Z, C, CD and D grids using a horizontal grid spacing of
d = L/80. The unit for the frequency is 10−4 s−1. The horizontal wavenumber for these cases can be obtained from 2π/L.

Horizontal Numerical frequency

Horizontal True grid
scale of Vertical frequency distance Z grid C grid CD grid D grid
perturbation wavenumber (analytic) (d)

B̃, D, ωz B̃, D, ωz B̃, D, ωz B̃, D, ωz B̃, D, ωz

n= 320 18.84724224 18.84578676 18.84578676 18.81193205 18.81193205
L= 4 km n= 640 9.57153193 50 m 9.56927399 9.56927399 9.55472218 9.55472218

n= 1280 4.87709384 4.87597804 4.87522137 4.86842190 4.86842190

n= 80 1.82682191 1.82650735 1.82565821 1.82364465 1.82364465
L= 200 km n= 160 1.25874004 2.5 km 1.25860047 1.25739149 1.25668732 1.25668732

n= 320 1.07056681 1.07053521 1.06907801 1.06885977 1.06885977

Table 4. Same as Table 3 but using d = L/4. Underlined numbers indicate frequencies less than the minimum frequency of inertial oscillation
(10−4 s−1).

Horizontal Numerical frequency

Horizontal True grid
scale of Vertical frequency distance Z grid C grid CD grid D grid
perturbation wavenumber (analytic) (d)

B̃, D, ωz B̃, D, ωz B̃, D, ωz B̃, D, ωz B̃, D, ωz

n= 320 18.84724224 17.01837840 16.99996024 8.51149459 8.51149459
L= 4 km n= 640 9.57153193 1 km 8.63549382 8.59062798 4.31715357 4.31715357

n= 1280 4.87709384 4.41296903 4.32726260 2.20663949 2.20663949

n= 80 1.82682191 1.70137701 1.46447541 0.85068850 0.85066547
L= 200 km n= 160 1.25874004 50 km 1.21395442 0.85073457 0.60700066 0.60698893

n= 320 1.07056681 1.05756165 0.60700066 0.52879862 0.52878082

d = L/2. The initial perturbation field for B̃ (or any other
variable) is shown in Fig. 12 for these three horizontal res-
olutions. With the highest horizontal resolution (d = L/80)
shown in Fig. 12a, the initial waves are well resolved and ap-
pear smooth. For the grid spacing d = L/4, the initial field is
not completely resolved. The initial field is only recognized
as ones, zeros and negative ones, which appears like alternat-
ing upside-down and inverted “pyramids” in Fig. 12b. The
grid points marked by plus signs (+) are at the positive and
negative extremes, and at the wall centers and the corners
of the (upside-down and inverted) pyramids. For d = L/2,
which corresponds to the shortest horizontal grid spacing
to resolve the initial perturbation, the pyramid-like structure
is again visible with the grid points at the extremes of the
(upside-down and inverted) pyramids (Fig. 12c).

The numerical frequencies of the standing oscillations for
the high horizontal resolution case (d = L/80) simulated by
Z-, C-, CD- and D-grid models are given in Table 3. For com-
parison, we include in the table the true frequency obtained
from Eq. (11). The numerical frequencies obtained with the
C-, CD- and D-grid models are very close to the true frequen-

cies. This is expected because of the use of high horizontal
resolutions in the simulations. All variables oscillate with the
same frequency, and there is a unique solution. The numer-
ical frequencies obtained with the CD grid are identical to
those obtained with the D grid.

We have repeated the same simulation using d = L/4,
which is half of the shortest spacing needed to resolve the
initial perturbation. The numerical frequencies obtained with
the Z-, C-, CD- and D-grid models for the same horizontal
resolution are tabulated in Table 4, which shows that all vari-
ables at all the grid points oscillate with the same frequency
in the Z-grid simulation. In the C-, CD- and D-grid solutions,
all variables are also oscillating with the same frequency, but
some of the modes have frequencies lower than the inertial
frequency (underlined numbers), which indicates that these
modes cannot properly recognize the rotation. This is gener-
ally due to the averaging of the divergence and vorticity to
each other’s grid points. In the L= 4 km case, the C and Z
grids produce similar frequencies, but the CD and D grids
produce much lower frequencies. In the L= 200 km case,
the C grid produces lower frequencies than the Z grid, some-
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Table 5. Same as Table 4 but using d = L/2. Zero frequencies indicate dynamically inert computational modes. Zeros within parentheses
indicate the frequency of the buoyancy and divergence if the initial perturbation is only given to the vorticity.

Horizontal Numerical frequency

Horizontal True grid
scale of Vertical frequency distance Z grid C grid CD grid D grid
perturbation wavenumber (analytic) (d)

B̃, D, ωz B̃, D, ωz B̃, D ωz B̃, D, ωz B̃, D, ωz

n= 320 18.84724224 12.13438645 12.09235047 0.0 0.0 0.0
(0.0) (0.0) (0.0)

L= 4 km n= 640 9.57153193 2 km 6.15636420 6.07423173 0.0 0.0 0.0
(0.0) (0.0) (0.0)

n= 1280 4.87709384 3.20070859 3.04064329 0.0 0.0 0.0
(0.0) (0.0) (0.0)

n= 80 1.82682191 1.39545713 0.97338269 0.0 0.0 0.0
(0.0) (0.0) (0.0)

L= 200 km n= 160 1.25874004 100 km 1.21395442 0.48670642 0.0 0.0 0.0
(0.0) (0.0) (0.0)

n= 320 1.07056681 1.05756165 0.24335698 0.0 0.0 0.0
(0.0) (0.0) (0.0)

times even lower than the inertial frequencies. The CD and
D grids produce lower frequencies than the C grid. Note that
the CD- and D-grid frequencies are almost identical to each
other.

Finally we tabulate results obtained by using the shortest
possible horizontal grid spacing (d = L/2) to resolve the ini-
tial perturbation shown Fig. 12c in Table 5. This is the hor-
izontal grid spacing for which the errors due to finite differ-
encing are the largest, and the computational modes impact
the solutions most strongly. The D- and CD-grid solutions
do not oscillate (indicated by zeros) but the Z grid produces
oscillations. Averaging of the initial buoyancy perturbation
to the divergence points completely wipes out the wave on
the D and CD grids. The checkerboard pattern is dynam-
ically inert. Non-oscillating solutions are also obtained by
starting from the vorticity perturbations (as indicated by ze-
ros within parentheses in Table 5). In the C-grid solution, the
buoyancy and divergence recognize the initial perturbation
and do produce oscillations, although the vorticity is decou-
pled from the divergence and buoyancy, due to the averaging
of the divergence to the vorticity points. For the short hori-
zontal scales, the frequencies of the buoyancy and divergence
in the C-grid solutions are very close to those of the Z-grid
solutions. For the long horizontal and short vertical scales,
the frequency with which the buoyancy and divergence os-
cillate in the C-grid solutions is considerably smaller than
that of the Z-grid solutions and the inertial frequency (indi-
cated by underlined numbers in Table 5). If the initial per-
turbation is given to the vorticity instead of the buoyancy in
the C-, CD- and D-grid simulations, the solutions are non-
oscillatory for all variables (indicated by zeros within paren-
theses in Table 5). The Z-grid solution produces frequencies

that are close to the true frequencies even though the initial
perturbation is poorly resolved.

6.3 A numerical simulation of wave propagation

We have also made simulations to demonstrate the behav-
ior of the computational modes during the propagation of
inertia–gravity modes with the seven grids under discussion.
These simulations start from a positive bell-shaped buoyancy
perturbation placed in the middle of the horizontal domain
with rapidly decaying amplitude away from the center. We
modified the bell-shaped perturbation by setting it to zero at
every other grid point. We refer to this modification as “ini-
tial grid-scale noise”. The horizontal domain is 280 by 280
grid points, and the horizontal grid spacing is d = 50 m, ex-
cept that for the E grid we use d = 70.71 m. The radius of
the perturbation, that is the distance from the peak of the per-
turbation to where the perturbation becomes zero, is 950 m.
The perturbation is continuous in the vertical, with the inte-
ger vertical wavenumber n= 320. Figure 13 shows the buoy-
ancy field in the 124-by-124 wide corner-end portion of the
horizontal domain, after 100 simulated minutes of integra-
tion. For reference, we show the Z-grid result obtained with-
out the superimposed initial grid-scale noise. No major dif-
ference can be seen between the Z-grid solutions started with
the computational mode and without it in the portion of the
domain shown in Fig. 13. In the solution with the grid-scale
noise, there is, however, a remnant of the initial noise, which
takes the form of grid-scale standing inertia–gravity oscilla-
tion at and near the center of the domain where the initial
perturbation is strongest. This is not visible in Fig. 13 be-
cause it is outside of the plotted domain. The noise gradually
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Figure 13. Horizontal structure of the inertia–gravity wave simulated by the various horizontal grids after 100 min of integration.

subsides in time as the bulk of the initial perturbation prop-
agates outward from the center of the domain. The C-grid
simulation result is very close to the Z-grid result. It is evi-
dent that the initial noise does not have a permanent effect on
the solutions with the Z and C grids.

The CD- and D-grid results resemble the C-grid result ex-
cept that the noise is apparent near the center of the domain
in both simulations (see Fig. 13). Since the noise with the
SRHS cannot propagate or oscillate, it is a permanent feature
of the CD- and D-grid simulations. By setting the initial per-
turbation at every other grid point to zero, the dynamically
inert computational mode described by pattern (3) in Fig. 6
is put in place on the A, B and E grids. The other solution in
these grids recognizes the initial Gaussian perturbation and
yields a propagating wave that has similar features to those
produced by the Z, C, CD and D grids.

6.4 Numerical simulations of waves that are forced by
noisy heating patterns

To assess the performance of the Z, C, D and CD grids in the
presence of noisy heating patterns, we performed numerical
integrations with the linear models discussed in Sect. 6.1, by
adding a buoyancy forcing (or heating) term

(
∂B̃/∂t

)
forcing

to their buoyancy prediction equations. The forcing term is
only added to the buoyancy equation at the correction step
in the CD-grid model. The noisy forcing pattern, which is
created using a random number generator and remains un-
changed during the integrations, is confined to a circular re-
gion at the center of the domain, and it does not produce a net
horizontally averaged heating. The domain and basic state
characteristics of the “forced” models are identical to those
described earlier in Sect. 6.2. The horizontal grid spacing and
the vertical wavenumber are 50 m and n= 320, respectively.
We use

(
∂B̃/∂t

)
forcing =∓1 s−3 and use no initial perturba-

tions in these simulations. The details are described in the
Supplement.

Figure 14. Time change of the maxima and minima of buoyancy
(B̃) for the Z-, C-, D- and DC-grid simulations in the presence
of noisy heating patterns. The thin dashed line indicates the time
change when the response of vorticity and divergence is turned off.

In Fig. 14, we show the time evolutions of the domain
maxima and minima of the buoyancy for the Z-, C-, D- and
CD-grid simulations. In the Z- and C-grid simulations, the
amplitude of buoyancy perturbation does not increase, which
implies that the divergence (or vertical velocity) responds
efficiently to counter the forcing (heating). In the D- and
CD-grid simulations, the divergence response is not strong
enough to prevent an increase of the amplitudes of the buoy-
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ancy perturbations. The D- and CD-grid models may need
strong explicit diffusion to prevent an excessive accumula-
tion of noise near the source of the noise.

In summary, only the Z grid generates solutions that cor-
respond to those of the continuous system, in which all vari-
ables interact with each other on all scales. The frequencies
simulated with the Z grid are remarkably close to the true
frequencies.

The numerical simulations obtained with the C grid are
overall very close to those with the Z grid. However, the C
grid generates solutions in which vorticity is decoupled from
the divergence for the modes with the SRHS.

The D- and CD-grid results are virtually identical to each
other. All the variables, i.e., vorticity, divergence, mass and
vertical velocity, for the modes with the SRHS are com-
pletely decoupled from each other on the D and CD grids.

The A, B and E grids have multiple solutions for all resolu-
tions, and they produce dynamically inert solutions, in which
the variables are decoupled from each other, for the SRHS
(discussed in the Supplement).

7 The impact of the nonhydrostatic effects on the
horizontal grid selection

Discretization errors have most often been studied using the
shallow-water equations. This is justifiable for an assess-
ment of the errors with the Lamb wave and quasi-hydrostatic
modes. The dispersion of the inertia–gravity modes for the
shallow-water system is analogous to that for the Lamb wave,
except that the fluid depth is multiplied by γ ≡ 1/(1− κ)
in the Lamb wave solution. The shallow-water system can
also be used to assess the discretization errors of the quasi-
hydrostatic system because in that system the square of
the frequency of the inertia–gravity is a linear function of(
k2
+ `2), as it is with the Lamb wave and shallow-water

systems. A detailed discussion of the continuous and discrete
dispersion equations can be found in the Supplement.

In this respect, the analogy between the shallow-water
(also quasi-hydrostatic) and anelastic systems is weak. The
nonhydrostatic effects of the anelastic system, as with the
fully compressible, unified and semi-hydrostatic systems,
limit the frequency of the inertia–gravity modes to the Brunt–
Väisälä frequency, N , as can be seen from the red curves in
Fig. 15. In contrast, the frequency of the quasi-hydrostatic
modes (black lines) and the Lamb wave (dashed green
lines) increases without bound with increasing horizontal
wavenumber. It appears that the deeper modes are “more
nonhydrostatic” than the shallower ones in terms of the sep-
aration of the anelastic and quasi-hydrostatic frequencies in
Fig. 15.

The Z and C grids actually perform better with the non-
hydrostatic systems than they do with the quasi-hydrostatic
or shallow-water systems. Consider the discrete dispersion
equations (Eqs. 17 and 23) for the Z and C grids, respec-

Figure 15. Plots of the absolute value of frequency for inertia–
gravity modes obtained with the anelastic (red curves) and the
quasi-hydrostatic (black curves) systems. The frequency of Lamb
wave with the quasi-hydrostatic system is indicated with the dashed
green curves.

tively. The finite-difference errors are represented by ξ2 and
η2, which are close to unity for small wavenumbers and ap-
proximately equal to 0.4 at the SRHS. This also means that
ξ2k2
+η2`2 is approximately 0.9×k∗ for ξ ≡ η at the SRHS.

For deep anelastic modes with large composite horizontal
wavenumber (k∗), the dependence of the frequency on the
horizontal wavenumber is negligible, and therefore the error
in the frequency due to finite differencing is small for both
the Z and C grids. As mentioned earlier, the averaging of the
Coriolis term with the C grid does not significantly influence
the solution for sufficiently high horizontal wavenumbers.

In conclusion, the Z and C grids perform better with
the nonhydrostatic equations than the quasi-hydrostatic or
shallow-water equations, particularly in terms of their ability
to resolve deep modes with high horizontal wavenumbers.
The D, CD and other grids do not share this benefit from the
nonhydrostatic effects because their errors are dominated by
the averaging or computational modes at the SRHS. Nonhy-
drostatic effects do not produce similar benefits for the verti-
cal discretization because the benefits are mostly confined to
the deep modes, which are already well resolved in both the
nonhydrostatic and quasi-hydrostatic discrete systems.
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8 Summary and conclusions

We have discussed the horizontal and vertical discretizations
of the three-dimensional nonhydrostatic linearized anelastic
equations on the A, B, C, CD, (DC), D, E and Z horizon-
tal grids, and the L and CP vertical grids, with an empha-
sis on middle-latitude inertia–gravity waves. The use of a
three-dimensional nonhydrostatic system instead of the two-
dimensional shallow-water system allows us to directly as-
sess the performance of the discretization as a function of
the vertical wavenumber, vertical resolution or vertical grid
spacing.

The Z grid yields the most accurate inertia–gravity wave
dispersion among the seven horizontal grids considered
in this paper. It has no computational or dynamically in-
ert modes. Although the frequency and group velocity of
inertia–gravity modes in the Z-grid solutions are lower than
the true ones, the numerical frequency never goes below the
inertial frequency and the group velocity never reverses sign.

The C grid produces mixed results for the inertia–gravity
solutions. For cloud-resolving applications with small hor-
izontal grid spacing represented by d = 2 km in our analy-
ses, the accuracy of the physical modes is nearly identical
to that of the physical modes with the Z grid. Of course,
there is a dynamically inert mode that decouples the diver-
gence and vorticity for the SRHS in the C-grid solution, but
its impact may not be severe because it disperses like a pure
gravity mode. However, since the three-dimensional enstro-
phy cascades to the SRHS in nonlinear cloud-resolving mod-
els, the impact of the dynamically inert mode can be severe,
and a parameterized dissipation is needed to dissipate the en-
strophy accumulated at the SRHS. For mesoscale applica-
tions, i.e., horizontal grid spacings in the range 10 to 25 km,
the inertia–gravity modes of the C-grid solution behave like
those of the Z-grid solutions if the vertical wavenumbers
are equal to n= 320 or smaller for 10 km grid spacings and
n= 156 or smaller for 25 km grid spacings. With a domain
height of zT = 80 km, wavenumbers n= 320 and n= 156
correspond to δz= 250 m and δz= 512 m, respectively. The
inertia–gravity modes in the C-grid solutions with a typical
climate model horizontal grid spacing of 100 km are as accu-
rate as the Z-grid solutions for vertical wavenumbers n= 39
and below, which corresponds to δz= 2051 m and larger.
For vertical wavenumbers higher than n= 39, the reversal of
group velocity takes place for the modes over a rather wide
range of horizontal scales. This might lead to noise or insta-
bility.

The inertia–gravity mode solutions with the D and CD
grids are almost identical. On these grids, the divergence
and the mass (buoyancy, pressure and vertical velocity) are
placed at different grid points. The vorticity is placed at the
same grid points with the mass. With this staggering, not
only are the vorticity and divergence averaged to each other’s
grid points, but also the divergence is averaged to mass (and
vertical velocity) points and the pressure is averaged to di-

vergence points. The result is large errors in the dispersion
of the inertia–gravity modes for all vertical scales near the
SRHS, for all horizontal grid spacings. At the SRHS, there
are dynamically inert modes in all variables. The group ve-
locity reverses and becomes large near the SRHS. In non-
linear models, the D and CD grids may need explicit diffu-
sion to remove the noise in short horizontal scales that results
from the computational mode and the reversal of the group
velocity.

The dispersions of the inertia–gravity waves with the A,
B and E grids are similar. All suffer from the existence of
multiple (or non-unique) physical solutions that do not in-
teract with each other (in linear models), as demonstrated
by the numerical simulations. The existence of the multiple
solutions with these grids also leads to the dynamically in-
ert modes at the SRHS. To avoid the separation of two (or
four) solutions with these grids, a horizontal mixing process
is needed.

The conclusions of our normal-mode analyses of the non-
hydrostatic anelastic inertia–gravity waves with the Z, C, D,
CD, A, E and B grids for the low horizontal wavenumbers
is consistent with earlier the shallow-water analyses by vari-
ous authors. The Z and C grids produce overall smaller errors
with the nonhydrostatic anelastic system than with the quasi-
hydrostatic system, particularly for the deep modes with high
horizontal wavenumbers.

Part 2 (Konor and Randall, 2018) discusses the dispersion
of the middle-latitude Rossby waves for all the horizontal
grids.
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