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Basic Linearized Anelastic Equations

1. Momentum equations

Linearized anelastic equations of Lipps and Hemler (1982).

Zonal component of the momentum:

where P = c,,erc' )

Meridional component of the momentum:

d oP
Vertical momentum equation:
s
where
Buoyancy (thermodynamic) equation:
aa—lj =—N’w
where
N2 =89
6, 0z

Mass continuity equation:
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() + 2 (py0)+ (o) =

ox dy dz
The vorticity:
_ov_ou
~ox dy
The divergence:
_du, v
~9x  Jy
From d/dx (1.2) - 9/dy (1.1):
awz j—
ot /D

From d/dx (1.1) + d/dy (1.2):

oD > o
g7 _ B I >
o T (8x2+8y2j

Vertical momentum equation:

ow  JP

oy
o oz

Buoyancy (thermodynamic) equation:

0B
= —Nw

ot

Mass continuity equation:

D+ i+Laﬂ w=0
Jdz p, 0z

Multiplying equations by p!*(z):
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a /2

(pgth) =—f(Pé/2D)
0 pl/ZD az az
A storo )G o

ot az_2p0 0z
o p)*B
(p(’;), )=—N2(pé/2w)

(P )| 325522 (o) -

2p, 9z

By replacing p(l)/zcoz by w, and replacing others likewise.

The linearized anelastic equations used in the paper:

aa—?—f 1_(%4_88—;)]3
%__[i_L%)P 5
ot dz 2p, oz

Lo N

Baroclinic equations governing Rossby modes:
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Quasi-geostrophic anelastic equations with the quasi-static assumption on a midlatitude beta-
plane:

Time change of divergence and vertical momentum are ignored.

L=—fD 1.23
ot J fo 0x ( )

9 9
Ozﬁ)wz_[ﬁ—i_a_yz)l) (1 24)

o 1 dp
0=—-| ———"|P+B 1.25
(az 20, az] ( )
a—B:—Nzw (1.26)
ot
o 1 dp,
D+| —+— =0 1.27
+(8z+2p0 oz )W (1.27)
Barotropic equations governing Rossby modes:
Divergence and vertical momentum is ignored.

ow B oP
e _F 7T 1.28
ot fo ox (1.28)

az az
0:f6wz—[§+a—))2)l) (1 29)

o 1 dp
0=—| ——— 0 P 1.30
(az 2p, 9z j ( )

Eq. (1.30) indicates that P is vertically uniform.
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Z-grid

Z grid

1. Inertia-gravity modes

Vorticity equation from (M.12):

Divergence equation from (M.8):

0 1
EDLJ' = _?(Pm,j

i,j+1 i

Vertical momentum equation:

Z-grid page 1

+Pi—1,j+P +P.j—1 _4Pi,j)+f(w2)i,j

Friday, February 24, 2017

(Document page 7)


csk
Typewritten Text
(Document page 7)


Celal Konor Supplementary Material

Friday, February 24, 2017

ow. .
My |9 [ L9 )lp  p (4)
ot dz \ 2p, 9z Lo
Thermodynamic equation:
0B,
_atj =-N’w, ; (5)
Mass continuity equation:
o 1 dp
D +|—+| ——=—2||w,. =0 6
[8z (2p0 oz HW ©
From (4)—(6):
¥, * (1 9p,) |0
—+N"|D - —— — ¢ — =0 7
[atz j i,j [azz (2[)0 az at i,j ( )
Define:
¢i,j (Z,l ) = Re{(i)ei(kdiwdﬂmz_m} and ¢i+1/2,,i+l/2 (Z ! ) = Re{(i)ei[kd(i+l/2)+éd(j+1/2)+mz_w]} (8)
Using (8) in (1):
~ive, =—fD (9)
Using (8) in (2):
ikd —ikd itd —itd .
_L,vb:fd)z_( +e +;2 +e 4JP (10)

Using (8) in (7):
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2
(—v2+N2)lA)—[m2+[lapoj ]ivPij:O (11)
2p, 0z '
In (10):
oM 4 ik pitd 4 mitd g ZCos(kd)+ZCos(€d)—4
& ) d’
13
_[ zsin*(bkd) ,  —sin*(34d) "
(S kd) (40d)
Rewrite (13):
ikd | =ikd o itd | —itd
e +e +;2 +e 4:_62k2_n2€2 (14a)
where
s (1 (Ll
C::Esml(];/;d) . nfsml(z jd) (14b)
2 2
Using (12) and (14a) in (9)—(11):
—ivéd, =—fD (20)
—ivﬁ=(§2k2+n2£2)f’+fd71 (21)
2 (1 3p, Y
(—v2+N2)b+ < L 9 | lyp=0 (22)
0z 2p, 9z
From (20) and (21):
(V) D= (€8 s vd @9

From (22) and (23):
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v = (24)

2. Rossby modes
Baroclinic modes:

Adding the beta effect to the vorticity equation (1):

dw,) B P, —P,,
B Y il U At o ¥ 30
ot Jobu) fo 2 %)
Dropping dD/ot in (2):
1
0= _?(F;H,j NIRRT 4Pi-.f)+f(wz)i.j (37)
Dropping 9>D/or* in (7):
* (1 9p) |0
N2D I ZFo —_ =0 32
& [az2 (2/30 dz j ]at ' .
From (30)—(32):
ik —ikd
—chbZ:—fof)—?e 2; P (40)
0
0=(E%*+n°C" )P+ f,0, (41)
2
sz_ m2+ L% ivﬁ:O (42)
2p, 9z ) |”

Rewrite (40):
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Rewrite (43):

where

From (41), (42) and (44):

vN2(§2k2+172£2)}3 —f [m +( ! %] ]vﬁ—Nzﬁékﬁ

2p, 0z
8p0 1 . . - _
Using — —— in (46) and for nontrivial solutions (P #0):
Po 02 H
£k
2k2+ 2€2 Jo —
(§8 )0 (m 4H)
Barotropic modes:
Assuming D=0 in (30)
a(wz)i,j —_ B I+1j l
ot fo 2d
Writing (31) again:
1
0= (Pt P+ By + Py = 4R, )+ f(o0,),

Z-grid page 5
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? (1 9p,) |9
I ol [ Zp =0
[ai (Zpo azj or "’

Assuming D=0 in (32)

(P is vertically constant).

From (50) and (51):

0=v(EK* +n°0*) P+ BEKP
From (53) and for nontrivial solutions (P #0):

Lo Pk
§2k2+n2£2
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C-grid

C grid

1. Inertia-gravity modes

Horizontal momentum equation:

aui+l/2,j - Pi+l,j IS, + O,
at d i+1/2,j
avi,j+1/2 __ Pi,j+1 _Pi,j — fu
at d i,j+1/2
where

1
Uiy, = Z(vi,j—l/z + Vi jop2 + U, jui2 + Vit je2 )

_ 1
Uijp = Z(”m/z,j TU Tl T ui—l/Z,j+l)

C-grid page 1
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To derive divergence equation for center points ( i, j):

2 Uivipj ~ Wiy | _ _ P, - ZP;‘,]' +h_; +f Vyy0 = Uiy (M.4.a)
ot d d d
2 DR VY _ F - 2P;J +P ¢ Ui jp = Wi joyo (M.4.b)
ot d d d
Define:
!
D, = 2(”i+1/2,j Uiy T T Ui,j—l/Z) (M.5)
Divergence equation (1):
ED. - P J +F, +Pz j+ +F, J-l 4P1,j +f 5i+l/2,j _ﬁi—l/Z,j _ ’/_‘i,j+1/2 _L_‘i,j—l/z (M.G)
or " d’ d d
Define:
1
(COZ )i+1/2,j+1/2 = E(vi+l/2,j+1 - vi+1/2,j - ui+1/2,j+1 + ui+1/2,j) (M7)
Divergence equation (2):
Consider (M.6) and (M.7):
a Pl+1j+P +Plj+1+Plj1 4Pl_] 1
EDI',J‘ = dz + fZ':(wZ )i+1/2,j+1/2 + (a)z );71/2,j+1/2 * (COZ )i+l/2,j—1/2 + ((Dz )i—1/2,j—1/2:|
(M.8)

To derive vorticity equation for center point ( i+1/2, j+1/2):

C-grid page 2
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d Uiy 2 Y, J+l2 Pi+l J+ R+1j - R Jj+1 + Pij I’_‘i+1 2 1’71 J+1/2
) JH2 | i, S i o : : M.9
ot d d’ / d (M.9)
0 Ui T Ui -F, at F gt~ Pij l_)i+1/2 T 1_)i+1/2j
= : oo : SANLLN . : : M.10
ot d d’ ! d ( )
The vorticity equation (1):
2 Vi ez ~ Vijue ~ Wipojn T Ui —_f ”_‘i+1,j+1/2 - I’_li,j+1/2 + l_)i+1/2,j+1 - 5i+1/2,j (M.11)
ot d d
The vorticity equation (2):
Using (M.7) and (M.5) in (M.11):
J . M.12
g(a)z )i+l/2,j+l/2 - _fZ(DiH,j-H + Di+1,j + Di,j+1 + Di,j) ( . )
Vorticity equation from (M.12):
d N 1
g(a)z )Hl/z,jﬂ/z = _fZ(DiH,j-H + Di+1,j + Di,j+1 + Di,j) ( )
Divergence equation from (M.8):
J Pi+1,'+Pi—l,'+Pi,'+l+Pi,‘—1_4Pi,‘ 1
gDi,j =—— : djz : ot fZ[(wZ )i+1/2,j+1/2 + <a)z )571/2,j+1/2 + (w )i+l/2,j—1/2 + (wz )i—1/2,j—1/2:|
()
Vertical momentum equation:
ow. 0 1 dp
—L=—| ——| — 21 |P . +B,, 4
T o b | A @

Thermodynamic equation:
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a;l - Nzwi,j (5)
Mass continuity equation:
Di'+ i+ L% Wi‘:O (6)
»J aZ 2p0 aZ o]
From (4)—(6):
? * (1 ap, ) |0
—+N°|D - ——| — 0 —P . =0 7
(aﬂ ] " [az2 (2p0 dz ) |or "’ 7
Define:
¢i,j (Z,l) = Re{(i)eg(kdi+4dj+mz—vr)} and ¢i+1/2,.,‘+l/2 (Z,l‘) - Re{(i)eg[kd(i+1/2)+ed(j+1/2)+mz—w]} (8)
Using (8) in (1):
A e T e (- a7
—iv),=—f—|e e *+e e *+e ’e *+e ’e? |D 9)

Using (8) in (2):

T N B T T L IO (i ST B DA
—LVD:fZ e e ?+te 2¢2+e % 2+e e ? |- 7 P (10)

Using (8) in (7):
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In (9)—(10):
1 Py il —ad il il il
,LLEZ e e +e e t4+e e ’+e e ?
12
B Y LT d 12)
=—||le %*4+e ?|le 2+e ? ||=cos| k— |cos EE
In (10):
e et et — 4 2cos(kd)+2cos(ld)—4
&’ - &’
13
3 —sinz(%kd)k2+—sinz(%d)zz (13)
($ka)’ ()
Rewrite (13):
ikd —ikd itd —itd _
+e +;2 +e 4:—§2k2—772£2 (14a)
where
in(L in(1
555m(2kd) and 77Esm(ﬂd) (14b)
T kd 2ud
Using (12) and (14a) in (9)—(10) and writing (11) again:
—iv@), = -1 D (20)
—ivD =(EK+0’ 0 )P+ ufd, (21)
> (1 9p,)
(~v: 48D+ | Lo L 9P| liypog (22)
0z 2p, 9z
From (20) and (21):
(v2 — ,uzfz)f) = (§2k2 + nzﬁz)ivf’ (23)

C-grid page 5
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From (22) and (23):

N2(§2k2+nzﬁz)+‘u2f2(m2+ 2)
4H (24)

(&%’ +112€2)+(m2 + 4;2 )

vi=

2. Rossby modes
Baroclinic modes:

Adding the beta effect to the vorticity equation (1):

a(w ) 12, 1 [3 P. ._—-P.
2/i+l)2,j+1/2 i+3/2,j+1/2 i-1/2,j+1/2
Tj__fo Z(Di+l,j+l +Di+l,j+Di,j+l +Di,j)_70 - 2d ’ (30)
Dropping dD/ot in (2):
B+1,‘+E—l,‘+Pi,‘+l+[)i,'—l_4[)i,' 1
0=- - - djz : -+ fO Z[(a)z )i+l/2,j+l/2 + (wz )i—l/z,j+l/2 + (wz )i+1/2,j—l/2 + (a)z )i—l/z,j—l/z J (31 )
Dropping 9°>D/ot” in (7):
> (1 9p,) |0
N’D —|——-| —=—"2| | =P .=0 32
[af (2/30 92 j o >
From (30)—(32):
A R eg‘kd_e—ikd .
—iv@. =—-uf.D-u=—p 40
Vo, =-pf,D-u 24 (40)
0
0=(EK +m°0* )P+ ufyd, (41)

C-grid page 6
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Rewrite (40):

- A—i‘uﬁzsm(kd)ﬁ
T f, 2

Rewrite (43):

where

From (41), (42) and (44):

2
VN (EX 4 )P = - f[m {Laﬁ] ]vﬁ_wwzﬁgkﬁ

2p, 9z
: 1 dp, l . y . ~ _
Using ——=—-— in (46) and for nontrivial solutions (P #0):
Py 0z H
e —uBEk
2712 292 f()z( 2 1 )
kK+nl )+ +—
(6 ) N\ T4l
Barotropic modes:
Assuming D=0 in (30)
a(wz )i+l/2,j+l/2 _ _ﬁ 131'+3/2,j+1/2 _131'71/2,/41/2
ot f 2d

Writing (31) again:

C-grid page 7
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PojtPtP+h, -4k, 1
0=- : - djz : -+ fO Z[(wz )i+l/2,j+1/2 + (a)z )i—1/2,j+1/2 + (wz )i+1/2,j—1/2 + (wz )i—1/2,j—1/2 j| (51 )
Assuming D=0 in (32)
? (1 9p,) |9
== | — | | Zp =0 52
[812 (Zpo dz ) |ot " (52)

(P is vertically constant).
From (50) and (51):

0=v(E%* +n*0*) P+’ PEkP (53)

From (53) and for nontrivial solutions ( P#0 ):

Lo —HBEk
€2k2+172f2

C-grid page 8
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D-grid
D grid
1. Inertia-gravity modes
Horizontal momentum equation:
a”i,m/z _ RNy YRR —
ot - d + fvi,j+l/2
avi+l/2,j _ Pi+1/2,j+|/2 _Pi+l/2,_j—1/2
ot - d —JUi
where
— 1
B+1/2,j+1/2 = Z(R‘H,jﬂ + Pi+l J-1 + R—l,,m + B—l,j—l)
1_)5, 2 = Z(Ui—I/Z, itV TV T vi+1/2,j+1)
D-grid page 1
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Celal Konor
1
Uiip = Z(ui,j+l/2 FU Ut ui+1,j—1/2) (M.3.c)
To derive divergence equation for corner points ( i+1/2, j+1/2):
2 Uit jro — Ui jup _ Pi+3/2,j+1/2 - 2Pi+1/2,j+1/2 + E—l/z,j+l/2 i f _i+l,j+l/2 - 1‘_)i,j+1/2 (M 4 a)
ot d d’ d o
2 Ui+1/2,j+1 - vi+l/2,j _ Pi+1/2,j+3/2 - 2Pi+1/2,j+1/2 + Pi+l/2,j—l/2 _ f l’_ti+1/2,j+1 B L_ti+1/2,j (M 4 b)
ot d d’ d o
Define:
1
Di+1/2,j+l/2 = E(ui+1,j+l/2 U + Ui+l/2,j+l - vi+1/2,j) (M.5)
Divergence equation (1):
d D Py Y P = AP T P s T Paipn o
5 i+1/2,j+1/2 — 42
_ _ _ _ (M.6)
ny Vi sz = Va2 Ui o T Wi,
d d
Define:
(M.7)

1
(wz ),»,j = E(Um/z,j - Ui—l/Z,j - ui,j+1/2 + ui,j—l/z)

Divergence equation (2):

Consider (M.6) and (M.7):

D-grid page 2
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a _ }_)i+3/2,j+1/2 + Fi—l/2,j+1/2 + }_)i+1/2,j+3/2 + }_)i+1/2,j—1/2 - 4Fi+1/2,j+1/2
gDm/z,jH/z - d2
(M.8)
1
+ fZ|:(wZ )i+1,j+1 + (COZ )5—1,j+l + ((Dz )i+1,j—1 + (COZ )i,j :|
To derive vorticity equation for center point ( i, j):
d vi+1/2,j - vi—l/Z,j _ }_)i+1/2, 2 E+1/2,j—1/2 - }_)i—l/Z,j+1/2 + Fi—l/z,j—l/z I’Ti+1/2, i I’Ti—l/2, j M
7 e 2 - f| TR (M.9)
ot d d d
O —Ujuyp U _ Fi+1/2,j+1/2 - }_)i—l/z,j+1/2 - Fi+1/2,j—1/2 + Fi—l/2,j—l/2 61',,,41/2 - 5i,j—1/2 M.1
a = 2 - f| (M.10)
ot d d d
The vorticity equation (1):
%(Um/z,j - vi—l/2,j ;ui,j+1/2 + U isip j _ _f[ ’/_‘i+1/2,j ; l’_li—l/Z,j n 6i,j+l/2 ;1_)1',/1/2 j (M. 11 )
The vorticity equation (2):
Using (M.7) and (M.5) in (M.11):
0 1
a(a)z )i,j = _fZ(Di+l/2,j+l/2 + Di—l/2,j+l/2 + Di+l/2,j—l/2 + Di—l/z,j—l/z) (M-1 2)
Vorticity equation from (M.12):
3(60Z )i’j 1
o =—f Z(Di—l/z, 2 T Dipa o + Dy jya T Dispa, j+1/2) (1)
Divergence equation from (M.8):
J 1
E Di+l/2,j+1/2 - fZ[(w )i+l,j+l + (wz )i,j+l + (w )i+l,j + (a)z )i,j:|
5 5 . 5 5 . 2)
_ Pi+3/2, j+2 T 2Pi+l/2,j+l/2 + Pi—1/2, 2 F;+1/2, 32 2Pi+1/2,j+1/2 + Pi+l/2, J-1/2

d’ d’

D-grid page 3
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where

vl

+P

i-1,j-1 )

1
12,412 = Z(Pi+1,j+1 +P, +P,

i+1,j-1 i—1,j+1
Vertical momentum equation:

My O [ Lp)lp p
ot dz \ 2p, 0z S

Thermodynamic equation:

Mass continuity equation:

1 0 1 dp
Z(Di—l/2,j—l/2 + Di+l/2,j—l/2 + Di—l/z,j+l/2 + Di+l/2,j+l/2 ) + {a_z + (z_poa—;j:|wi,j =0

From (4)—(6):

2
9’ 1 9’ 1 ap d
(? +N ][Z(Dil/ljl/z + D[+l/2,j—l/2 + Di—l/2,j+l/2 + Di+l/2,j+l/2 )} - [azz - 2—[708—20 EP” =0

Define:

9, (z,t)= Re{ci)ei(kdi+[dj+mZ_V')} and 9., (z,1)= Re{ci)ei[kd(m/ 2)td(if 2)+mZ_W]}

Using (8) in (1):

D-grid page 4
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T T N T - T

. 1 -ad - ad - wS S it ) A
—iv@ :_fZ e e 4+e’e *+e e’+e?e?|D 9)

2

Using (8) in (2):

>

V(=g - wd - ud i wd wd \ere ™ e e -4
——|le e *4e ‘e T+e ‘e *+e ‘e 7 P

Using (8) in (7):

WA A R R Y S R AN 1 g
(—v2+NZ)[Z(e~kze”éz+e Y20 e e e M || D= L 9py ivP,, =0 (11)

2p, 0z
In (9)—(11):
1 7ikg 7i(‘g ikg 71'/:4 7ikg i(‘g ikg i/:g
,LLEZ e ¢ +e e *+e e ’+4e te?
1 d d d d d d (12)
ksl N Vs
=—||le *+e?|e 2+e? :cos(k—)cos(f—)
4 2 2
In (10):
Myt e —4 2cos(kd)+2cos(ld)-4
& - &
13
—sin’(4kd) , —sin’(44d) , (13)
(1kd)’ (16d)
Rewrite (13):
ikd ikd | ild itd
+e +;2 +e 4__52162_77%2 (14a)
where
1 (L
£o sml(zkd) and 1= sml(zﬁd) (14b)
1kd 1id

D-grid page 5
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Using (12) and (14a) in (9)—(11):

A

—ive), = —ufD

—ivD = ,u(éjzk2 +T]2€2)13+,uf(2)z

2
u(-v’+N*)D+ 9 [ 1p ivP=0
07" \2p, Oz

From (20) and (21):

(v2 —uzfz)f) = u(§2k2 +n2£2)ivﬁ

From (22) and (23):

1
2N2 2k2+ 262 + 2 2 2+
H (&K +n )+ 1 f (m 4sz

VvV =
1
2 2k2+ 2£2+ 2+
(e e e)s(mie 1]

2. Rossby modes
Baroclinic modes:

Adding the beta effect to the vorticity equation (1):

I, )i,j
ot

1
= _fo Z(Di—l/z,j—l/z + Di+1/2,j—1/2 + Di—1/2,j+1/2 + Di+1/2,j+1/2 ) -

Dropping dD/ot in (2):

D-grid page 6
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0=— Pi+3/2,j+1/2 + Pi—l/2,j+1/2 + F;+1/2,j+3/2 + Pi+1/2,j—1/2 - 4Pi+1/2,j+1/2
d2

1
+ /o Z[(wz )[+1,j+1 + (wz );,j+1 + ((DZ )i+1,j + (wz )i’f:|

Dropping 0> D/ot* in (7):

2p, 0z

2
1 2 (1 3p,) |0
N? |:Z(Di—1/2,j—1/2 + Di+1/2,j—1/2 + Di—1/2,j+1/2 + Di+1/2,j+1/2 )} - {g - (__Oj }ERJ =

From (30)—(32):

0=p(EK +n°0 )P+ ufyd,

2
UDN? —| m* + L] |iyp=o
2p, 9z ) |”

Rewrite (40):

Rewrite (43):

where

From (41), (42) and (44):

D-grid page 7



Celal Konor Supplementary Material Friday, February 24, 2017

2
VN? (&K +0°0)P=—f) | m* + L 9py vP— N*BEKP (46)
2p, 0z
. 1 dp, 1 . . . -
Using o =Tg in (46) and for nontrivial solutions (P #0):
Py 92
y= ‘[3‘;" (47)
2k2+ 262 Jo T
(g (e )
Barotropic modes:
Assuming D=0 in (30)
a((l)z )iv,i — ﬁ t+1] z (50)
ot f 2d
Writing (31) again:
0=— E+3/z, et P_ a2 T Pz+1/z it R+1/2 12 4P,+1/2 /2
- 2
e (51)
+ fo Z[(wf )i+l,j+1 +<a)2 )i,j+l + (a)z )i+1,j +(wz )i,j:|
Assuming D=0 in (32)
? (1 9p,) |9
— | [=P.=0 52
[az (2;)0 dz j or "’ 52)
(P is vertically constant).
From (50) and (51):
=v(&%* +n’0*) P+ BEKP (53)

From (53) and for nontrivial solutions ( P#0 ):

D-grid page 8
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_ Bk
V= §2k2+n2£2 (54)

D-grid page 9
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D-grid (with w at corner points)

D grid (w at corners)

1. Inertia-gravity modes

Horizontal momentum equation:

vl
vl

ou. . =P
Y2 T i)2,j+1)2 —1/2,j+1/2 —
Y = d + fvi,j+l/2

avi+l/2,j _ Pi+1/2,j+|/2 _Pi+l/2,_j—1/2
ot - d U2,

where

i+1,j-1 i—1,j+1 i~1,j-1

= 1
B+1/2,j+1/2 = Z(BH’N +P +P +P )

vi,j+l/2 = Z(Ui—l/z,j + vi+l/2,j + Ui—l/2,j+l + vi+1/2,j+l )

D-grid (with w at corner points) page 1
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(M.3.a)

(M.3.b)
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Celal Konor
_ 1
Uiip = Z(ui,j+l/2 FU Ut ui+1,j—1/2) (M.3.c)
To derive divergence equation for corner points ( i+1/2, j+1/2):
J

2 Uit jro — Ui jup _ Pi+3/2,j+1/2 - 2Pi+1/2,j+1/2 + E—l/z,j+l/2 i f _i+l,j+l/2 - 1‘_)i,j+1/2 (M 4 a)

ot d d’ d o

2 Ui+1/2,j+1 - vi+l/2,j _ Pi+1/2,j+3/2 - 2Pi+1/2,j+1/2 + Pi+l/2,j—l/2 _ f l’_ti+1/2,j+1 B L_ti+1/2,j (M 4 b)

ot d d’ d o

Define:

1
Di+1/2,j+l/2 = E(ui+1,j+l/2 U + Ui+l/2,j+l - vi+1/2,j) (M.5)
Divergence equation (1):
d Py Y P = AP T P s T Paipn o
5 i+1/2,j+1/2 — 42
_ _ _ _ (M.6)
ny Vi sz = Va2 Ui o T Wi,
d d
Define:
(M.7)

1
E(Um/z,j - Ui—l/Z,j —U; + U ip )

(),

Divergence equation (2):

Consider (M.6) and (M.7):

D-grid (with w at corner points) page 2
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a _ }_)i+3/2,j+1/2 + Fi—l/2,j+1/2 + }_)i+1/2,j+3/2 + }_)i+1/2,j—1/2 - 4Fi+1/2,j+1/2
gDm/z,jH/z - d2
(M.8)
1
+ fZ|:(wZ )i+1,j+1 + (COZ )5—1,j+l + ((Dz )i+1,j—1 + (COZ )i,j :|
To derive vorticity equation for center point ( i, j):
d vi+1/2,j - vi—l/Z,j _ }_)i+1/2, 2 E+1/2,j—1/2 - }_)i—l/Z,j+1/2 + Fi—l/z,j—l/z I’Ti+1/2, i I’Ti—l/2, j M
7 e 2 - f| TR (M.9)
ot d d d
O —Ujuyp U _ Fi+1/2,j+1/2 - }_)i—l/z,j+1/2 - Fi+1/2,j—1/2 + Fi—l/2,j—l/2 61',,,41/2 - 5i,j—1/2 M.1
a = 2 - f| (M.10)
ot d d d
The vorticity equation (1):
%(Um/z,j - vi—l/2,j ;ui,j+1/2 + U isip j _ _f[ ’/_‘i+1/2,j ; l’_li—l/Z,j n 6i,j+l/2 ;1_)1',/1/2 j (M. 11 )
The vorticity equation (2):
Using (M.7) and (M.5) in (M.11):
0 1
a(a)z )i,j = _fZ(Di+l/2,j+l/2 + Di—l/2,j+l/2 + Di+l/2,j—l/2 + Di—l/z,j—l/z) (M-1 2)
Vorticity equation from (M.12):
3(60Z )i’j 1
o =—f Z(Di—l/z, 2 T Dipa o + Dy jya T Dispa, j+1/2) (1)
Divergence equation from (M.8):
J 1
E Di+l/2,j+1/2 - fZ[(w )i+l,j+l + (wz )i,j+l + (w )i+l,j + (a)z )i,j:|
5 5 . 5 5 . 2)
_ Pi+3/2, j+2 T 2Pi+l/2,j+l/2 + Pi—1/2, 2 F;+1/2, 32 2Pi+1/2,j+1/2 + Pi+l/2, J-1/2

d’ d’

D-grid (with w at corner points) page 3
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where

vl

1
12,412 = Z(Pi+1,j+1 +P, +P,

i+1,j-1 i—1,j+1

+P.,,) (3)

Vertical momentum equation:

i+1/2,j+1/2 po
— =5 5 | [a B Y B Y Bt R,
ot |:aZ (21)0 aZ 4( i+1,j+1 i—1,j+1 i+1,j-1 l,])

(4)
1
+ Z(Bi+l,j+l + Bi—l,j+l + Bi+1,j—l + Bi,j)
Thermodynamic equation:
0B, . 1
P t‘J =-N? Z(Wm/z, 2 TWisyajme T Wio joya T Wisip, j—l/Z) (5)
Mass continuity equation:
d 1 dp
Di+1/2,j+1/2 + [a_z + [ga_;ﬂwiﬂ/lﬁlﬂ =0 (6)
0
From (4)—(6):
D, . ? (1 9p, ) |1
- IR =~ N2 P _(Pi+l,j+l + Pi—l,j+1 + Pi+1,j—l + Pz,)
ot 0z 2p, 0z 4
1| 0 1 dp,
+ Z|:a_z + (2—1)08—2]:|(Bi+1,j+1 + Bi—l,j+l + Bi+1,j—1 + Bi,j) (7)

ad 1 dp, \|9B:; 1
|:a_z + [ 2P0 azo ):| ot L=N’ Z(Di+l/2,j+l/2 + Di—l/z,j+l/2 + Di+1/2,j—l/2 + Di—1/2,j—1/2)

D-grid (with w at corner points) page 4
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Using (12) and (14a) in (9)—(11):

A

—iv@), =—ufD (20)
—ivD = p(EK +n°0 )P+ ufo, (21)
, ? (1 9, )| «
P WN*)D=p| ——-| ——=L| |ivP 22
(v’ -u'N?) u[azz [21)0 az”W (22)
From (20) and (21):
(v2 —/ffz)f) = ,u(&zkz +n2€2)iv13 (23)

From (22) and (23):

1
2N2 2k2 2£2 2 2 2
K (&2 +n°0 )+ > f (m +4H2j

2

V= 1 (24)
2k2+ 262 + 2+
(&K +n°0*) (m J sz
2. Rossby modes
Baroclinic modes:
Adding the beta effect to the vorticity equation (1):
A a,),. 1 P —P
ot L= —Jo Z(Di—l/z,j—l/z + Di+l/2,j—l/2 + Di—l/2,j+l/2 + Di+l/2,j+l/2 ) - ?# (30)
0

Dropping dD/ot in (2):

D-grid (with w at corner points) page 5
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0=— Pi+3/2,j+1/2 + Pi—l/2,j+1/2 + F;+1/2,j+3/2 + Pi+1/2,j—1/2 - 4Pi+1/2,j+1/2
d2

(31)
1
+ /o Z[(wz )[+1,j+1 +(wz )i,j+l + ((DZ )i+1,j +(wz )"’/:|
Dropping 9 D/ot* in (7):
* (1 9p, ) |1
° _|:822_(2papzoj :|4(Pi+1,j+1 +Pi—l,j+l +P,‘+1,,>1 +P"’f)
0
1| 9 1 dp
*Z[a_z{z_m 22 H(B 4B+ By B, (32)
o (1 ap,)|9B,; 1
L?_Z + ( 2p apZO J} ot t=N Z(D w2z T Dicya o ¥ D joya + Dy oy 2)
0
From (30)—(32):
o p B
~iVO, =—pf,D~"- P (40)
T 2d
0=p(EK +n°C)P+ufyd, “1)
1 ap, )
‘uﬁNZ_ 2+ _ﬂ P=0 (42)
2p, 9z
Rewrite (40):
o =—ppp—i P 2sn(kd) (43)
Vo, £ 2d
Rewrite (43):
_L‘vd,zz_ufob—g?éfkﬁ (44)
0

where

D-grid (with w at corner points) page 6
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From (41), (42) and (44):

vN2(§2k2 +172€2)1'3 = f(f[m2 +(L%

j ]vﬁNzﬁgkfa

2p, 0z
: 1 dp, l . - . -
Using ——=—— in (46) and for nontrivial solutions (P #0):
Po 0z H
S
2k2+ 262 Jo ( +7
(E47+m*0 )+ 05| m
Barotropic modes:
Assuming D=0 in (30)
a(a)z )i,j - _ ﬁ i+l /
ot f 2d
Writing (31) again:
0=— }_)i+3/2,j+1/2 + Pz 1/2,j+1/2 + Pz+1/2 J+3/2 + R+1/2 j-12
d2

Friday, February 24, 2017

(45)

(46)

(47)

1
+fo Z[(CO& )[+l,j+1 +(wz )i,j+l + (w )i+1,j +(CUZ )"vf:|

Assuming D=0 in (32)

(L ap) |2, _
1oz \2p, 9z ) |or

(P is vertically constant).

From (50) and (51):

D-grid (with w at corner points) page 7
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0=v(EK* +n°0*) P+ BEKP (53)
From (53) and for nontrivial solutions (P #0):

_ Bk
V= §2k2+n2£2 (54)

D-grid (with w at corner points) page 8
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Fig. D-grid (w at the corners).
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CD-grid

CD grid

1. Inertia-gravity modes
Derivation of equations: Predictor step on C grid / Corrector step on D grid:
Vorticity equation from:

J

1
g(a)z )5+l/2,j+1/2 - _fZ(D"HJH + Di“vf + Di’j+1 + Di’j) (M1 )

Divergence equation from (M.8):

0 Pi+lj+E—lj+Pij+l+Pij—l_4Pij 1
g Di’f - d? + f Z[((Df )i+1/2,j+1/2 + (a)z )i—l/z,j+l/2 + (a) )i+l/2,j—1/2 + (wz )i—1/2,j—1/2 i|

(M.2)

CD-grid page 1 (Document page 39)
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Vertical momentum equation:

Saturday, March 4, 2017

ow. .
My |9 [ L9 )lp  p (M.4)
ot dz \2p, 0z Lo
Thermodynamic equation:
0B, .
—L=-N’w,, (M.5)
ot
Mass continuity equation:
o 1 dp
D . +|—+| ———2||w,.=0 M.6
[8z (2p0 oz HW e
From (4)—(6):
¥, * (1 9p,) |0
—+N* D, —|=—5-| —=2| |=— M.7
G- o )
Define:
¢i,j (Z,l) - Re{é\)(t)ei(kdiwdﬂmz)} and ¢i+1/2,j+1/2 (Z,l) = Re{(;)(t)ei[kd(i+1/2)+cd(j+1/2)+mz]} (M.8)

Using (8) in (1):

In (9)—(10):

CD-grid page 2
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In (10):
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1 -ad -t ad gt gl gt gl e
'uEZ e e +e e 24+e e ’+e ?e?

Rewrite (13):

where

C-grid equations:

(M.9)
it ad —id ol d
= e 2+e?|e *4+e ? ||=cos| k— |cos ZE
ety —4 2cos(kd)+2cos(td)—4
d? B &’
M.10
_ —sinz(%kd)kz+—sin2(%£d)€2 ( )
(4kd) (4d)
ikd —ikd itd —ild _
e te +;2 +e 4:_§2k2_n2£2 (M.11a)
(L (L
55751“1(25‘1) and nzisml(zjd) (M.12b)
2 2
J . ~
J A 27,2 22\ p A
ED:(é k> +n*0 )P+ufwz (C.2)
0 . d 1 dp, \|a &
—W=—| ——| — 2 | |P+B C.3
" [az (ZpO 0z ﬂ (©3)
%é=—N2A (C.4)
A | d 1 dp, )| -
|:az (Zpo 0z Hw ()

CD-grid page 3
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D-grid equations:

A

d .
—_ D.1
th wfD (D.1)

2 D= p(gw 10 P+ s, (D.2)
u(E**+n°¢*) P is multiplied by u because P is defined at the cell centers while Eq. (D.2) is

applied to the cell corners, thus P is averaged.

J .. d 1 dp, )5 2
= — =] — P+B D.3
o [az (2;)0 0z H * (B-3)
9 po_n (D.4)
ot
A | d 1 dp, |
D+|—+| —=2||Ww=0 D.5
3 |:8z (2/)0 0z ﬂ -

u is multiplied by D because D is defined at the corners while Wq. (D.5) is applied to the cell
centers, thus D is averaged.

Predictor step on the C grid:

C.1 is temporally discretized and modified in the CD grid as follows: Variables with (n) and
(n+1) are defined at the D grid. Variables with () are defined at the C grid.

O = uo™ — L1 D (CD.1%)

@) is defined at the C grid (thus, corners of the CD grid), @'" is defined at the centers of the

CD grid, thus it is averaged, i.e. multiplied by . D™ is defined at the corners, thus it is not
averaged. t is the time step. At the predictor step, the time is advanced half-a-timestep.

CD-grid page 4
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DY =ub™ + 37| (8 +0°0C) B+ fOL | (CD.2%)
DY is defined at the centers. D™ is defined at the corners, thus it is averaged to center

(multiplied by 1) . 136 is defined at the centers and it is a diagnostic variables, thus no time

stamp. (Z)() is defined at the centers of the CD grid, thus it is not averaged.

W0 = g do| L[ L9 s L po (CD.3%)
dz \2p, 0z
B = B0 32 (CD.4)
oz \2p, 9z

Corrector step on the D grid:

D.1 is temporally discretized and modified in the CD grid as follows: Variables with (n) and
(n+1) are defined at the D grid. Variables with () are defined at the C grid.

") = o — 7 OO (CD.1n+1)

Z Z

D" is defined at the corners, thus no averaging is needed in (CD.1n+1).

D.2 is temporally discretized and modified in the CD grid as follows:

D) = b(n)+T|:u(§2k2 +n2f2)130+f6?>§*)] (CD.2n+1)

f’D needs to be averaged to the corners, thus multiplied by . No averaging is needed for af)(’
in (CD.2n+1).

) :w(")+T{_|:aiz_($aa_p;j:|ﬁ0+é(*)} (CD.3n+1)
0

CD-grid page 5
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B — B0 _ a2 ) (CD.4n+1)

o [a (1 ap)]. . o (1 ap,)].
DM 4| —+| — L0 [ 1p™W=0 and uD"™+| —+| — =0 | WV =0 CD.5n+1
H [az (Zpo 0z HW H dz \2p, 0z v ( +1)

D™ is multiplied by u because D™ needs to be averaged to the centers.

CD-grid page 6
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Scheme I:

.0 1 dp _ 1 0 1 adp ( 1
U G| — %P | jm———]and | —%F |_ —
Sing E)z+(2p0 azj ('l‘m 2H) an 0z (2p0 azj ol

Predictor step on the C grid:

A

C‘A)E) — ua}in) —%TJD(")

IA)(*) :ub(n)+%f|:(§2k2+n2£2)ﬁc+f(b£n)i|

A (% A (n . 1 - n
w(')zw()+%1’ —(1m+—)PC+ (n)
- 2H

o>

B = B0 _ LN

Assume P=P.=P, in scheme |.
Using (2) in (6), and:
L2 E§2k2+n2£2

A (n+1) -

o™ = (1—%772)6)?) —ut D™ -1 2P

CD-grid page 7
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Using (1) in (7):

DM =(1-472°f2) D" + pur fd" + urL’P
A (n+ A\n N n . 1 7
D) =(1—%12N2)w( )+ 1B )—T(lm+—)P
- 2H

A

A ~ ~(n . 1
B" =(1-12’N*)B" —tN*%" + 4 7°N? (zm+—)P
= 2H

A 1 ). A 1 Y.
MD(H) +(Lm—ﬁ)w(“) =0 and /,LD(HH) +(£m—ﬁ)w(n+l) =0

Repeat (13 and (14):

D = (1-37212) D + e £ + el

A

W :(1—%1’2N2)v?1(")+‘L'B(")—‘L'(L'm+ﬁ)ﬁ
Using (16) in (14):

A

—uD"™ = —(1—%12N2),uD(") +r(gm—ﬁ]l§(“) +r(m2 1 )13

4H?
Using (16) in (15):

1 ~ 1 A A
(L‘m_ﬁjB(nH) :(1_%T2N2)(L-m_ﬁj3(n)+‘u1.N2D(n)_%TZNZ(mz +

Balanced state solution:

D=0, d/dt=0 in (13), (19) and (20):

CD-grid page 8
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0:(im—ijl§(“)+(m2+ ! 2)16 (23)
- 2H 4H
Using (22) in (21):
0= f(gm+ L)c?)g) +12B™ (24)
7 |®:
Geostrophic balance: 0= f@®"" + I*P and O:f(g’m+ﬁjé)£“)+ﬁé(") (25)
Quasi-static approximation: 0= B" — (gm + ﬁ)f’ (26)

Egs. (12), (13), (19) and (20) form the system of equations (Scheme I):

é)gnﬂ) _ (1 _ %Tzfz)d)in) _ M,L.fb(n) _ %‘L’zﬂ,zf’ (27)
DO = (1422 2) D) + e f " + pr 2P (28)
—uD"™ = ~(1-47°N*)uD" +T(£m—ﬁ)é(") +1(m2 + 4;2 )ﬁ (29)
. 1 ~(n+ . 1 n(n H(n 1 D
(Lm _ ﬁ)y V=(1- %erZ)(Lm— ﬁ)B( )+ utN?D"™ — L72N? (mz o jP (30)
Definitions:

CAD(HH) — e—gvrci)(n) (31)
o,=1-17°f*, 6, =1-17°N* and cfism2+4H2 (32)

Using (31) and (32) in (27), (28), (29) and (30):
(e‘iw—cf)(f)Z =—utfD — L7t fI*P (33)
(e‘M —O'f)b = UTf®, + utl*P (34)
(e =0,)b=c( n-2 )b-102F (35)

CD-grid page 9
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(e £ —O'N)(Lm—ﬁj3=‘UTNZD—%TZNZO'iP (36)
Eliminate @, between (33) and (34):
—ivt 22202 | A —ivt 25
[(e : —O'f) +uTtf }D :m:(e . —I)LP (37)
Eliminate B between (35) and (36):
—p| (e =0, + TN [D=t(e - 1)o2P (38)
Eliminate D between (37) and (38):
0=y’ (e‘i” - 1)[(55” -0, )2 + TZNZ}LZ}AM(EM — 1)[(5”’ —O'f)2 + u%’zfz}oﬁ,ﬁ (39)
Nontrivial solutions:
0=y’ (e‘i” - 1)[(55” -0, )2 + z'zNz}L2 +(e_m — l)[(e‘i” —O'f)2 + uzrzfz}oi (40)
Solution 1:
e —1=0 (41a)
Solution 2:
0=y’ [(e*i” -0, )2 + TZNZJLZ + [(ei” —O'f)2 + uzrzfz}ofn (41b)
Definition:
V=V +iv, (42)
Using (42) in (41a) and (41b):
Solution 1:
e’ [cos(vrr) - L’sin(vrr)] -1=0 (43)
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e"cos(v,7)-1=0 (44a)
and

e""sin(v,7)=0 (44b)

Solution 2:
P (uzL2 +0? )cos(2vrr) —2e"" (‘LLZGNLZ +0,0) )cos(vrr) + (O'f, +T°N? )/fL2 + (G; +Tul f? )an =0
(45a)

and

o 2(‘UZO-NL2 +Gfo-i) Sin(V,T)
(W’ +0))  sin(2v,7)

(45b)

Newton Raphson:

F(v,)=e"*(1’L’ +07}, )cos(2v,T) - 2" (‘UZO'NLz +0,0, )cos(vrr)

+(0,2V +T2N2)‘I.12L2 +(G; +12u2f2)63,

aF _i 2v,T 272 2 _ vt 272 2 :
v "9y () (w’L +0,, )cos(2v,7) - ™" (WL’ + 0, ) 2tsin(2v,T)
-2 a?/r (ev"’)(,uZO'NL2 +0foi)cos(v,1)+ 2e"" (,uzaNL2 +O'f631)’[ sin(v,7)

i( v,f) B 2(,U20'NL2 +Gf0',i) tcos(v,7)sin(2v,7)- 27 cos(2v,7)sin(v,7)
ov, - (©r+0?) sin® (2v,7)

Balance solution:
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Using @™ —®™ =0, D=0 (therefore, w=0) and B"") — B" =0 in (27)—(30):

Z

0=—fo" -1*P (46)
0=fo" + *P (47)
1 ~(n) 2 1 a 7>(n) . 7
O=|im——— |BY+|\m +—— |P or 0=B"—|im+— |P (48)
- 2H 4H ~
L Yam_[, 2 5 ao) (o 1 )5
O=—|im——— |BY~|m +——= |P or 0=B"—|im+— (49)
meoy L

Using (48) and (49) in (46) and (47):

A 1
0=1*B" + ( +—jc€)(“) 50
flim+— | (50)

There is a unique balance with scheme I.
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Scheme lI:
Prediction-step on C grid: Corrector-step on D grid:
o) =t - b ©) o =o"—cfpt (65)
DY =uD™ + %( fol" + Lzﬁc) (61) D" =DM 4 r( fo' + /,LL213D) (66)
A A 1 A ~ A (n+ A (n . 1 - S
OO _(im+_ B.+B"| (62 W = ) —(1m+—)PD+B() (67)
2 - 2H ~ 2H
BY =B" - %szv(“) ©3)  B"V=B" N (68)
A [ L e A [ L) aen
DV +|im——— [w' =0 (64) uD" + im——— w7 =0 (69)
~ 2H ~ 2H
Prediction-step equations:
Eliminating P. between (61) and (62)
Eq. (61) becomes
1 INE 1 A~
—(L2+m2+ 2)D('):—u(m2+ 2)D()
4H 4H
1 N 1 ). 1 A
—zf(m2+ 2jw§“>+L2(im——jw<“>+3(im——jﬁB(“) (71)
2 4H ~ 2H 2\” 2H

Eq. (62) becomes

1 I ). 1 A
(Lz +m’ + e )(g‘m—ﬁjw(‘) = —u(mz T jD(“)

—%f(m2+

4H*?

Corrector-step equations:

Using (71) in (65):
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I . 1 ’f? 1 A
P +m+—— 0™ =|| P +m* +—— TSy = ||
4H 4H 2 4H .

—‘L'f‘u(L2+m2+ ! zjﬁ("@rf%(im—L)ﬁé(“) (73)

4H © 2H

Using (60) and (63) in (66) and eliminating 2, and w™" (and w") between (66), (67) and (69)

[ub("u(gm—ﬁ)w(“) =0 J:

2 p2 272
(u2L2+m2+ 12)D(“+‘): -2t (m2+ 12j+u2 -2 |
4H 2 4H 2

2a72
(L2+m2+ 12)(im—LjB("“)= (L2+m2+ 12j_r N r (im—LjB(“)
4H° )\~ 2H 4H 2 ~  2H

Eqgs. (73)—(75) are the equations of the system. Rewriting (73)—(75):

2
A A A T 1 V-
+02)o"™ =(1>+0,02)0" -t fu(l? +02) D™ + —Lz(im——)B(”) 76
( m) z ( f m) z f:l’t( m) f2 < 2H ( )
. . A 1 ).
(/sz +0'j,)D("+') = (/.LZO'NL2 +Gf0';)D(“) +rufold —qul? (g‘m - ﬁ)B(“) (77)

Z

1 ~ 1 A A T ~
’+62) im—— |B"™ =(o [’ + o> (im——)B(")+ N (2 +62)D™ += ftN*c2 ™ (78
(3 im g7 |8 =(o 02 ) = |+ eN? (£ +02) 50+ penazal” - (79

where

o,=1-11°f*, 0,=1-41°N* and o, Em2+4H2

Using @ =" ®d" in (77)—(79):

CD-grid page 14



Celal Konor Supplementary Material Saturday, March 4, 2017

(L2 +G,fq)e‘£”a3Z = (L2 +O'f631)(?)z —rf,u(L2 +Gi)l§+f§L2(gm—ﬁjl§ (80)
(usz +oi)e’£”f) = (‘UZGNLZ +0'f0'j1)f)+wf0'ic?)z —tul’ (gm—ﬁ)é (81)
(2 +a;)(gm_ﬁ)ewz§:(%ﬁ +ai)(gm—ﬁ)é+ peN (2 +o3)D+ L peN'ele, (82

Eliminating B between (80) and (81):
u(L2 +an)(e‘i” —~ l)d)Z = Tf[—%(usz +Gi)e—M -y’ (L2 +an)+ %(uzGNL2 +Gfafn)}ﬁ (83)
Eliminating B between (81) and (82):
{[(L2 +Gi)e‘1” —(GNL2 +an)][(,u2L2 +G§1)€_M — (,LLZO'NL2 +0fofn)}+ WN’L (L2 +an)}f) =
(L2 +0'r2n)(e‘£” —l)wfcj,d)z (84)
Eliminating D between in (83) and (84):
(Z+0r)(e™ =1)Bd, =(L +0, ) (e —1) At fo,d,
A= Tf[—%(usz +o,)e -y (L2 +0'j1)+%(u20'NL2 +of0'j1)}
B= [(L2 +o’ )e‘i” - (GNL2 +Gi)}[(,u2L2 +0',fq)e‘£” - (,uza,vL2 +chjl)}+ WTNL (L2 +0§1)

From (85). Nontrivial solutions:

Solution 1:

e —-1=0 (86a)
Solution 2:

L+ol)e™ —(o L +o. )| (WL +0.)e™ (1o, +0,0. ) |+ W’ N’ L’ (L’ +0 )=
/ (86b)
-1’62 (,uzL2 +0§l)e‘i” -’ flolu’ (L2 +an)+ 11°f’o? (uzGNL2 +O'f631)
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Arranging the terms (86b):

[(L2 +o )e‘m - (O'NL2 +anﬂ[(u2ﬁ +an)e‘i” - (,u20'NL2 +0,0,, )}+ 11’ f’0? (/fﬁ +ofn)e‘1” =

- u’t? (NZL2 +f26,2n)(L2 +G§l)+%1'2f20'i (,LLZGNL2 +chjl)

(87)
Arranging the terms:
(L2 +Gi)(‘u2L2 +0fﬂ)e‘2i” — [(L2 +Gi)(,u26NLZ +0'f6i)+ (,usz +an)(0NL2 +6f0'i)}e‘i”
+(oyL+0,00 ) (o L +0,0,)+w’ T (N*L + f'0. ) (L +0,,)=0
(88)
Rearranging the terms:
-2ivt .u2GNL2 +Gfo-j1 O-NL2 +Gf631 —ivt
€ - 272 2 + 2 2 €
uwr+o, L +o,
(89)
oyL’+o0,0, \( Wo,’+0,0, , L N°LI* + f?o?
+ 2 2 272 2 THT 272 > |=0
L +o, ur+o, uwr+o,
From (89):
Solution 1:
e""cos(v,t)-1=0 and e""sin(v,7)=0 (90a)
v.=0 and " =1 (90Db)
Solution 2:
2 2 2 2 2
o,L"+0.0 o,L'+0.0
o cos(2vrr)—l:['u K2 OO H K= 7O, He cos(v,7)
uwr+o, L +o,
(91a)
s oy ’+o,0, \( Wo,L’'+0,0, i N’L + f’o. o
L’'+o’} wr+o’ H W+l )

CD-grid page 16



Celal Konor Supplementary Material Saturday, March 4, 2017

e l:[ woyLl’+o,0) ]+(GNL2 +0,0, H sin(v,7) (91b)

wWr+o L’ +o) sin(2v,7)

Balance solution:

Using @™ —~®" =0 and D=0in (76)

Z

A 1 ). 1 ). A
0:—f0'2a)(n)+L2 (Lm—EjB(n) or OZf(Lm-i—ﬁ)U)En) +LZB(H) (92)

Using D=0in (77):

A I \» I \a.
0=fo2e" - I (im = —jB(“) or 0= f(im + —jwf“) +12B" (93)
~  2H - 2H) ~

Using B™"—B"™ =0 and D=0 in (78):

Z

1 A A ~ 1 A
0=-1*| im—-— |B" + fo2@"™ or 0=LB"+f| im+— |0 (94)
Sy 2 " 2H

Egs. (92)—(94) yield a unique solution.
Approximating (67) with w=0 (because D=0) and using (63):

0:—(£m+ﬁjﬁl) +B™ (95)

Approximating(66) and (60) with w=0 and D=0:
0=0"+1'P, (96)

z

Using (95) in (92)—(94) yields (96). There is a unique balance solution with Scheme II.
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Figure. Scheme Il. (runs_CD_grid_time_discrete_scheme_2)
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Scheme lll:
Predictor-step on C grid: Corrector-step on D grid:
A T oA alal)  Ala A (s
@ = ud™ —EfD(") (120) & =" -7 D" (125)
DY = ub™ + %( fol+ LB, azy DU =D"+1(fud +uLl’p,) (126)
A (% A 1 -~ - A (n+ A (n . 1 D n(n
WO = 4 I —(im+—jPC+B(“) 122 W =p"ir —(zm+—)PD+B( +) (127)
2 - 2H - 2H
A (x ~ T ~ A (n+ ~(n A (x
BY =pB" - ENZW(H) 123 B"=B" N (128)
> CI PP B YO > LI (PR B YY)
DV+|im——— (w' =0 (124) uD"V U+ im——— {w" =0 (129)
- 2H - 2H

Predictor-step equations:

Predictor-step is identical to scheme Il. Rewriting (71) and (72):

1\ A 1\ ag
—(L2+m2 + 4H2)D( ) :—u(m2 + 4H2)D( )

—%f(mz + 4;2 jasg“) + Lz(im—ﬁjﬁz(“) +3(gm—ijﬁé<"> (130)

and

1 I ). 1 A
(Lz o )(im—ﬁjw(') = _u(mz YT jD(")

_gf(mz+411{2ja")in)+L2(£m_$jv’{}(n)+£(£m_ﬁjl‘2é(n) (131)

(L2+m2+411_12)b(*):u(ﬁ+m2+ Il_lzjﬁ(“)+%f(m2+ ! jd)ﬁ“)—z(gm—ﬁjﬁfs(“) (132)

and
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(s i i )i =
4H - 2H
—/,L(L2 +m?+ 4;2 jf)(“) —%f(mz + 411{2 )cb() +§(gm—ﬁjﬁl§(“)

Corrector-step equations:

Using (132) in (125):

2 p2
(L2+m2+4;12 )(a’\)gnﬂ)_é\)gn))_}_f f (m2+41 jé\)gn):

4H?

Eliminating P, in (126) and (127):

1 A A (n+ . 1 ~(n A (n . 1 A (n+ (n
(5’m+ EJD(HH) + 2w = (Lm + EJD( Y ulw®™ + ‘LLTf(Lm + ﬁ)wg V¢ ur’tB"™

Using (129) in (135):

1 ~ ~ 1 1 ~
272 2 (n+1) (n)) _ 2 A (n+) 2 . (n+1)
L'+m + D DV |=urf|l m+ w —uLt| im——— |B
(“ 4H2)( ) H f( 4H2) : H ( 2Hj

Using (133) in (128):

1 1) » A *N? 1 A
(L2+m2+4H2)(£m—ﬁj(3(“+l)—3(“))+Tév (g’m—zH)LzB(“)z

1\~ *N? .
mNz(L2+m2+4H2JD(“)+T f(m2+ )a)(“)

Egs. (134), (136) and (137) are the equations of the system.

Using & = ¢ " ®™ in (134), (136) and (137):

(133)

(134)

(135)

(136)

(137)

2 2 1 ' Tzfz 2 1 A 2 2 1 AT 1 275
(L +m +4H2j(e5”—1)+ ; (m +4H2) wz:—mf(L +m +4H2)D+7f(£m_—H)LB
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(140)

(141)

Celal Konor Supplementary Material
WL +m’+ ! )(ei”—l)f)=m:f(m2+ ! )emd) —,LLLZT(im—L)eMIAB (139)
4H*? 4H? : = 2H
B 2a72
(L2+m2+ 12)(67”—1)+TN r (im—Lj =
i 4H ~  2H
1 YA ©°N° 1 ).
TN?| P +m* + )D+ (m2+ )a)
# ( 4H*? 2 ! 4H* ) ¢
Eliminating D between (138) and (140):
—ivt 2 2 1 2 A . 1 N
(e~—1)L+m+ S | N°o, + f| im——— |B |=
4H ) 2H

Requiring

e —1)| IP+m’ +
(1)

Then rewriting (141):

1

4H*?

N’®, +f(im——j§:0
= 2H

Eliminating D between (138) and (139) and o, =m’ +

T2f2
2

{(w+o;)(e-m_1)[(L2+o;)(e-w_1)+

o’ } + T f? (L2 +o. )0',,21 e }d)z

1 .
4H?

e\ (Ero)e e (W vor (e ) -

Eliminating B between (144) and (143):

{(,uzL2+0'i)(e‘i”—1)[(L2+oi)(e‘£”—l)+

TZfZ
2

2H

o Jewe (e z)ate -

B

-7’ [/f (L2 +0'§,)e‘ivr + %(UZLZ +Gi)(e‘£” —~ l)}Nszc?)Z
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(122 +62)(e 1) (2402 ) (e~ 1)+ 2L 62 s TN 2 |y (1 4 62 ) (WL + 02 e =0
M m m 5 O > u m m
(146)
Arranging the terms in (146) and using o, =1-47’f* and o, =1-47°N*:
(L2 +0j,)(,uzL2 +G§1)e_2£”
+{u212 (L2 +0'j1)(N2L2 +f’o’ )—(uzL2 +0',2,,)[(L2 +G§1)+(O'NL2 +0'f0'fn)}}e’5” (147)
+(w’L+0))(0 L +0,0,)=0
Using v=v, +iv, in (147) and splitting real and imaginary parts:
(L2 +Gi)(,u2L2 +G,2n)ez"’r cos(2v,7)
+{,u2r2(L2 +0,)(N°L*+ flo), ) - (1L +ai)[(L2 +0,)+(oy L’ +ofai)}}e” cos(v,t)  (148)
+(w’L +0})(o L' +0,0.)=0
and
o —{,LLZTZ(LZ +0',f,)(N2L2 +f26 ,u ‘I'+o) [ 0' L’ +o0,0, )}} s‘,in(vrf) (149)
(L2 +o )(u r +0'2) sin(2v,7)
Balance solution:
Writing (134), (136) and (137) with @™ -@" =0, D" =D" =0 (w=0) and B"" ~B" =0
~ f(gw%)@j“) =*B" (150)
_ L ~ (n+1) 2 p(n+1)
0= f(gm+2H)a) B (151)
(zm—ﬁjﬁé(“) =—f(£'m+—jd)(“) (152)
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From (127):

1 Y~ =
0=—| im+—— |P,+B"" 153
(zm 2H) b (153)
From (126):

fd\)in+l)+L2PD:0 (154)

Egs. (153) with (154) satisfies (150)-(152). There is a unique balance solution with scheme lII.
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Figure. Scheme lll. (runs_CD_grid_time_discrete_scheme_3)
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Scheme IV:
Predictor-step on the C grid: Corrector-step on the D grid:
O = ud™ - % D" a1 @M=" -7DY (175
NE ~ T R ~ N N ~(n ~
DY = uD™ +E(fw§“) +LF) ary DUV =D"+r(fa)+ul’p,) a76)
A (3 ~ T 1 - (* A (n+ A (n . 1 - ~(n+
W =y —(im+— E+BY | amy  w=wWag —(zm+—)PD+B( Va7
2 - 2H - 2H
(* N T ~ (i (n+ 5(n ~ (n+
BY :B(“)—ENZW() a7y B"™=B" N (178)
A [ g 3 A ()
DV+|im——— (w’ =0 (174) uD" + | im———— w7 =0 (179)
- 2H - 2H

Predictor-step equations:

Eliminating 130 between (171) and (172) and using (173), (174) and uﬁ(“) +(gm_—)w<n) =0:

’N? 1 |ac 1 )~ 1. 1 -
1+ 5V et - D()=u(L2+m2+ 2)D(“)+£f(mz+ 2)605“)—3(im——)L2B(”)
4 4H 4H 2 4H 2\~ 2H

(180)
Corrector-step equations:
Using (180) in (175):
2 2 2 p2
1+TN L2+m2+ 12 (é\)inﬂ)_é\)gn))_’_f‘f (m2+ lzjé\)sn):
4 4H - 2 4H -
(181)

1 N ° 1 N
—Tful 2 +m®+ D™+ (im——jLzB(“)
f“( 4H2j 2f = 2H

Eliminating f’D between (176) and (177) and using (170), (178) and (179):
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2 p2
‘112(1+T2N2)L2+(m2+ ! j D™ =| 1> + -2 (m2+ ! ) D"
4H? 2 4H?

1 N 1 ~
+utf| m*+ o™ - ur| im-— |?B™
”f( 4H2) < ~H ( 2Hj

Using (179) in (178):

1\, ~ R .
s (n+1) _ (n)) _ 2 (n+1)
( im H j(B B )— UTN"D

Egs. (181), (182) and (183) are the equations of the system.

Using @™ = ¢ *®™ in (181):

2 a72 2 p2
RN L 12 (e‘i”—l)(f)z+ff (m2+ 12]&)1:
4 4H 2 4H

Using @™ = ¢ @ in (183):
(e 1)(l-m - Ljé = uTNe D
- 2H
Eliminating B between (184) and (186):

(e‘i” - I)H[H Tzivz ]Lz +m®+ 4;12 }(e‘i” ~1)+ Tzzfz (mz + 41112 ]}(Z)Z _

—’L'f,u[(e_iw - 1)(L2 +m’+

N
=

Eliminating B between (184) and (187):
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[/f (1+2°N?) L +(m2 + 4;2 j:|(e ~1)e™D= {uzﬁ +(1— %j(m2 + 4;2 ﬂ(e -1)D

A A 1 A
2.2 2712 —ivt —ivT 2
—UT N Le""D+utfle™ —1)| m”+ 0]

(188)

272
Rewriting (187) and (188) using o\ = 1+% and o\ =1+7>N? and definitions:

_ ()2 2. _ 2 2, _ 72 2. _ 2 (+1) 72 2. 272 2
a=0,'L+0,; a=o0,L+0,; a=L+0,;, a=poy,’'L'+0,; a=ulL+0,0,

e 1)1, )02 )16, — 1l -a) (169
and
[(a4e_1” —a )(e_i” — 1) +WT N Le ™" }lA) =,uz‘f(e_M - 1)0,2,16?)Z (190)

Eliminating @_between (189) and (190):

_ R (191)
-t f? (aze_m - a3)0' D
Arranging the terms:
a, (e’éw - 1)[((146’”1 —as )(e’iw - 1) + /,LZTZNZLZe’M]
+ (1 -0, )O'i [(a4e_£” —a, )(e_M - 1) + ,LL212N2L2e_M} = (192)
_uzfzfzazefgwo_i +,Ll21'2f2a363,
Rearranging the terms:
a, (a4e_iw —a; )(e_iw - 1)2 +a, WT'NL (e_iw - l)e_i‘”
+(1 -0, )0'31 (a4e‘£” —a )(e‘i” - 1) + (1 -0, )O'f“uzersze‘i” = (193)

_u2T2f2a2e—£v‘ro.2 +‘u2T2f2a3Gi

m

Rearranging the terms:
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2

» . » 2 by .
aae ™’ (e e —1) —alas(e M—l) +a, TN Le™ —a, 1>’ N L'e™"

+(1-o‘f )gi(%e‘M —a;)e™ —(I—Gf )G; (a,e™ —a5)+(1—0'f )Gi,uzersze‘i” = (194)

—/.12T2f2a2e_MO'i +‘LL2’L'2f2a3Gi
Rearranging the terms:

. . 2 . 2 . .
—ivt [ _—ivT —ivt 222A7272 2ivt 2-2A7272 -ivt
aae* (e~ —1) —alas(e~ —1) +a, U TN L'e™" —aq U T°N'Le™*

+(1 -0, )O',f, (a4e’£” - as)e’m -a, (1 -0, )Gie’iw + (1 -0, )Gfmuzersze*i” =

2
m

— 1T frae Mol + Wt a0 —ag (1 -0, )0'
Rearranging the terms:

. . 2 . 2 . .
aae” (e‘w - 1) —a,a; (e‘w - 1) +a, TN Le? —a, T’ N L'e™"

=2ivt —ivt

+a4(1—crf)0'j1e

2
m

2.2 p2 —ivT 2 2.2 p2 2
-utfra,e o, +UT fa30'm—a5(1—0'f)0'

Rearranging the terms:

. ) 2 ) 2 A A
ala4e—Lv1 (e—Lvr _ 1) —a,a, (e—gvr _ 1) +a, uZTZNzLZe—ZLW +a, (1 -0, )O_ie—hvr
2 —ivt

—a, TN’ L’e™™ —a, (1 -0, )Gie’ivr —-a, (1 -0, )O'me

+ (1 -0, )Giu%zNsze’i” + Wt fra,0le Y = Ut fra0) —a; (1 -0, )O'fn
Rearranging the terms:

aae ™ (e_ziw —2e M+ 1) —a,as; (e_ziw —2e M+ 1) +a, WrN°L’e? +a, (1 -0, )Gie_zi”
2 —ivt

—a, TN’ L’e™™ —a, (1 -0, )Gie’ivr —-a, (1 -0, )O'me

2
m

+ (1 -0, )Giu%zNsze’i” + Wt fra,0le Y = Ut fra0) —a; (1 -0, )0'

Rearranging the terms:
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aa,e” + [al W'N’L*-2aa, —aas+a, (1 -0, )62 :|e’2£"/f

m

Raa,e™" +aa,e”

199
—a, W’T’N* e —a, (l—af )G;e‘iw —a4(1—0f )Gie‘iw (199)
+ (1 -0, )O'f“uzersze’i” + 1t fra,ole ™ =ut’ fra0l —a; (1 -0, )Gi +a,a,
Rearranging the terms:
=3ivt 2.27a7272 2 —2ivt
a,a,e +[a“u T°N°L —2a1a4—a1a5+a4(1—0'f)0'm}e
+2a,ae”" + a1a4e_é” | (200)
—a, TN Le™ —(a, +ay )(1 -0, )Gie‘m
+ (1 -0, )Gfmuzer2L2e‘M + Wt fra,0le T =0t fra0) —a; (1 -0, )O'i +a,a;
Rearranging the terms:
aa,e”™ + {(uszNsz +aj )a1 + [(1 -0, )651 —2a, ]a4 }e‘zw
+{u21'2 [(1 -0, )0',2,, —a, }NzL2 +fu't’a,00 —(a, +a; )(l -0, )G,i +(a, —2a5)a, }e‘iw (201)
=u’t’fla,0l - [(1 -0, )Gi +a, }as
Then:
AeY 4 Be M 4+ Ce ™ +D=0
A=aga,
B= (,LLZ‘L'ZNZL2 + as )al + [(I—Gf )O'fn —2aq, }a4
(202)

m

C=u’t [(1—of Jo —al]Nsz + W ta,0, —(a,+a;)(1-0, )or, +(a, - 2a;)a,

D=-p’t’fla0) +[(1—0'f )O',i +al}a5

(+4)

— 2,
a, =0y

2 2. _ 2 2. _ 72 —_ 2 <(+) 72 2. 272 2
r+o,; a=0,L"+0,; a,=L"+0,; a,=uoy, L +0, ay=yu’L"+0,0,

Then:
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Ae™" cos(3v 1)+ Be " cos(2v. 1)+ Ce" " cos(v.T)+ D=0
r r r

Asin(3v,7)e™" - Bsin(2v,7)e"" +Csin(v,7) =0

. —Bsin(2v,,r)$\/BZsin2(2v,1')—4ACsin(3v,T)sin(vrr)
e’ =

2 Asin(3v,7)
R _ 2 . 2 _ : ;
i Bsin(2v,7) \/B sin (2.v,1') 4 ACsin(3v,7)sin(v,7) (solution)
2 Asin(3v,7)
e —l’p’sin(2v,ﬂ:)+\/13‘2 sin®(2v,7) - 4.ACsin(3v,7)sin(v,7) (no solution)

2 Asin(3v,7)

Balance solution:

Egs. (181), (182) and (183):

Egs. (176) and (177) with balance approximation:

. A 1 Yo &
0=fo"+ 1P, and 0=(gm+ﬁ)PD+B(“+l)

From (209):

Z

1 R N
= —f(Lm + ﬁ)a)(“) + LzB(nH)

There is a balance within one time step difference.
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Figure Scheme IV. (runs_CD_grid_time_discrete_scheme_7)
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Scheme V:

® A (n T ~(n A (n+ A (n ~(*
wi')zuwﬁ)—EfD“ 3000 0" =0" —7fD" 305)
A (s A (n T A (% A n+ n+
D('>=ND()+E(fuw§)+L2PC) (301) D) = +1(fuw D4 ul?p )(306)
A (= A (n T . 1 - S(n A (n+ A (n 1 n
=™+ 2 im+— | +B™ | @02 W =3 4z~ im+— |P, + B"Y | 307)

2 - 2H 2H
~ ) T ooaam Soel) A
B(')=B(“)—5N2w() (303) B™ = B — N (308)
i (x) . 1 N (*) _ A (n+l) . 1 n+1
DV+|lim——— W' =0 (304) uD" U+ im——— W =0 (309)
- 2H - 2H

Predictor-step equations:

Eliminating 130 between (301) and (302) using (300), (304) and (309):

1 INE 1 T 1 A(n
(L2+m2+4H2)D():“[L2+( 2 4H2)(1 A{H 3 f”( 4H2jw£)

(310)
_E(Zm_LjLzB(n)
2
Using (304) in (3.10)
2 p2
—(LM—L)(L2+m2+ 2JW(:k)=M[L2+(m2+ 2)[1—14{ )}IA)(“)
(311)
T, 2 =2 Am T 1 j 2 p(n)
+— + —— -—|L
S TH (m 4H2jwz 2(~ 2
Corrector-step equations:
Using (310) in (305):
2 p2
2 () AmY_ 2T f 2 1 A (n)
(L )( )— il > (m +4H2)a)
(312)

1 T2 ) | A T 1 -
—rfu| L+ m® + 1- D" +1f—| im—— |I?B"
f’{ (m 4H2)( 4 H \m=2g

Eliminating I3D between (306) and (307) using (305), (308) and (309):
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1 ay ay l 1 A
2L2 + m2 + ) D(n+1) _ D(n) =7 ( 2 ja) (n+1) "y Lz( m__)B(nH)
(u Al ( ) fu a0 | U SH

Using (311) in (308):

2a72
Prmt— [ im—L (B - B™)+ N fim— L0 =
4H? 2H 2 2H

2a72
szu{L2+(m2+4;2](l—Tf H Y fu T;V (m2+4;]2)a3§“)

Eqgs. (312)—(314) are the equations of the system.
2 p2
% and using @™ = ¢ " @™ in (312)—(314):

Defining o =1-

(L2+0',2n)(e‘”’—l)d)zz - (1 O'f)G o, —Tf,u( '+0 Mo i)ﬁ+1’f (zm—ﬁ)ﬁff

(,u L'+o )( )D TfUC e i”al—we*”(im—%)ﬁé
‘ 1 1 .
(L2+0'j,)(e‘£”—I)sz—ﬁ)3+(1 GN)( m_ﬁ)m:
er,u(L2 +o' Gm)D+f,u2(1—GN)GiaA)z
Eliminating D between (315) and (317):

N’® +f(lm—LjI§=O
2H

Using (318) in (316):
f(wr+ol)(e™ -1)D=1u(N*L'+ fo) )e @,
Using (318) in (317):
[(+o2)(e ™ =1)N* +(1-0,)(L’N* + f2u’6},) |0, =—t/N°u(L +0 Va2 ) D
Eliminating &, (319) in (320):
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[(2+o2)(e™ =1)N* +(1-0,)(L’N* + f2u’)) (L2 +0)) (e ~1) D=

R (321)
~T°U’N’ (N2L2 + fzoi)(L2 +o"§.4)6§1)e‘1”D
Nontrivial solutions:
2 2 272 2 —1vr_277_222 2 272 2,2 2\ -ivt 1) _
(L +0'm)(u L +Gm)(e 1) + > (,u L +Gm)(N L'+ fu O'm)(e 1)— (322)
—rzuz(Nsz + fzo'j,)(L2 +6(f‘4)631)e’”’

Arranging the terms:
(L2 +0'j,)(/,12L2 +0'j1)(e’25” -2V + 1)

+ %(;ﬁﬁ +0'fn)(N2L2 + fz,uza,f,)e‘i” + rz,uz(NzL2 + fzoi)(L2 +G_;_4)Gi)e_£w (323)

2

—%(,uzL2 +Gi)(N2L2 +f2uzo'i) =0
Rearranging the terms:
(L2 +Gi)(/fL2 +0'j1)e’2£”
- {—(,usz +<7,2,1){2(L2 +an)— g(Nsz +f2,uzo'j1)}+rzu2(N2L2 +]‘2<fi)(L2 +0'§f‘)cfn)}e‘i” (324)
Ny +6§1){(L2 rol)- T (W fzuzafn)}:o

2 p2
Using o =1- Tzf

in (324) and arranging the terms:

(C+0),) (WL +0))e™
+ |:T2‘u2(N2L2 +f’o’ )(L2 +fo‘)0'j1)— (/sz +o) )(L2 +o.+o,l +0'(f“)0'51)]e‘5” (325)
+(u’L +o), )(O'NL2 +O"§ft)6i) =0

Then
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. N2L2+ 262 )
(L2 +0',f,)e’25” +[12u2(—2 5 f - (L2 +0'5f‘)0'j1)—(L2 +o.+o,l +0'(f“)0',i) e
w'r+o, (326)

+ (O'NL2 +o'o? ) =0

Then:
(I +0),)e™ cos(2v,7)
+ [72#2[%j(ﬁ +G_E,-_4)Gn21)— (L2 +o.+0, L +GE¢-’1)O';):|€V’T cos(v,7) (327)
+(0'NL2 +0'§f‘)0'j1) =0
and

m

N2+ 262 \( 2 + o' o? o> +0Wo? )| sin(vt

eV,‘T:_ T2‘LL2 — f?m - f - m 1+ N - f2 m : ( r ) (328)
wr+ol L’'+o L’+o) sin(2v,7)

Balance solution:

Egs. (312)—(314) with balance assumption:

0=y f( im+ ﬁj@fﬂ +1*B" (329)
0=- f( im+ ﬁj@“‘) - ’B" (330)
2B™ =—u? f( im+ ﬁj@fﬂ (331)

There is no unique balance solution.
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Figure. Scheme V: (runs_CD_grid_time_discrete_scheme_5)
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Rossby modes

Scheme R1:
Baroclinic modes:

C-grid equations:

Assumptions v=— . , aD and a—w =0.

fo ox T o ot

Thus, D is a diagnostic variable. It is assumed that D is defined on the CD-grid’s corners.
P is defined at the centers. Thus, it is averaged to corners.

d [3 }_)i+3/2,j+1/2 - Pi—1/2,j+1/2
E( )z+1/2 j+1/2 fi) i+1/2,j+1/2 ?0 2d (RC1)
where
- 1
Pz+1/2 Jj+1/2 = Z(PH—I,/-H + Pz+l J-1 P—l,j+1 + Pi—l,j—l) (RCQ)
Divergence equation from (M.8):
Pyt P+ P +P L —4P, 1
0= P PLLEL P10+ (0 (0 (@)
(RC.3)
Vertical momentum equation:
0 1 dp
O:_L—Z—(E a;ﬂe,ﬁBM (RC.4)
0

Thermodynamic equation:
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d0B. .
— = _N’w, RC.5
S E= N, (RC.5)
Mass continuity equation:
1 0 1 0
Z(Di+l/2,j+l/2 + Di—1/2,j+l/2 + Di+1/2,j—1/2 + Di—l/2,j—l/2 ) + |:a_Z + (a aizo]:|wi,j =0 (RC-B)
0
D-grid equations:
Assumptions v = ia—P , a—D =0 and a—w =0.
fo ox ot ot

Thus, D is a diagnostic variable. It is assumed that D is defined on the CD-grid’s corners.

J 1 ﬂ Pi+ J Pz’— J
g(wz ),-,j = _fo Z(Di+l/2,j+l/2 + Di—l/2,j+1/2 + Di+1/2,j—1/2 + Di—1/2,j—1/2 ) - ?# (RD-1 )
0
Divergence equation from (M.8):
P, +P_ . +P  +P _ —4P.
0:_ i+1,j i-1,j ;j;] i,j—1 L) —|—ﬁ)(a)z)i,j (RD2)
Vertical momentum equation:
o=_| 9 [ L9||p 5 (RD.3)
oz \2p, 9z )| " " -
Thermodynamic equation:
0B, .
=, (FD.4)
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Mass continuity equation:

1 0 1 0
Z(Di+l/2,j+l/2 + Di—l/z,j+l/2 + Di+]/2,j—l/2 + Di—]/2,j—]/2 ) + |:a_z + (5 aizoj:|wi,j =0 (RD-S)
0
C-grid equations:
J . ~ . Bz s
—@&.=—fD—iu—EkP RC.7
5 0. =—/D-iu I 3 (RC.7)
0=(EK +0’0 )P+ ufyd, (RC.8)
0=—| L[ L )lp, (RC.9)
dz \2p, 9z
d » 24
—B=-N"w (RC.10)
ot
A~ | d 1 dp, || -
D+|—+| ——=—2||w=0 RC.11
K [az (2p0 0z HW { :
D-grid equations:
d . A~ Bzoa
—@. =—uf,D—-—EkP RD.6
5, O =1y I S (RD.6)
D is defined at the corners, thus averaged in this equation
0=(Ek*+n’0*)P+ £,0, (RD.7)
0=—| L [ L9 |5, 5 (RD.8)
dz \2p, 0z
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—B=-N"W (RD.9)
ot
~ | d 1 dp, ||
D+| —+| — =0 RD.10
3 +[az+(2p0 0z HW ( )

Predictor-step equations on the C-grid:

o0 ="~ e, D~k &ud (RC.12)

0

n

@ is defined at the corners of the CD grid. @™ and P are defined at the centers, thus they

are averaged (multiplied by u).
0=LP+ f,d" (RC.13)

@™ is defined at the corners, thus it is not averaged.

o:_@m+_Ljﬁ+éw (RC.14)
~ 2H
BY = B 17N (RC.15)
b+(im-ijw—o (RC.16)
H ~ 2H '
& =" —1f,uD - L‘T?ékﬁ (RC.17)
0
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Corrector-step equations on the D-grid:

O™ =" —1f,uD - grfékﬁ (RD.13)

0

D is defined at the corners, thus it is averaged to the centers.

0=£,0" +ul*P (RD.14)

(RD.14) is applied to the corners. @ is defined at the corners. P is defined at the centers,

z

thus it is averaged to the corners.

O:—(£m+%)ﬁ+é(*) (RD.15)
B™Y = B _ N (RD.16)
A~ 1.

‘LLD+(£m—ij:0 (RD.17)

Rewriting equations in a table:
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Predictor step on the C-grid: Corrector step on the D-grid:
® = pud™" —L1f,D- L‘%r,uﬁfkﬁ ®C.13) | " =™ —7f, ub - L‘rﬁfkf’ (RD.13)
Jo Jo
0=f,0" +1*P RC.14) | 0= £,0) + uI*P (RD.14)
0_—(zm+i)ﬁ+l§‘“) (RC.15) 0:—(im+i)13+l§(*) (RD.15)
2H - 2H
BY =B™ — LN ®C.16) | B™ = B™ — N (RD.16)
A 1 ). A 1 ).
‘LLD+(£'m——)w:0 (RC.17) uD+(£m_ﬁj =0 (RD.17)
Using (RC.13) in (RD.14):
0:uL213+f0(,ua3£”)—%Tﬁ)ﬁ(”)—i%wgfkﬁj (Ro.1)
0
Using (RC.16) in (RD.15):
0 =—(im+L)ﬁ+f9(“) —LTN*W (Ro.2)
2H
Using @ = ¢**®™ in (RD.13) and dropping the time stamp (n):
(e"” - l)o?)Z =—tf,uD— it =EkP (Ro.3)
o
Using @™ = ¢ **®" in (Ro.1) and dropping the time stamp (n):
0=ul’P+ fud. — 17 f2D—iLqupEkP (Ro.4)
Using (RD.17) in (Ro.2) with @™ = ¢ " and dropping the time stamp (n):
. 1 ) I Y~ (. I )4 2 A
O0=—|im——— || im+— |P+| im—— |B+ 3TN uD (Ro.5)
- 2H 2H - 2H

Rewriting (Ro.5):
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O=(m2+ 12
4H

~ [ 1 \a A
)P+(5m—ﬁ)8+%7NZuD (Ro.6)

Using @™ = ¢*®™ in (RD.16) and dropping the time stamp (n):

(e =1)B=-TN*% (Ro.7)
Using (RD.17) in (Ro.7):
(e _1)(gm_ﬁjé — tNub (Ro.8)
Using (Ro.8) in (Ro.6):
0=(e™ _1)(m2 s )m%mzu(e—m +1)D (Ro.9)

Egs. (Ro.3), (Ro.4) and (Ro.9) are the equations of the system.

Eliminating @ between (Ro.3) and (Ro.4)
0=(e ™ —1)uL’P—ittupék(e™ +1)P-tf [ 1 +4(e ™ -1)|D (Ro.10)
Eliminating D between (Ro.9) and (Ro.10):

0=Np(e™ —1)uL’P—it Nu(e™ + 1)2 TuPEKP

wf 2 (e 1) e _1)2}(,”2 s jﬁ (Ro.11)
Nontrivial solutions:
0=Nu(e?™ —1)uL’ — i tNpu(e™ +2¢7 +1)tupk
T f? [2u2(e*£” “1)+ (e - 1)1(;%2 i 41112 j (Ro.12)

Arranging the terms of (Ro.12):
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0= Nzusze—zgw —g%TNzuzﬁgke‘”” _L-,L_Nz'uzﬁéke—gw —Z%TNZ,LLZ,BSIC—NZ‘IJZLZ

1 —2ivt 1 —ivT 1
+fo2(m2+4H2)e & +2(u2—1)f02(m2+4H2je~ +(1—2u2)f02(m2+4H2j (Ro.13)

Rearranging the terms in (Ro.13):

0=|N*u’L*+ 2( 2+
[ WL+ | m+ s

):|e—21vr _£%1N2u2ﬁéke—2ivr

_£TN2u2ﬂgke—ivr+2(u2_l)foz(m2+4[1{2)e—gvr

—1%1N2u2ﬁ§k+(1 —~ 2/,12)]‘02 (mz + 4;2 j— NI’ (Ro.14)
Defining:

eV =e"" [cos(vrr)— L‘sin(vrr)] (Ro.15)

Using (Ro.15) in (Ro.14):

1
4H?

0= [NZ‘LLZLZ +f7 (mz + ﬂezv“’ [cos(2v,7)~isin(2v,7) ]~ i +eN*u* BEke™ " [ cos(2v,T)~ isin(2v,T) ]

—iTN> 1> BEke"” [cos(v,7)—isin(v,z)]+2(u* = 1) £; (mz + 4;12 je” [ cos(v,7)—isin(v,7)]

—i%TN2M2/3§~k+(1—2M2)ﬁf(m2+4II_I2J—N2;12L2 (Ro.16)

Arranging terms:

0= {Nzlusz +f) (mz I ﬂez” cos(2v,7)— i LN BEke*" cos(2v,T)

—iTN* W’ BEke"" cos(v,7)+2(u* ~1) £; (mz + 4;12 je” cos(v,7)

. z 1
—L%TN2u2ﬁ§k+(l—2u2)ﬁf(m2 o )—NzuzL2
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—L[Nz,usz +f] (mz + He”f’ sin(2v,7) = L TN u* BEke™ " sin(2v,7)

4H?

—TN*u> ke sin(v,7) - 12(;12 -~ l)fo2 (mz + 4;12 je“ sin(v,7) (Ro.17)

Rearranging terms:

e ﬂe”"’ cos(2v,7)+2(u’ - 1)]‘02 (mz + 411_12 je“ cos(v,7)

—LoN 12 BEke? sin(2v,7) — TN 1* BEke"" sin(v,1)

Oz[Nzusz +f02(m2+

+(1-242) f; (mz Ve )—NZ/JZLZ

—iTN* W BEke"™ cos(v,7)— i TN p* BEke™ " cos(2v,T) - i TN BEk

—L'[NZ/,LZLZ +f02(m2 + He”ﬂ sin(2v,7)— gz(;ﬂ —1)ﬁf(m2 - 4;12 jev’" sin(v,7) (Ro.18)

4H?

Then, two equations are obtained:

[NZ/,LZL2 +f7 (mz + 4;12 He”” cos(2v,7)+ 2(/42 —1)f02 (mz + 4[1{2 jev"’ cos(v,7)
—LoN? 12 BEke?  sin(2v,T) - TN’ BEke"" sin(v,r)+(1— 2,u2)f02 (mz + 411{2 )— N*u*I? =0 (Ro.19a)
and
TN*U*BEke"™ cos(v,T)+ L TN BEke™ cos(2v,T)+ L TN 1> BEK
+[NZM2L2 +f7 (m2 + L Hez"” sin(2v,7)+ 2(‘LL2 - l)fo2 (mz + 4[1_12 )evﬂ sin(v,7)=0 (Ro.19b)

1
Using o> =m* +

in (Ro.19a) and (Ro.19b):

(N + flo), )€™ cos(2v,T)+2(u” —1) fo e cos(v,T)

—LoN? 1 BEke?  sin(2v,7) — TN 1> BEke"" sin(v,T )+ (1 —~ 2u2) 0. —N*U’L’ =0 (Ro.20a)

m

and
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TN W2 BEke"™ cos(v,7)+ L TN * BEke™ ™ cos(2v, )+ L TN BEk
+(,uzN2L2 + flol )ezvf’ sin(2v,7)+ 2(,112 — 1) Core" sin(v,7)=0  (Ro.20b)

Rewriting (Ro.20a):

ae”" +be"" +¢c=0

(N2u2L2 +flo? )cos(2vrr) —LTN*u*BEksin(2v,T) (Ro.21.a)

a
b=2(u’-1)fc’ cos(v,7)— TNy’ BEksin(v,7)
c= (1— 2,u2) 2o, - Nl

Roots of (Ro.21.a)

o = —b+b* —4ac

2a

(Positive root is selected because 7 —0, ¢ —1) (Ro.21.a.a)

CD-grid page 46



Celal Konor Supplementary Material Saturday, March 4, 2017

FINAL SOLUTION (Newton-Raphson method):

o = ~b+b* —4ac

2a

a=u*N*cos(2v,7) > — L > N*sin(2v,7) tBEk + £ cos(2v, 7)o
b=2f7 (1’ ~1)cos(v,7)o2 — N’ sin(v,7) 1Bk
c=f; (1 - 2#2)6,2” — NI

gj = 27’ N?sin(2v,7) 2 - u>N7? cos(2v,7) Bk — 27 £ sin(2v,7) 02
a_b=—2rf2( > 1)sin(v,7)0% - *N*7? £k
= ="2tfi (# =1)sin(v,7)0, ~ 1'N'T cos(v,7)BE

ob 1 -1/2 ob da da 1/2
s a—avr+2(b2—4ac) (2bavr—4cavrﬂ—avr[—b+(l)2—4ac) J

v, - 2a°

T

F(v,)= [/.LZN2 sin(2v,7) 2 + 1 > N* cos (2v,7) 1BEK + £ sin(2v,7) 02 ]em

+ [uzN2 cos(v,7) Bk +2 £} (1 - l)sin(vrf)oj }ev"f + 1 N*tBék

(’?TF = [21/.12N 212 cos(2v,7) - u*N*t*Béksin(2v,7) + 21 f0 cos(2vrr)}e2“

+2[ W’N2 L sin(2v,7)+ 4 u>N*tBEk cos(2v,7)+ f0> sin(2v,1)}e” ae—vi

+ :—,uzNzT2 sin(v,7) BEk + 21 f? (,u2 - 1)03, cos(vrr)]ev"’

de"’

v,

+ :,LLZN2 cos(v,’[)rﬁgk +2f) (,u2 - l)sin(v,’c)oﬁ,}
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Barotropic mode:

Rewriting equations (RC.13)—(RD.17) with D=0 (w=0):

Predictor step on the C-grid: Corrector step on the D-grid:
o _am a1 B g s ) _ am_ o B s
. =ua" —isTu 7 EkP (RBtpcC.1) | @, " —it—ECkP (RBtpcD.1)
0 0
0=£,0" +ul*p (RBtpeD.2)

Writing (RBtpcD.1) without changing:

" =@ - grﬁékﬁ (RBtpcCD.1)
o
Using (RBtpcC.1) in (RBtpcD.2):
0=pf, & +pu(L - i37BEk)P (RBtpcCD.2)

Using @™ = ¢ **®™ in (RBtpcCD.1) and (RBtpcCD.2), and dropping the time stamp (n):

(" -1)a, = —gr?ékﬁ (RBtpcCD.3)

0
and

0=pf,d, +u(L* - it tpEk)P (RBtpcCD.4)

Using (RBtpcCD.3) in (RBtpcCD.4):

(e =1)(L* - i3 7BEK) P = izBEkP (RBtpcCD.5)
Using ™" =¢"*[ cos(v,7)—isin(v,7)] in (RBtpcCD.5), and seeking non trivial solutions:

[€" cos(v,7)-1-ie"™ sin(v,r)](Lz —~ L‘%rﬂgk) = itBEk (RBtpcCD.6)
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Arranging the terms of (RBtpcCD.6):

[ev"’ cos(v,7)- 1]L2 —e'" sin(vrf)érﬁfk - L’[e” cos(v,7)- ljﬁrﬁgk —ie""sin(v,7)L’ - L‘fﬂgk =0
(RBtpcCD.7)

Rearranging the terms of (RBtpcCD.7):

[e” cos(v,7)- 1]L2 — " sin(v,7) L 1BEK + L’{—[e” cos(v,7)+ 1]%Tﬁ§~k —e' sin(vrr)Lz} =0

(RBtpcCD.7)
Splitting the real and imaginary parts of (RBtpcCD.7):
[ cos(v,7)—1]L* — " sin(v, 7)1 iBEk =0 (RBtpcCD.8a)
and
—[ev"’ cos(vrr) - ljérﬁgk - sin(vrr)L2 =0 (RBtpcCD.8b)
Rewriting (RBtpcCD.8a):
2
¢ = r cos(vrf)—iin(vrr)éfﬁék (RBtpeCD 9a)
Rewriting (RBtpcCD.8b):
L1BEke"™ cos(v,7)+ L TBEk+ e sin(v,T) [ =0 (RBtpcCD.9b)
Using (RBtpcCD.9a) in (RBtpcCD.9b):
TBEKL? cos(v,T)+ [(L2 )2 -~ (%Tﬁfk)z :lsin(vrr) =0 (RBtpcCD.10)

Rewriting (RBtpcCD.10):

: £172
sin(v,7) __ ~tpEkL (RBtpcCD.11)

cos(v,7) ([j)z - (%rﬁfk)z

Rewriting (RBtpcCD.11):
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_+RELT2
v, = lAlrctan oKL

5 — (RBtpcCD.12):
T () (s uk)

Figure (runs_CD_grid_time_discrete_beta_NEW)
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Scheme R2
Baroclinic modes:

Predictor-step on the C grid:

D is diagnostic and local to C grid.

@@:ud)g")—%%b—g%u%&ﬁ (RS1P.1)
0=f,0") +1*P (RS1P.2)
0= _(;mﬁ)mw (RS1P3)
BY =B" —gzvzw (RS1P.4)
l§+(£m—ﬁjﬁ/=0 (RS1P.5)

Eliminate the diagnostic variables D (w) and P between the predictor-step equations.

Using (RS1P.2) in (RS1P.1):

[Lz - g%ugfkfo]d)f) = o™ —%ufoﬁf) (RS1P.6)
0

Using (RS1P.3) in (RS1P.2):

1 ). Ny
0=f| im+—— |®" + ’B" RS1P.7
fo(gm 2Hja)Z ( )
Using (RS1P.5) in (RS1P.4):
(z‘m—i)é“‘) = (im—i)é(“) +IN%D (RS1P.8)
- 2H - 2H 2
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Eliminating D between (RS1P.6) and (RS1P.8):
N*| [P uﬂgkf +uf(zm—i)ﬁ "= uN? 2" + puf, (zm—ijﬁB() (RS1P.9)
‘ ‘ 2H ‘ 2H

Eliminating B between (RS1P.9) and (RS1P.7):
N2l 12— T ﬁ ~k 2(
[ ( Y ¢ fo)"‘/’tfo

Eliminating a) ) between (RS1P.9) and (RS1P.7):

Zﬂ )= uN? 2" +ufo(zm—i)LB“ (RS1P.10)

4H 2H

[NQ(LZ —é%u?f@%]wﬁ?( ’ 4;2 ﬂé“‘) =—ufoN2(£m+ﬁ)a3i") +ufoz(m2 + 4[1{2 jff(")
0

(RS1P.11)
Corrector-step on the D grid
@g““):(z;g“)-mﬁ-gf?ékﬁ (RS1C.1.1)
0
0=f,0") +ul’P (RS1C.1.2)
0= (zm+i)ﬁ+é<*> (RS1C.1.3)
2H
B™Y = B" _ N (RS1C.1.4)
~ 1
D+l im—— |Ww=0 RS1C.1.5
ub+{im- )6 ( )

(RS1P.10) and (RS1C.1.2):

—[N{Lz —g%ugékﬁ)}ruﬁf( g 411{2ﬂuﬁ:uszocbﬁ")+uf02(gm——)}§(") (RS1C.1.6)
0
(RS1P.11) and (RS1C.1.3):
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T = 1 . 1 ~ . 1 A (n 1 ~(n
|:N2(L2 —Lgﬂgékf(}}uﬁ(mz+mﬂ(zm+ﬁjf’=—#fo1\’z (Lm"'ﬁng )+,I.Lf02(m2 + 4H2)B( )
(RS1C.1.7)

1
Multiplying (RS1C.1.6) by | im+— |:
ultiplying ( ) y(zm+2Hj

T = 1 . 1 A . 1 A (n 1 S(n
—[NQ(LZ —Lgugékﬁ)jwﬁf(w+4H2ﬂu(zmﬁjszﬁ)(zmﬁ)wﬁ )—uf(f(m2+4Hz)B( )
(RS1C.1.8)

(RS1C.1.7) and (RS1C.1.8) do not match to each other. No solution for the corrector (1) case.

Corrector-step on the D grid (2):

" =" —tuf, D- L'f?ékf’ (RS1C.2.1)
0

0=puf,0"" +ul*pP (RS1C.2.2)

0=—(im+ijﬁ+é<"“> (RS1C.2.2)
" 2H

B = B _ N (RS1C.2.3)
R 1

D+| im——— |Ww=0 RS1C.2.4

ub+{im- )6 ( )

Using @™ = ¢ ®" in (RS1C.2.1)-(RS1C.2.4):

(e ~1)o, = —Tufof)—ifgfkf’ (RS1C.2.5)

0

0=uf,e™d, +ul’pP (RS1C.2.6)
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( . 1 ) - —iVT D
O=—|im+— |P+e "B
- 2H
(e =1)B=—TN*W
IA)+(im—LjvT/ =0
# - 2H
Eliminating @_. between (RS1C.2.5) and (RS1C.2.6):
[(e_iw - I)L2 - L’Tﬁgke_iw }[A’ = ‘L"LLfO2 e D
Eliminating w between (RS1C.2.9) and (RS1C.2.8):
(e —1)(im—L)1§= TN’ uD
- 2H

Eliminating B between (RS1C.2.7) and (RS1C.2.11):

2

o:(ew_l)(mu - jmewzub

Eliminating D between (RS1C.2.10) and (RS1C.2.12):

R g e e vl L

Nontrivial solutions and arrange (RS1C.2.13):

(61-\,1 _ 1)]szz _L-TNZﬁgke—ivr — _]%2 (eTVr - 1)(}712 + 4]1_12 )

Rearranging the terms in (RS1C.2.14):

1

2

‘ 1 ‘ I
N’Le™ + f} (mz + VT je‘”” —iTN*BEke ™ = N*L’ + f; (mz +

Rearranging the terms in (RS1C.2.15):
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{Nsz s (mz ; 4;12 )-;m%&k}eéw N+ f (mz ; 4;12 ) (RS1C.2.16)

Using " = evff[cos(vrr)—gsin(vrr)] in (RS1C.2.16):

1 . £ viT Q1 !
[0 3+ s e B o o) s ] 2 )
(RS1C.2.17)

Rearrange the terms in (RS1C.2.17):

[NZL2 +f) (mz + 411_12 )—iTNzﬁgk}e” cos(v,7)
(RS1C.2.18)

1 : 2ol 1
—{NZL2 +foz(m2 + 4H2)—[L'N2ﬂ’g‘k}e Tsin(v,7)=N’L +f02(m2 + 4H2)

Then,

1 ~
[N2L2 +f7 (mz T He” cos(v,7)—itN*BEke"" cos(v,7)

3 1
—£|:N2L2+ﬁ)2(m2+ )}em sin(vrT)—’L’N2ﬂ€kev;r Sin(VrT)=N2L2+f02(m2+4H2j

4H?
(RS1C.2.19)

Then,

1
[NZL2 +f] (mz I ﬂe“ cos(v,7)

—L'TNZ,BEke"’T cos(vr‘[)— L'[NZL2 +f7 (m2 + 4;12 He"f’ sin(vrr) (RS1C.2.20)

~tN*BEke" " sin(v,7)= N?L* + f? (mz + 4[1{2 )

Separating the real and imaginary parts:

| . 1
|:N2Lz +fo2 (mz + e ):|ev,r COS(VVT)_TNZﬂgkeViT Sil’l(V,T) = N2 +fo2 (m2 + A’ j

(RS1C.2.21a)
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and

—iTN*BEke"" cos(vrT)—L'[Nsz + fy (mz + 4;2 He sin(v,7)=0 (RS1C.2.21b)

The dispersion relation:

sin(v,T —1BEk
- S((v T)) = _ Be 1 (RS1C.2.22a)
oStV L2+ﬁ(m2+4H2)
and
2
r +f—°2(m2 + 411{2 )
o' = : iv (RS1C.2.22b)
[U + ]J:;)z(nﬂ + e ﬂcos(vrf)— tBEksin(v,7)
Rewriting (RS1C.2.22a)
v =L Arctan Z_Tﬁék 1 (RS1C.2.23a)
t L2+]]:;)2(m2+4H2)

dispersion_run2_CD_grid_discrete_beta_2_NEW_Scheme_2_2.f90

FINAL SOLUTION (Newton-Raphson method):

F(v,)= sin(v,7) + Zﬁfk 1
cos(v,7) N2L2+f°2(m2+ 2)
N 4H
OF _tcos’(v,7)+tsin’(vz) 1
av, cos’(v,7) " cos’ (v,7)
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Barotropic modes:

From (RS1C.2.1) and (RS1C.2.2) without divergence:

O =" — it = Ekp
0

and

0=puf,0"" +ul*P

Using @™ = ¢ **®" in (RS1C.2.24)—(RS1C.2.25):

(¢ —1)o, =—ic D &p
and
0=puf,e™d, +ul’pP
Using (RS1C.2.26) in (RS1C.2.27):

(e -1)LP=itf, ﬁéke’wﬁ
Jo

Nontrivial solutions:

eV —itf, ?Ekem -I’=0

0

Using e =¢"" [Cos(vrr)—gsin(vrr)] in (RS1C.2.29):

L cos(v,) - tBEke™ sinv, )~ L'~ i2e" sin(v,7)- ig8Eke" cos(v,7) =0

Splitting the real and imaginary parts:

2¢"" cos(v,7) - 1Bke"" sin(v,7) - [* =0

and

sin(v,7) _ —1BEk
cos(v,z) I
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Rewrite (RS1C.2.31a):

L2
= = RS1C.2.32a
‘ P cos(v,T)— 1BEke"" sin(v,7) ( )

Rewrite (RS1C.2.31b):

v = %Arctan[_fffkj (RS1C.2.32b)

dispersion_run2_CD_grid_discrete_beta_2_NEW_Scheme_2_2_barotropic.f90

Figure beta scheme Il. (runs_CD_grid_time_discrete_beta_ NEW_Scheme_2)
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A-grid

Agrid

1. Inertia-gravity modes

Horizontal momentum equation:

A-grid page 1 (Document page 97)
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du, P, -P.,

Lty (M.1)
v, PP,

at,J — i 12d =1 _fui,j (M.2)

To derive divergence equation for center points ( i, j):

O Uiy~ Uy P.,;+2F ,-F,, Vi =V
—| = Ly f| L M.4.a
8t( 2d 4d? f 2d ( )
J [V 1~V b ot ZBj —F, -2 Ui jrn — Ui j
— = = L L2 f| * M.4.b
at[ 2d 4d’ N~ (M.4.b)
Define:
1
Dlj - g(uiﬂj i— +vl J+l vt,j—l) (M5)

Divergence equation (1):

d Ui — Uiy vi,j+1 _vi,j—l PH—Z/ +P + Plj+2 +F ij-2 _4Pi,j U g — U iy vi+1,j _vi—l,j
— 2 + =— +f| - > +

ot d 2d 4d’ d 2d
(M.6)
Define:
1
(wz )IJ = g(vlﬂ J vl—l J l L+l +ul J— 1) (M 7)
Divergence equation (2):
Consider (M.6) and (M.7):
d _ Pz+2,+P +R/+2 Pj—2_4f)i,j
gDi’j = A0 +f(w1)i,j (M8)
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To derive vorticity equation for center point ( i, j):

E(UH—IJ - vi—l,j j _ Pf+1,j+1 + Pi—l,j+1 - Pi+1,j—1 —F, J Wi ~Uiny

i-1,j-1 _
ot 2d 2d’ f 2d

2 U T U _ Pi+l,j+1 - Pi—l,_j+1 - R+1,j—1 + Pi—l,j—l _f Vv~V
ot 2d 2d’ 2d

The vorticity equation (1):

i Viyj — Vi + U U _f Ui j— Uiy + Vw1~V
ot 2d 2d 2d 2d

The vorticity equation (2):

Using (M.7) and (M.5) in (M.11):

g(ﬂ)z)i’j: fDlJ
Vorticity equation from (M.12):
d
g(wz)[,j = _fDi,j
Divergence equation from (M.8):
0 P, +P,,+PF ,+P,,—4F,
EDi’j:_ 2. 2,j 4(/122 j—2 j+f(a)z)i,j

If we use (1) in (2), we obtain

3’ b - (PP, ;+P,+P, ,—4P,
et Py e

Vertical momentum equation:

A-grid page 3
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My O [ Lp)lp p (4)
ot dz \ 2p, 9z Lo
Thermodynamic equation:
0B,
7]: Nzwi,j (5)
Mass continuity equation:
o 1 dp
D +|—+| ——=—2||w,. =0 6
[Ek (2p0 oz HW ©
From (4)—(6):
¥, * (1 9p,) |0
—+N°|D —| ——-| —=2| | =P .=0 7
[at2+ j i,j [azz (2[)0 az at i,j ( )
Using (27) in (7), we obtain the following two equations:
8_2_ L% ’ i+f2 D  =— 8_2+N2 Di+2,j+D,'_2,j+D,',j+2+Di,j—2_4Di,j (7’)
a9z \2p, 9z ot> " or? 4d*

and

2
(%Hj[aa__(%%ij ]%Rj__(aa_;mz)%[&z,ﬁe2,,+12§22+B,‘,-2413,].) 7
Z P, 92 ’

This shows that there are four independent and noninteracting solutions for the A-grid. Each
solution is a Z-grid solution over two grid spacings. In Figure, four independent solutions on Z-
grids are indicated by different colors.

Define:
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0., (Z, t) _ Re{ C’I\)eg(kdiﬂ’djﬁ—mzfvt)} and .0 ( Z, ;) = Re{(i) ei[kd(i+1/2)+(d(.i+1/2)+mz—vr]} (8)
Using (8) in (1):
—ivéd, =—fD (9)
Using (8) in (2):
R A i2kd | i2kd  Li20d 20 g
—L‘vD:fa)Z—(e c 422 ¢ P (10)

Using (8) in (7):

In (10):

4d*

¢2H 4 My G2 | 244 D cos(2kd)+ 2cos(20d)—4 [—sinz(kd) o, i’ (1)

Rewrite (13):

where

ae)

(kd)’ (¢d)

Using (12) and (14a) in (9)—(11):

pi2kd 4 pmi2kd | pi2td | mi2ld g » _
Ve ==&k -0 (14a)
~ sin(kd . sin(/d
LI ()
~ive, =—fD (20)
—ivD= (8, +70°)P+ [0, (21)

A-grid page 5



Celal Konor Supplementary Material

A g 1 ap ’ A
—V2+NI)\D+| ——-| — 0 ivP =0
/.L( V' + ) |:azz (2 ) 9z j }V

From (20) and (21):

(v’=r*)D=(&, +70)ivP

From (22) and (23):

2. Rossby modes
Baroclinic modes:

Adding the beta effect to the vorticity equation (1):

a(wz),,j ) l_ﬁpﬂl,j_Pi—l,j
o WS 2d
Dropping dD/dt in (2):
0=— Borjt B, t Bt By — 48, + f(a)z)

i,

4d*

Dropping 0> D/or* in (7):

From (30)—(32):

A-grid page 6
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—Ikd
i, =—pp- B
T 2d

Rewrite (40):

Rewrite (43):

sin(kd)
kd

where EE is given by (14b).

From (41), (42) and (44):

2
VN (K + )P == f) [m +[ 1 aﬂ] ]vf?—NZ[j'ékf’
2p, 9

Using i%:—i in (46) and for nontrivial solutions (13¢O):
Po 02 H
. - Bk
(5 k> +1 €2) Sy (m +)
N’ 4H

Barotropic modes:
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Assuming D=0 in (30)
a(wz)i,j _ﬁ Pi+1,j _Pi—l,j

= — ) 50
or f, 2d (50)
Writing (31) again:
P, +P_, +P ,+P ,—4PF,
0= 22l __F2 42122 Pt f,), (51)
Assuming D=0 in (32)
? (1 3p,) |0
N A I —P . =0 52
[8z2 (2/)0 0z or "’ (52)
(P is vertically constant).
From (50) and (51):
0=v(E,* +770*) P+ pEkP (53)
From (53) and for nontrivial solutions (P #0):
—Bék
V= £2 2'B§~2 2 (54)
EkP+n4
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E-grid

E grid

For (i,j) points (black grid points in Figure):

1. Inertia-gravity modes

Horizontal momentum equation:

aui,j+1/2 __ Pz’+l/2,j+1/2 - Pi—1/2,_i+1/2 + o
at d i,j+1/2
aui+1/2,j —_ Pi+1,j - sz + fU ‘
at d i+1/2,j
avi,jﬂ/z __ R,jH i ~ fu, .
at d i,j+1/2
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v, ; P, ...—P. .

i+1/2,j i+1/2,j+1/2 i+1/2,j-1/2

ot t=— - d : _fui+l/2,j (M.2.b)
To derive divergence equation for corner points ( 7, j ):

2 U; i + Ui, __ Pi+1/2,j+]/2 - Pi—l/2,j+l/2 _ Pi+1,j - Pl, + f vi,j+l/2 + vi+l/2,j (M 4 a)
ot 2 2d 2d 2 o
2 U, jui2 +vi+l/2,j _ R,jﬂ B sz _ E+l/2,j+l/2 B B+1/2,j—1/2 —f Ui jrp + Uiy (M 4 b)
ot 2 2d 2d 2 o
O (U tUinp | BBy Poipjap =Bl jin Tt Uiz, T (M.5.2)
ot 2 2d 2d 2 o
2 VitV 2 __ Pi—l/2,_j+1/2 - Pi—1/2,j—1/2 _ Pi,j+1 - P,, _f Wiy j T U a2 (M.5.b)
ot 2 2d 2d 2

2 Ui iy * Ui, _ Pi+1/2,j—1/2 — R’—l/l.i—l/z _ sz B Pi—1,j n f vi,j—l/2 + Ui—l/z,j (|V| 6 a)
ot 2 2d 2d 2

2 Vi jo2 T U —_ Pz; - Pi,j—l _ Pi—l/2,j+1/2 - Pi—l/z,j—l/z _f Wiy TU_y (M.6.b)
ot 2 2d 2d 2 e
2 Uiy + Ui i _ Pi+1,j - Pz, _ B+l/2,j—1/2 - E—l/z,j—l/Z + f vi+l/2,j + Ui,j—l/2 (M 7 a)
ot 2 2d 2d 2 o
i Uiy T | _ P = P jop _ F,—F,, _f Wi TU i (M.7.b)
ot 2 2d 2d 2

Define divergence at (i, j ), [walls of the cell (i, j) is marked by the dashed lines, the cell area
is d’/2, cell wall length is d/+/2]:

d [ui, o2 T U T 000 ]

d Wiy j T Wi pn Vi TV a2
D. J— a— + a_ —_ > > 2 >
vl 2472 2d*/2 JE[ 2d*)2 2d*/2 M8)
n Oti _ Uy T Uy _ Ui TV + O(i Wiyaj TU o 3 Vi T O o2
V2 2d*/2 2d%)2 V20 242 2d%)2
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where
2
aEcos(45°)=sin(45°):§ (M.9)
[The normal component of velocity to cell walls (dashed lines) uses alpha]
Simplifying (M.8):
D, ;= l(”i+1/2,j TU, o2 “ Uiy~ U,-,_,-_l/z) (M.10)

d

Divergence equation (1):

Using d/dr of (M.10) then using (M.1.a), (M.1.b), (M.2.a) and (M.2.b):

Pi+l,j i,j+1 i

0
=D, :_%(

1
or +P,,+F ., +F _4Pi,j)+fg(vi+l/2,j Ui 2~ Vi +”i,j—l/2) (M.6)

Define:
1
(wz ),»,j = E(Um/z,j - Mi,j+1/2 - vi—l/2,j + ui,j—l/z) (M-7)
Divergence equation (2):

Consider (M.6) and (M.7):

2D,:-%(P 4P 4P +P’j_1—4P,.q_].)+f(coZ)

i+1,j i-1,j i,j+1 i

(M.8)

i

To derive vorticity equation for center point ( 7, j) . take d/d¢t (M.7) and use (M.1.a)—(M.2.b):
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o) =1 Bt = Bortie | Bortils = Bt Bosfis ~ Boie B ~ B
ot Vi d d d d d
- Z;( l+1/2j +, g2 T U, 1/2,j _vi,j—l/z)
(M.9)
The vorticity equation:
Using (M.10) in (M.9):
() = M.12
g(a)z)i’j __fDllj ( ) )
Vorticity equation from (M.12):
0
5( Z)z ; :_fDi,_,‘ (1)
Divergence equation from (M.8):
d 1
EDi,j d42 (Pz+11 +Fh +Pz]+1 +Pz] 1 i,j)+f(wz)iyj (2)
From (1) and (2), we obtain
0’ o 1 .
[ +f j at|:d2(R+ll+P +Plj+l+l)1]1 41)1,/):| (2)
Vertical momentum equation:
ow, .
My |9 [ L 9P )lp p (4)
ot dz \2p, 0z Lo

Thermodynamic equation:
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ar” =—N’w,, (5)

Mass continuity equation:

o 1 dp
D  +|—4| ———2 =0 6
w{az{zpo oz HW ©
From (4)—(6):
& ? (1 9p,) |2

—+N" |D, . — 0 —P =0 7
(82+ ] v laz (2;)O 0z j ]Bt v 7)

From (2°) and (7), we can write the following two equations:

82 1 ap 2 82 82 1 ’
TN TN AN I

and

5 * (1 3p )]0 > o[ 1 g
(ﬁﬂf}[az (2poa_z0j ]EPIJ‘ (at szaz[ B+ B+ B P = 43”‘)} 7

Horizontal differencing does not use information from half-integer grid points. The solution is
independent from the solution on the half-integer grid points.

Define:

0, (ZJ) —Re { kit tdj+me=vi) } and Do ( ZJ) =Re {qA)ei[kd(i+1/2)+éd(j+1/2)+mz—vt]} (8)

Using (8) in (1):

A

—iv@), =—fD 9)
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Using (8) in (2):

ikd —ikd itd —itd .
—L'VD:fd)Z—[e +e +;2 +e 4JP (10)
Using (8) in (7):
2
(—v2+N2)13—[m2+(2L%j ]ivP,.j—O (11)
Py 92 ‘
In (10):
e et el et g 2008(kd)+200$(€d)—4
& - &
13
3 —sinz(%kd)k2 —sinz(%ﬂd)g2 (13)
ey T Gy
Rewrite (13):
ikd —ikd itd —itd _
e +e +;2 +e 4=—§2k2—n2£2 (14a)
where
(Ll (Ll
&M and nEM (14b)
L kd 1ud
Using (12) and (14a) in (9)—(11):
—ivad, = —fD (20)
—ivD=(EK +0° )P+ fo, (21)
1 (1 9, Y |
(v’ +N*)D+| = - Lol livP=0 (22)
0z 2p, 9z
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From (20) and (21):

(V= £2)D=(EK +n°(*)ivP (23)

From (22) and (23):

N2(§2k2+7]2£2)+f2(m2+ 1 )

V= : (24)
2k2 262 2
(&2, +n )+(m +4H2)
2. Rossby modes
Baroclinic modes:
Adding the beta effect to the vorticity equation (1):
a(a)z)i‘j :—f D. ._ﬁpi-*—l,j _B—l,j (30)
ot T f 2d
Dropping dD/ot in (2):
1
0= _?(P;H,j + Pi—l,j +Pi,j+1 +})i,j—1 - 4Pi,j)+f(wz)i,j (31)
Dropping 0> D/ot* in (7):
* (1 9p,Y |9
N°D, . —| ——-| ——2| |==P.,=0 32
" [8z2 (2p0 0z ] ]8: " (32)
From (30)—(32):
ikd _ —ikd
_ive —— - p (40)

fo 2d
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= (ﬁzk2 +n*0? )f’ + 1,0,

Rewrite (40):

~iva, :_fof)_iﬁzsL(kd)ﬁ
~ “f, 2d
Rewrite (43):
—iv@, = fOIA)—L'ﬁng
fo

where

~ sin(kd

5 _ sin(kd)

kd

From (41), (42) and (44):

vN2(§2k2+172£2)f’=—f02[m2+(1apj ]VP N>BEkP

2p, 0z
Using i%:—i in (46) and for nontrivial solutions (13¢O):
Po 02 H
£k
2k2 262 Jo -
(&2 +n°0)+ e (m +4H)

Barotropic modes:

Assuming D=0 in (30)

E-grid page 8
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Writing (31) again:

1
0= _?(Pﬁl,j +Pi—1,j +Pi,j+1 +Pi,j—1 - 4Pi.j)+f(w2)i,j (51)

Assuming D=0 in (32)
P 2
B A 1 ) KA (52)
0z 2p, 9z ) |ot "’
(P is vertically constant).

From (50) and (51):
0=v(E%*+n*0*) P+ BEKP (53)

From (53) and for nontrivial solutions (P #0):

—pek
V= E 0l (54)
For (i+1/2,j+1/2) points (red grid points in Figure):

Following derivations parallel to (7)) and (7°"), we obtain

* (1 apoj}( % 2)

— | — ) =+7|D., ., =

a 2 (2 a atz i+1/2,j+1/2
! : Po 0% (54°)

9’ |1
- (y +N ?(D i+3/2,j+1/2 + Di—3/2,j+1/2 +D i+1/2,j+3/2 + Di+1/2,j—3/2 - 4Di+1/2,j+1/2 )

and
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& ? (1 9p,) |9
(atz""fz)[az [aa—;] ]atpm/z,jﬂ/z:

9’ o[ 1
- (? +N E ?(PH—S/ZJH/Z + P, 3/2.j+1/2 + R+1/2 j+3/2 + P,+1/2J 3/2 4P[+1/2 j+1/2)

(547)

Horizontal differencing does not use information from the integer grid points. The solution is
independent from the solution on the integer grid points.

1. Inertia-gravity modes

o 14H2 (60)
(&K +1 )+ m +4H2)
2. Rossby modes
Baroclinic modes:
v= —Bok (61)
(&2 +n°0%)+ ]{; (m2+ﬁ)
Barotropic modes:
V=g kjﬁ’; (62)
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B-grid
Figure. B grid

1. Inertia-gravity modes
Horizontal momentum equation:
aI’li+1/2,j+1/2 — (Pi+l,j+1 + Pi+1,j)_ %(Pi,jﬂ + Plj) n fU

at d i+1/2,j+1/2
avi+l/2,j+l/2 _ (Pi+1,j+1 + Pi,j+1 ) B %(PMJ + PIJ)

Y = J - fui+1/2,j+l/2

To derive divergence equation for center points ( 7, j):

B-grid page 1
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2 Wi ez T Uiy joa _ Uiy i TU pap |
ot 2d 2d
+P

i+1,j ) - %(Pi,jﬂ + Pz;) _ %(Rﬂ,j + Pi+1,j—1 ) - %(Pz, + Pi,j—l)

2d 2d
(M.4.a)
%(Pi,j-#l +Pi,j)_%(Pi—l,j+l +Pi—1,j) %(Pl‘] +Pi,j—1)_%(3—1,j + Pi—l,j—l)
2d 2d

N f( Vi ez Y Viiago2 - Vicyajue T Vo J

i(p

i+1,j+1

2d 2d

ot 2d 2d
_ %(R+l,j+l + [)i,j+l ) - %(Pm,j + R/) %(R,jﬂ + [)i—l,j+l ) - %(RJ + B—l,j)
2d 2d
(M.4.b)
+Pi,j)_%(l)i+l,j—l +Pi,j—1) %(B,j-l_Pi—l,j)_%(I)i j
2d 2d
B f( Wi e T Uiy i Ui Uy j
2d 2d

d (Um/z, 2 T Viaip Vipjoyz T Vo2 ) _

i+l,j

A

Define:

1 [ui+l/2,j+l/2 F Ui Uiy Uy + Vi sz T Uiy i B Vivyajm1e T Vi joipe ]

12,412 = p 2 > > 5
(M.5)
Divergence equation (1):
ED _ Pi+1,j+l +B—1,,,‘+1 +B+l,j—l +Pi—l,j—1 - 43,]
or " 2d’ (M.6)
e Vi iz T Visipnjon Uiy g F Uy i Vi F V112 4 Wi i TWisip o .
2d 2d 2d 2d
Define:
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((1) Uiz, sz T Viipajoi2 Uiy T Ui 2 _ Vi T Vo1 + Wiz jp T Uiy o ] (M.7)

)= [ 2d 2d 2d 2d

Divergence equation (2):
Consider (M.6) and (M.7):
0 Poyjut+P_ g +P,,  +P,  —4P

—D. =- i—1,j+1 i+1,j-1 i-1,j-1 i + o e
al 1,] 2d2 f( Z)- ( )

To derive vorticity equation for center point ( i, j):

0 [ Viippjop T Vippjoe Vippjup TOnjon | 1 p p P p
eV - - __( i+,j+1 Lo T e + i—l,j—l)
ot 2 2 4d (M.9)
_f Wiia iz T Uiipajoio Uiy jap Uy
2 2
) Up e TUipgap  Wpgap TWiopgap |1 P p p P
EViE + - _( i+, Lic T i a + i—l,j—l)
ot 2d 2d 4d (M.10)
_f Vi oz T Vo2 Vi gore T Vo
2 2
The vorticity equation (1):
ﬁ Vi, jsrz T Vi joipe _ Vi TV 00 Uiy T Ui 2 + Uiip g TWipjap |
ot 2d 2d 2d 2d
(M.11)

_f Wiz jsa T Winipa o Uiy FU_y 4 Viy2,jr2 T Vs juin _ Visy2,jm12 T Visipa i
2d 2d 2d 2d

The vorticity equation (2):

Using (M.7) and (M.5) in (M.11):

d 1
g(wz )i,j = _fZ(Di+l/2,j+1/2 + Di—1/2,j+1/2 + Di+1/2,j—1/2 + Di—l/z,j—l/z) (M-1 2)
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Vorticity equation from (M.12):

Ao.)
ot "=/,
Divergence equation from (M.8):
a P‘+I j+1 +P—1 j+1 +P’+l j—1 +P‘—I j—1
=D =flw _ _ilj -1, i+l,j -l
50 =1),

Using (1) in (2), we obtain

2
(a—+f2 D :_E Pi+l,j+l +Pi—1,j+l +Pi+1,j—1 +Pi—l,j—l
or’ b

ot 2d*

Vertical momentum equation:

My O [ Lp)lp p
ot dz \ 2p, 0z S

Thermodynamic equation:

Mass continuity equation:

o 1 dp
D  +|—4| ——2 =0
”"+{8z+(2p0 0z HW”"
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From (4)—(6):

* * (1 9p,) |2
2 N |p | L | %P | Zp 9
(8t2+ J v [822 (Zpo az) ar "

Using (2°) in (7) we obtain the following two equations:

2
[ 0 (L%j ]( 0 +f2jD _ _(a_z_i_Nz] Di+1,j+1 + Di—l,j+1 +Di+1,j—l + Di—l,j—l _4Di,j
ij

922 \2p, 9z ) |\oF? or 24
and
2
( z, fJ[ A _( Lo, j ] 2 P,-,,-:—( z, sz 2 Pt Bogn Ry Ry =48,
Z P, 9z

This shows that there are two independent and noninteracting solutions for the B-grid.

Figure, two independent solutions are indicated by different colors.

Define:

0y (z,t)=Re {ci)ei(kdi+/,dj+mz—vt) } and @, (z,t)=Re {q} L2}t 2] }

Using (8) in (1):
—-iv@, =—fD

Using (8) in (2):

ikd _itd ikd —ild ild —ikd —ild —ikd
oA N eet +ee  +ete ™ e e =4 ) A
—ivD= fo_ - P

2d*

Using (8) in (7):
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2
(-v*+N*)D- m2+(i%j ivP, =0 (11)
2p, 0z '
In (10):
( +e ’kd)(ei(d+e_ﬂd) 4 4cos(kd)cos(€d) 4 4[1 251n ][1 251n ] 4
2d° 2d’ 2d° (13)
. sinz(%fa’)g2 _ sinz(%kd)k2 Ly sin® (4 kd) 2 sin®(44d) ,
- 2 2 2 2
(+¢d) ($ka) 2 (bkd) (34d)
Rewrite (13):
(g'kd+e ’kd)(e’/d+e l{d) 4 272 292 1 2¢£272..2 92
- - - 14
-7 SR =+ d e’ (14a)
where
- (1 (1l
£= Sml(]icl;d) and 1= sml(éjd) (14b)
2 2
Using (14a) in (10) and repeating (9) and (11):
—ived, =—fD (20)
—ivD = (g k> +n*0? 25 k* 2€2)P+fa) (21)
) 2
(-v2+N?)D+ J ( ! %j ivP=0 (22)
97 2p, 9z
From (20) and (21):
(v*-r )f)=(é‘ K0 d2§2k2n2€2)iv13 (23)
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From (22) and (23):

N2(§2k2+n2/€2_1d2§2k2n2€2)+f2(m2+ 2)
2 2 4H
V= 1 2$£2712..2 92 2 1 (24)
KA ——dEEN |+ mP+
(& M- d Sk j (m 4H2)

2. Rossby modes
Baroclinic modes:

Adding the beta effect to the vorticity equation (1):

Jdo,) P, —-P,
( &)1,] :_‘fODl _E i+l,j i-1,j (30)
ot Sof 2d
Dropping dD/ot in (2):
Pojut Pt Pt B _4R
Ozfé)(wz)i’j_ i+1,j+1 1,j+1 261],2] 1 1,j-1 J (31)
Dropping 9°>D/ot” in (7):
? (1 9p,) |9
N°D, —| ——-| ——2| |=P.=0 32
L, [aZZ (2p0 azj at i,j ( )
From (30)—(32):
) R ﬁ plkd _ pikd
- =-— - P 40
ivé, =-uf,D-=— (40)
0 =(§2k2 +n*0? —%d2§2k2n2£2jﬁ+ fod (41)
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Rewrite (40):

2sin( kd
v — g B 200
fo 2d
Rewrite (43):
—LV(Z)Z:—[.LfOlA)—lﬁékP
Jo
where
~ sin(kd
¢ _sinka)

From (41), (42) and (44):

(5 k2 +n20 d 282k ) lem%{iﬁj ]vls—NzﬁakaS
2p, 0z

Using — L 9py = —% in (46) and for nontrivial solutions (P #0):

Py 0z

~pEk
(6 K>+ d & kznzﬁzj ]J:;) (m +)

4H

V=

Barotropic modes:

Assuming D=0 in (30)
a(a)z)i,j _ ﬁ 1+l]

ot f, 20

Writing (31) again:

B-grid page 8
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I T (51)
Assuming D=0 in (32)
2
[aaz2 (2,130 aa—pzoj ]aatp"fzo (52)
(P is vertically constant).
From (50) and (51):
0= v(g k> +n*0? 25 kznzﬁz)PﬂBékP (53)
From (53) and for nontrivial solutions (2 #0):
V= ‘ﬁgk (54)
Ek+ne 25 k’n*e’
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Numerical solutions and computational modes

In this section, we first discuss the construction of linear anelastic numerical models based on the
horizontal grids, and then present results from the analyses of the simulations of the inertia-gravity

modes on a midlatitude f -plane with these models. Our purpose is to confirm the results of the normal

mode analyses of the discrete equations, and to investigate the aspects of the horizontal grids, which are
not completely disclosed by the normal mode analysis. For better understanding, we categorize the grids
into two groups based on the source of the computational modes with them. The first group is comprised
of the A-, B-, E-grids, in which the cause of the computational modes is the existence of multiple
solutions in the discrete Laplacian operators. The second group includes C-, D-, CD-grids, in which the
computational mode is caused by averagings of the variables to each other’s grid points. The Z-grid does
not fit to any of the two groups because it does not have a computational mode as far as the inertia-
gravity modes are concerned. For convenience, we include the Z-grid with the discussion of the A, B

and E grids.

5.a. Equations of the Z-, A-, B- and E-grid Models

We write the horizontally discrete version equations (2.2)—~(2.6) and (2.8) on the Z-, A-, B- and

E-grids as

Numerical integrations page 1 (Document page 124)
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Equations on Z-, A- and B-grid:

Ao,
ij o_
ot I,
oD, )
szf(wz)iaj_(vilp)[,j
%5, N’D,
ot "

(5.1)

(5.2)

(5.3)

54

Laplacian operators:

Z-grid: (ﬁﬁP)ij = %(PMJ +P.,,+F,,
+P,,—4P,) (560

A-grid: (ﬁ;P)i’j =— (RHJ +P.,,+P,,
+P,,—4P,) (560)

Brid: (Vi) =5 (Puaju+ P P
+P, - 4Pi,_,-) (5.6¢)

Equations for integer points on E-grid:

ok,
D= plw), (93P,
aftf»f =N°D,,
) o),
(920), = (B P B
B- 4Pw’)

(5.7)

(5.8)

(5.9)

(5.10)

Equations for half-integer points on E-grid:

a(wz )i+1/2,j+1/2 _
ot == a2 (5.12)
aD'+l j lad
i+1/2,j+1/2 — —(VZP)
ot f(wz )"+1/2s-i+1/2 Y ) iny2.e12 (5.13)
0B,
i+1/2,j+1/2 2
ot =N Di+1/2,j+1/2 (5.14)
= 1
2 2 _
(VHP)5+1/2,j+1/2 - (m + 4H? jPi+1/2,j+l/2 -
f(wz )i+1/2’j+1/2 + Bi+l/2,j+1/2 (5.15)

1
2 —
(VH )i+l/2,j+1/2 = ?(Pi+3/2,j+1/2 + Pifl/2,j+l/2 +
Pi+1/2,j+3/2 + Pi+1/2,j—1/2 - 4B+1/2, j+1/2) (5.16)

The prognostic variables of the systems are w,, D and B . The diagnostic variable P is obtained by

solving an elliptic equation. In these models, the vertical structure of the numerical solutions is

continuous that is prescribed by the vertical wavenumber m = mtn/z, .
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The five-point stencils used in the horizontal finite-differencing of the discrete Laplacian
operator in the A, B and Z grids given by (5.6¢), (5.6b) and (5.6¢) respectively, differ from each other.
This difference greatly impacts the numerical solutions. In the Z-grid, the Laplacian stencil uses
information from the neighboring grid points through the cell walls, which leaves no gap in connectivity.
The stencils for the neighboring grid points overlaps to participate in the same solution. This is partially

the reason why there is no computational mode in the inertia-gravity wave solutions with the Z-grid.

The five-point stencils of the discrete Laplacian operator of the A-grid given by (5.6b) use
information from the points that are two-grid distance away, which leave gaps in connectivity. As a
result, two separate grid networks are created as shown in Fig. 5.1.a through red or blue colored grid
points and dashed lines. No information is exchanged between these networks, and therefore two
separate solutions coexist in the A-grid solutions. This is the cause of the computational mode in the A-

grid solutions.

The inspection of the five-point stencil on the B-grid shown in Fig.5.1.b indicates that the
Laplacian operator uses information from the neighboring points through the corners. The red and blue
networks of grid points show the existence of two independent solutions similar to the case with the A-

grid, which is the cause of the computational mode in the B-grid solutions.

Now we inspect the stencil on the E-grid. The discrete equations on the E-grid given by (5.7)—
(5.16) immediately indicate the existence of two separate solutions, one for the cell centers and the other
for the cell corners, which are indicated by red and blue grid points and dashed lines in Fig. 5.1.c. As in
the A and B grids, the computational mode in the E-grid is also a consequence of the existence of two

independent solutions.
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Fig. 5.1.

Fig. 5.2.

Based on the discussion above, we identify some perturbation patters that cannot be recognized
by the dynamics discretized on the A, B and E grids. Regardless of they are given at the beginning or
created later, these perturbation patters remain unchanged in the solutions throughout the integration.
Thus, they are called the computational modes. The patterns (1)—(4) shown in Fig.5.2, in which the red
and blue denote positive and negative perturbations, respectively, are the computational modes of the A-
grid because these patterns of perturbation generate no response from the discrete Laplacian shown in
Fig. 5.1.a. The pattern (3) in Fig.5.2 is a computational mode for the B-grid. Since Pattern (3) is

included in Pattern (4), the cells with circular markings in the pattern (4) are also computational modes
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for the B-grid. This network of points marked with circles may generate their own solution independent
of the solution in the unmarked grid points. The pattern (5) that is a 45-deg rotated version of the Pattern
(3) is the computational mode for the E-grid. Recall that the Pattern (3) is a computational mode of the
B-grid. Also, the network of cells marked by a circle in the Pattern (6) is a computational mode of the E-

grid.

5.c. Equations of the C-, D- and CD-grid Models

We write the horizontally discrete version equations (2.2)—(2.6) and (2.8) on the C- and D-grids

as
Equations on C-grid: Equations on D-grid:

% =—1D\yp 2 (5.17) a(a; ), =D, (5.23)
% =f ((D_z)i’j - (6§1P )i,j (5.18) al)”é# — f@i+1/2,j+l/2 - (ﬁﬁP)iH/z’jﬂ/z (5.24)
%=N20,,,- (5.19) %:NTW. (5.25)

. 1 A = !
(VIZrIP)iJ - (mz " 4H? )RJ - f(wz )i,j + Bi’j (5.20) (VI%IP)H]/ZjH/Z - (mz " m)gu/z,ﬁvz B

~, ) L _
where (VHP)M given by (5.11). f (coz)m/z‘j+1 o T B (526)
_ 1 72 .
Di+1/2,j+1/2 = Z(Di,j + Di+1,j + Di,j+1 + Di+1,j+1) (521) where (VHP)i+1/2,j+1/2 gtven by (5'16)'
_ 1 D = l(D o+ D. o+
((I)Z )i,_i = Z |:(wz )i—l/Z,j—l/Z + (a)Z )i+1/2,j—l/2 + i.j 4 i-1/2,j-1/2 i+1/2,j-1/2

D,y jupt Dy, H/z) (5.27)
— 1
(wz )i+1/2,j+1/2 = Z[(wf )i,j + (a)z )i+1,j *

(COZ )i,j+1 + (60Z )i+1,j+1 :| (5.28)

((l)z )i—1/2,j+1/2 + (a)z )H]/z,jﬂ/z :| (5.22)
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The five-point stencil used by the discrete Laplacian of the C-grid equations is identical to that
used in the Z-grid, and therefore it does not cause the problems seen with the A and B grids. The C-grid
does neither have the problem seen in the E-grid because there is only one Laplacian in the C-grid.

However, the C-grid involves in two averagings used in two equations, one is the averaging of D from

centers to the @, -points at cell corners in the vorticity equation (5.17), and the other the averaging of
®, from corners to the D -points at cell centers in the divergence equation (5.18). The four-point

stencils used in the averagings are indicated by the red and blue grid points and arrows in Fig. 5.3.a.

Let us consider the perturbation patterns (1), (2) and (3) for the buoyancy B (or divergence D)
on the C-grid. The existence of such a perturbation given at the cell centers cannot be recognized
because of four-point averaging at the cell corners where the vorticity is predicted. These patterns are
treated as pure gravity modes, but not as the inertia-gravity modes. Therefore, they are the
computational modes of the C-grid.

The D-grid requires four separate four-point averagings used in four equations. The two of these

averagings are the averaging of D from corners to the @, - and B -points at cell centers and the third
one is that the averaging of @, from the centers to the D -points at the corners. The fourth one is that

the buoyancy is averaged to the corners to be used on the right hand side of the elliptic equation. In
comparison to the C-grid, the D-grid requires two additional averagings in the continuity or

thermodynamic equation and in the elliptic equation that determines the pressure P . This results in a

computational mode that is non-moving or non-oscillating type for the patterns (1), (2) and (3).
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Fig. 5.3.

Now we write the temporally and horizontally discrete version equations (2.2)—(2.6) and (2.8) on

the CD-grids as
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Predictor step (*) on the C-egrid:

() ™ L ()
(wz ),‘+1/2,j+1/2 - (wz )i+1/2,j+1/2 - 7TfDi+l/2,j+l/2 (5.29)

% n(n —(K) V.
Di(,'j) = D,-(,j) + %1[ f (a)Z )i,j - (VHP)J (5.30)

BY =B

i.j i,j

'+1zN°D") (5.31)

£

) oo T

4H?

where (V3P) is given by (5.11).
J

i,

® 1
(a)z )i,j = Z[(wz )i—1/2,j—1/2 + (wz )i+1/2,j—1/2 +

(*)
(a)z ),‘71/2,j+1/2 +(COZ )i+l/2,j+l/2i| (5.33)

(Di—l/Z,j—1/2 + Di+1/2,j—1/2 +

(n)
Dy jup + Di—1/2,j—1/2) (5.34)

Corrector step (n+1) on the D-grid:

(n+1) (n)
(a)z )i,j = (wz )i,j

where (ﬁiP)

Bl 1 ( B +

i+1/2,j+1/2 = 4 ij

—7/D{) (5.35)

. . () -
Di(+;12),j+1/2 = Di(+1)/2,j+1/2 + T[f(wz) - (VHP)]
i+1/2,j+1/2
(5.36)
B""=B" +7N’D"" (537)

where l_)ff;+l) is given by (5.43), but for (n + 1) .

~ 1
2 2 —
(VHP)i+1/2,j+1/2 B (m + 4H? jPi+l/2J+l/2 -

i+1/2,j+1/2

(n+1) 1
(wZ )i+l/2,j+1/2 = Z[(wz )i,j + (COZ )i+1,j +

(n+1) :(n+l)
f(wz ),’+1/2,j+1/2 + Bi+1/2,j+1/2 (5.38)

is given by (5.16).

(n+1)
(o, ),», . (0) ),‘HJH} (5.39)

~ ~ ~ (n+l)
B. . +B _+B ) (5.40)

i+l,j i,j+1 i+1,j+1

On the CD-grid, the principal prognostic variables that are denoted by (n) and (n+1) reside at the D-

grid, i.e. @, and B are placed at the cell centers and D is placed at the cell corners. The variables o,

and D are averaged to their points on the C-grid at the beginning of the predictor step to predict their

provisional values denoted by (*). At the correction step on the D-grid, the provisional value of DY s

directly used in the prediction of @, for the time level (n+1), and all other variables are predicted

following a backward scheme, i.e. the latest predicted values on at (n+1) are used in subsequent

predictions of other variables.

The patterns of computational modes on the CD-grid are similar to those on the D-grid. Thus, the

computational modes on the D-grid are non-moving or non-oscillating type for the patterns (1), (2) and

3).
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5.d. Numerical integrations

We have integrated the equations of the models based on the different grids described above to
validate the normal mode solutions discussed in Section 3 and to illustrate the behavior of computational
modes associated with the different grids. For the time discretization of the A-, B-, C- and E-grid
models, we have tested different schemes, and have found that the time-integration schemes primarily
affect the stability of the solutions, but not the simulated frequency. Among the tested time-integration
schemes, a simple forward time-integration scheme that produced neutral solutions with short time steps

has been selected.

We first present results from the standing oscillation simulations to validate the frequencies
obtained through the normal mode analyses, and also to examine the sensitivity of these simulations to
the horizontal grid spacing. The standing oscillations appear stationary because they are produced by the
inertial-gravity waves that propagate with the same rate of speed to all directions on the horizontal

plane. In these simulations, the vertical structure is continuous, and the vertical integer wavenumber n

is prescribed. The simulations start from the initial buoyancy fields shown in Fig. 5.4, for which we have

selected the horizontal wave lengths of L=4km , L=20km, L =50km and L=200km in both x- and

y-directions. These wave lengths correspond to the smallest resolvable horizontal scales used in the
frequency plots of the inertia-gravity modes presented in Section 3. The vertical integer wavenumbers
used in the simulations are n=320, 640 and 1280 for L=4 km; n=160, 320 and 640 for L=20 km; n=80,
160, 320, 640 for L=50 km; and n=80, 160 and 320 for L=200 km. The sensitivity of the numerical
solutions to the grid spacing is examined for the three selections: d=L/80, d=L/4 and d=L/2. The

appearance of the initial buoyancy B field for these three horizontal resolutions is shown in Fig. 5.4.

For the highest horizontal resolution (d=L/80) shown in Fig. 5.4.a, the initial waves are well resolved.
For the grid spacing d=L/4, the initial field that consists of ones, zeros and negative ones appears like

alternating upside and inverted “pyramids” due to the poor resolution in the plot shown in Fig. 5.4.b.
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The grid points marked by plus signs (+) are at the positive and negative extremes, the wall centers and

the corners of the (upside and inverted) pyramids for this case. For the grid spacing d=L/2, which is the
shortest horizontal grid distance to resolve this wave, the initial perturbation also looks like upside and
inverted pyramids, but the grid points are only at the extremes of the (upside and inverted) pyramids in

this case (Fig. 5.4.c).

Fig. 5.4.

The numerical frequencies of the standing oscillations for the high horizontal resolution case
(d=L/80) simulated by A-, B- and E-grid models are tabulated in Table 1a. For comparison purposes, we
add to the table the true frequency obtained from (2.11) and the numerical frequency obtained by the Z-
grid model. Since the simulated is the standing wave, no oscillation is expected at the grid points that
have zero perturbation initially. So that, the tabulated results represent the oscillation frequency at the
points with non-zero initial perturbation. The numerical oscillation frequencies simulated by the Z-, A-,
B-, E-grid models are very close to the true frequencies, which is expected due to the use of high
horizontal resolutions in the simulations. All variables oscillate with the same frequency. However, there
are still two separate solutions in the A-, B-, E-grid simulations as discusses above. In this case, these
two solutions yield the same frequency values because the wavy structure of the initial perturbation is

uniform.
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Table 1a.

Table 1b is the follow-up for Table 1a, which shows the numerical frequencies for the C, CD and

D grids. The numerical frequencies simulated by the C-, CD-, D-grid models are also very close to the
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Table 1b.

true frequencies as expected due to the use of high horizontal resolutions in the simulations. All
variables oscillate with the same frequency, and there is only one solution in the solutions with these
grids. It is a noticeable fact that the numerical frequencies obtained by the CD-grid is identical to ones

obtained by the D-grid.

We have repeated the same simulation by using lower horizontal resolutions down to (d>L/4),
and found no unexpected differences between the high and lower resolution simulations with the
exception that the accuracy of the numerically calculated frequency degrades with lowering resolution.
For the horizontal resolution (d=L/4), which is the half of the shortest spacing to resolve the initial
perturbation, the effect of non-moving and non-oscillating computational modes with the A, B and E
grids can be identified easier than the high resolution cases. Table 2a tabulates the true frequency and
numerical frequencies obtained by the Z-, A-, B- and E-grids for the horizontal resolution (d=L/4). All

variables at all the grid points oscillate with the same frequency in the Z-grid simulation. Obviously, the
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grid points that have zero perturbation do not show oscillation because of the standing wave simulation.
If the horizontal distribution of the initial perturbation is modified, all the grid points physically respond
to the change. The numerically obtained frequency by the Z-grid is generally smaller than the true
frequency, but it is close. In the table, the non-moving and non-oscillating solutions that corresponds to
the computational mode is indicated with red numbers. In A-, B- and E-grids, all grid points at the
corners of the “pyramids” in Fig. 5.4b that have zero perturbation initially produce no oscillation even
with the case that the perturbation values in the other grid points are modified. The solutions at the other
points for short horizontal scale perturbations yield much smaller frequencies than the Z-grid frequency.
The numerical frequencies obtained by the C-, CD- and D-grid models for the same horizontal
resolution are tabulated in Table 2b. The table shows that all variables of the modes are oscillating with
the same frequency, but some of the modes are oscillating with lower frequency than that of the inertial
frequency (blue numbers), which indicates that these modes cannot recognize the rotation properly due
to the averaging of the divergence and vorticity to each other’s grid points. The modes with the short
horizontal scales simulated with the C-grid have frequencies similar to those obtained by the Z-grid. The
CD- and D-grid produce almost identical frequencies, which are much lower than those produces by the
Z- and C-grids.
Finally we tabulate results obtained by using the shortest possible horizontal grid spacing (d=L/
2) to resolve the initial perturbation shown Fig. 5.4c in Table 3. This is the horizontal resolution that the
errors due to finite-differencing is the highest, and the computational modes impact the solutions the
most. It is evident from the non-oscillating solutions (indicated by red zeros in Table 3) that the A-, B-
and E-grid simulations cannot recognize the initial buoyancy perturbations because the two separate
networks with these grids recognize the initial perturbation as horizontally uniform fields. However, if
the initial perturbation is given to the vorticity instead of the buoyancy, the solutions are oscillatory with
the frequency of inertial oscillation (indicated by the green numbers in Table 3), which is the solution
that the normal mode analysis produces for the SRHS. The D- and CD-grid solutions do not yield
oscillation either, but the reason for this is different from the A-, B- and E-grid cases. Averaging of the
initial buoyancy perturbation to the divergence points completely wipes out the wave in the D- and CD-
grids. Thus, the initial perturbation pattern is the computational mode, which is identical to the Pattern

(3) in Fig 5.2. Non-oscillating solutions are also obtained by starting from the vorticity perturbations as
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indicated by green zeros in Table 3. In the C-grid solution, the buoyancy and divergence recognizes the
initial perturbation and they produce oscillations although the vorticity is decoupled from the others and
it does not oscillate. This is due to the averaging of the divergence to the vorticity points, which wipes
out the initial perturbation at the vorticity points. For the short horizontal scales, the frequencies of the
buoyancy and divergence in the C-grid solutions is very close to those in the Z-grid solutions. For the
long horizontal and short vertical scales, the frequency of buoyancy and divergence in the C-grid
solutions is considerably smaller than that in the Z-grid solutions and rotational frequency (indicated by
blue numbers in Table 3). If the initial perturbation is given to the vorticity instead of the buoyancy in
the C, CD and D grid simulations, the solutions are non-oscillatory for all variables (indicated by the
green numbers in Table 3). The Z-grid solution produces numerical frequencies that are very close to the

true frequencies although the initial perturbation is poorly resolved.

Numerical integrations page 14



Celal Konor Supplementary Material Saturday, March 4, 2017

Table 2a.
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Table 2b.
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Table 3.

We have also made simulations to demonstrate the behavior of the computational modes during
the propagation of inertia-gravity modes with the seven grids we are discussing in this paper. These
simulations start from a gaussian buoyancy perturbation with a positive amplitude placed in the middle
of the horizontal domain with rapidly decaying amplitude away from the center. To superimpose a grid-
scale noise on the initial condition, the perturbation at every other grid point is set to zero. The
horizontal domain is 280 by 280 grid points, the horizontal grid spacing is d=50 m (for E-grid d=70.71
m). The radius of the perturbation that is the distance between the peak of the perturbation to the
distance where the perturbation becomes zero is 950 m. In the vertical, the perturbation is continuous

with the vertical integer wavenumber of n=320. The buoyancy field after 100 mins of integration in the
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124-by-124 wide corner-end portion of the horizontal domain is shown in Fig. 5.5. For reference
purposes, we show Z-grid result obtained without the superimposed grid-scale noise on the initial
perturbation. No major difference can be seen between the Z-grid solutions started with the
computational mode and without it in the portion of the domain shown in Fig 5.5. In the solution with
the grid-scale noise, there is, however, a remnant of the initial noise taking a form of grid-scale standing
inertia-gravity oscillation at and near the center of the domain where the peak of the initial perturbation
is placed. This is not visible in Fig. 5.5 because it is out of the plot domain. The noise gradually subsides
in time as the bulk of the initial perturbation propagate outward and vacate the center of the domain. The
C-grid simulation result is very close to the Z-grid result with the initial noise. It is evident that the
existence of initial noise does not leave a permanent effect on the solutions with the Z- and C-grids. The
CD- and D-grid simulation results resemble the C-grid result with an exception that the noise is apparent
near the center of the domain in both simulations (see Fig. 5.5). Since the noise triggers the
computational mode, it tends to stay for a long time in the CD- and D-grid simulations. By prescribing
the initial perturbation at every other grid point to zero, one of the two independent solutions in the A-,
B- and E-grid simulations is set to zero. The other solution in these grids recognizes the initial gaussian
perturbation and yields a propagating wave as shown in the last three figures of the lower panel of Fig.

5.5 similar to those with the Z-, C-, CD- and D-grids.

In summary, the Z grid is the only grid, which generates unique solutions in the three numerical
simulations discussed in this section. Also, the simulated frequencies with the Z grid are remarkably
accurate in the sense that they are very close to the true frequencies. The numerical simulations with the
C grid are overall very close to those with the Z grid. However, the C grid generates multiple solutions
with all horizontal grid resolutions for the modes with the SRHS. The D and CD grid results are
virtually identical to each other. The modes with the SRHS regardless of the variable are completely
unrecognized by the D and CD grid. The A, B and E grids have multiple solutions for all resolutions,

and, they produce mixed solutions depending on the variable for the SRHS.
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Fig. 5.5.
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6. Summary and Conclusions

We have discussed the horizontal and vertical discretization of the nonhydrostatic linearized
anelastic equations on the A, B, C, CD, D, E, and Z horizontal grids and the L and CP vertical grids,
with an emphasis on the middle-latitude inertia-gravity and Rossby waves. We have followed a two tier
approach in our analyses. The impact of the discretization on the physical modes is demonstrated
through comparisons of the normal mode analyses applied to the continuous and discrete equations. The
source and behavior of computational modes in the horizontally discrete systems are mostly investigated
by the analyses of the numerical solutions obtained by the models based on these grids and, small part,

by the normal mode analysis to the extent deemed possible.

The Z grid yields the closest inertia-gravity wave dispersion to the true solutions among the
seven horizontal grids we considered in this paper without any computational modes. Although the
frequency and group velocity of inertia-gravity modes in the Z-grid solutions are lower than the true
ones, the numerical frequency never goes below the inertial frequency and the group velocity never
reverses. In the Z-grid solution of the quasi-geostrophic baroclinic and barotropic Rossby waves, there
is, however, a non-oscillating computational mode appears. The shortest horizontal zonal scale cannot

recognize the beta effect, which generates a non-oscillating computational mode.

The C grid produces mixed dispersion results in the inertia-gravity solutions. For the cloud-

resolving applications with small horizontal grid spacing represented by d =2km in our analyses, the

accuracy of the physical modes are nearly identical to that of the physical modes with the Z-grid unless
very high vertical resolutions are used. Of course, there is a computational mode that decouples the
divergence and vorticity for the SRHS in the C-grid solution. The vorticity and divergence are placed at
different grid points on the C-grid. Thus, averagings of the vorticity and divergence to each other’s grid
points leads to the computational mode. The impact of this computational mode may not be severe in a
linear system because this mode disperses like a pure gravity mode, which minimizes the potential
problems. However, since the three-dimensional enstrophy cascades to the SRHS in the nonlinear cloud-
resolving models, the impact of the computational mode can be severe, and an explicit process may be

needed to damp the enstrophy accumulated in the SRHS. For the mesoscale applications, i.e. horizontal
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grid spacing represented by 10km and 25 km , the inertia-gravity modes in the C-grid solution behave

similar to that in the Z-grid solutions if the vertical wavenumbers are equal to n =320 and n=156 or

smaller for 10km and 25km  grid spacings, respectively. The wavenumbers n =320 and n=156
correspond to 0z=250m and 6z=512m for the domain height of z, =80km , respectively. The

inertia-gravity modes in the C-grid solutions with a typical climate model horizontal grid spacing of 100

km are simulated as accurate as the Z-grid solutions for the vertical wavenumbers n =39 and below,

which corresponds to z=2051m and higher. For the vertical wavenumbers higher than n=39 , the

reversal of group velocity takes place for the modes with rather wide range of horizontal scales causing

stability problems.

The performance of the C-grid in simulating middle-latitude Rossby waves is comparable to the
Z-grid. In summary, the C-grid performs the best in the horizontally high resolutions models, and it
yields as accurate physical solutions as the Z-grid. The computational mode impacts the solutions less

for the high resolution applications than the low resolution ones.

The inertia-gravity and Rossby mode solutions with the D and CD grids are almost identical. On
these grids, the divergence and the mass (buoyancy, pressure and vertical velocity) are placed in
different grid points. The vorticity is placed at the same grid points with the mass. With this staggering,
not only the vorticity and divergence are averaged to each other’s grid points, but also the divergence is
averaged to mass (and vertical velocity) points and the pressure is averaged to divergence points. The
result is the large errors in the dispersion of the inertia-gravity modes of all vertical scales near the
SRHS for all horizontal resolutions. At the SRHS, there are non-moving and non-oscillating
computational modes of all variables. The group velocity reverses with a high rate of speed near the
SRHS. The D and CD grids may require explicit diffusion in nonlinear models to clear the noise in short
horizontal scales due to the computational mode and reversal of the group velocity. The D and CD grids
along with the Z grid produce the best dispersion of the middle-latitude Rossby waves among all the

horizontal grids.

The dispersions of the inertia-gravity waves with the A, B and E grids are similar. All suffer from

the existence of double physical solutions that are independent of each other as demonstrated by the

Numerical integrations page 21



Celal Konor Supplementary Material Saturday, March 4, 2017

numerical simulations. To avoid the separation between these two solutions, a horizontal mixing process
is needed with these grids. The computational modes with the SRHS display a complicated behavior.
There are two possible solutions, one of which is non-oscillating computational mode, and the other is a

different computational mode that oscillates with the inertial frequency.
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DC-grid

The DC-grid

Normal mode analysis for the DC-grid (Inertia-gravity modes):

Predictor step (*) on the D-grid: Corrector step (n+1) on the C-grid:
DY = ubD" +41(LP, + fL") (DC2) | P = P 4 1 ( fo + P, ) (DC.7)

A (* A (n . 1 - S(n A A
) =l >+%T{‘“(£m+ﬁ)PD+B()} (DC.3) v?z(‘””:w(“)+r{—(£m+ich+B(*)} (DC.8)

2H
E(*) — é(n) _ %TNZW(n) (DC 4) é(nﬂ) _ é(n) _ 7/_]\]2‘;‘\)(n+1) (DC.9)
A ( . 1 E ~ 1 A~
‘UD( )+(l‘m_ﬁjW( ) =0 (DC.5) D(n+l)+(£m_ﬁjw(n+l) -0 (DC.10)
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Scheme I:

We choose

First we use (DC.2), (DC.11) and 6, =1-17°f in (DC.6).

,L.2

d\)gnﬂ) — Gfa")in) _ quD(n) _7ﬂ2p )

Then we use (DC.1), (DC.11) and o, =1-47°f in (DC.7).
D" =c,D" +urfo! +TL’P .

We use (DC.4), (DC.11) and o, =1-17’N* in (DC.8).

A~ (n+ ~(n . 1 - (n
() IGNW( )—T(zm+—)P+TB( ),
© 2H

From (DC.10),

By using
(AI)(n+l) — e—gv‘r(i)(n)
in (DC.12)—(DC.15) and (DC.9), we write

(e‘i” —crf)c?)Z =—utfD- L1712 fIP,
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(e*i”—c;f)lA)=wfd)z+TL2ﬁ, (DC.18)
(e—zvr_GN)@:_f(imﬁ)ﬁﬂé, (DC.19)
(e -0y )B=—TN’e"W (DC.20)
and
A i I \.
D+(zm——jw=0. (DC.21)
- 2H

Eliminate @, between (DC.17) and (DC.18).
[(e‘i” -0, )2 +72,uzf2}ﬁ = f(e‘i” -0, —u%rzfz)sz) (DC.22)

Eliminate w between (DC.19) and (DC.21).

(e —0,)D= Toif’+f(£m—ﬁjf3 | (DC.23)
where o’ =m’ +1/(4H2) :
Eliminate B between (DC.20), (DC.21) and (DC.23).
—[(e‘iw -0y )2 + szze‘L”JlA) = r(e‘"’ —GN)G,ff’ (DC.24)

Eliminate P between (DC.22) and (DC.24).

(e*L'vr _O.N)|:(e£vr _O.f )2 +u21_2f2:|o_iﬁ

2 ) (DC.25a)
+[(e‘1'” —Gf)—u%fzfz}[(e‘i” —GN) +‘L'2N2(3_MJL2D =0

Eliminate D between (DC.22) and (DC.24).
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e o (e -0,) +uieif? c2P
(¢ =0,)| (" ~0)) }

: A (DC.25b)
_i_[(efivr _O.N) +T2N267£v7i|(efgvr o, —H%Tzfz)LZP -0

Both (CD.25a) and (CD.25b) produce third-order equations for the frequency. Their solutions
are more challenging than the solution of a second-order equation. We will obtain the

frequency for this case through numerical simulations of inertia-gravity modes.

Scheme II:

We eliminate f’D and w between (DC.2), (DC.3), (DC.5) and DC.10).

,u(Lz +o) )lA)(*) = (L2 + ,uchn)f)(“) +uitfolal - %T(gm — ﬁjﬁé(“) : (DC.26)
Now we eliminate w between (DC.4) and (DC.10).
(im—le}(*) = (im—le}(") +1TN*DM. (DC.27)
- 2H - 2H

The equations of the predictor step on the D-grid consist of (DC.1), (DC.26) and (DC.27).

We eliminate P., w" and W™ between (DC.7), (DC.8) and (DC.10).

(12 +02)(D) = D) =7 faid)g*)—f(gm—ﬁ)ﬁé(*) (DC.28)

Equations (DC.6), (DC.9) and (DC.28) are the equations of the correction step on the C-grid.
Now we use (DC.28) in (DC.6) to eliminate DY,

N N N A 1 A
u(L2 +an)(co£“”) - a)i“))+,u%r2f26,iw§“) = —ﬂ:f(L2 + uzafn)D(“) + %rzf(gm - EJLZBW . (DC.29)

By using (DC.1) and (DC.27) in (DC.28), we obtain

DC-grid page 4
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(L2 +0'j1)(b(““) — 15(“))+ 172 (fzoj - N2L2)l3(“) =urfola"™ - T(L'm — ﬁjﬁﬁ(“) : (DC.30)
Now we use (DC.10) in (DC.9).
(im—ij(fe(““) —B")=1N?D"™ (DC.31)
- 2H

By using (DC.16) in (DC.29)—(DC.31), we write

[u(LZ +0',2n)(ei” —~ 1)+,Ll%fzf20'r2n:|d)z = —‘L'f(L2 +,uchn)ﬁ+%1'2fL2 (gm— ﬁ)é (DC.32)

A

[(L2 +o,)(e —1)+47* (N°L +f2ojl)}f) =urfold, -1’ (gm—ﬁ)B (DC.33)

(eiw —1)(im—le§=TNze£”lA) (DC.34)
- 2H

By eliminating @, between (DC.32) and (DC.33), we write

{[(ﬁ +0'i)(e£” — 1)+%rzf20ﬂ[(L2 +0'i)(ei” — 1)+%12 (NZL2 +f2651):|+‘[2f26,2n (L2 +,uzo'j1)}ﬁ =

—7(L +o) (e —1)(£m— ﬁ)ﬁé

(DC.35)

By eliminating B between (DC.34) and (DC.35), we write

{[(L2 +6,f,)(e£” — 1)+%Tzfzo'jl][(L2 +Gj,)(e£” — 1)+%12 (NZL2 +f20'j1)J+12f20'j1 (L2 +,uzcrj,)}f) =

~* (P +0, )N’ L’e™ D

(DC.38)
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After some manipulations, we rewrite (DC.38) as

2

(L2 +02) (e 1)
+[%12(N2L2 +fo))+37’ fzoﬂ(ﬁ +o,)(e™ =1)+7°L (L +0.)N’e™ (DC.39)
+it'fo? (NZL2 +f263l)+1'2f20'i (L2 +‘LLZG;)= 0

and then

2712 2.2 2.2 2 2
. L+ +2L <
e*ZLVT _|:2_%TZ(N f2Gm j_%TZ(f O-m N }:|e£VT

2 2 2
L +o, L +o,

s T’ flol \( I +u’o) _ip N’L’ + f’o’ _%12f2631+ L0l \( N’ + f?o) 0o
I’ +c0? I’ +c’ g I’ +o’ ’+0? I’ +o’ L’+0?

Real and imaginary parts of this equation produce

1 2 2,2 271272 272 2.2

sT°fo +T°L'N N L'+ fo

e cos(2v,T)—e""| 22 f S -17? # cos(v,7)+
L' +o, L'+o,

o, \(L+p’ol) | L NI+ fcl) +1°fcl (it'f’0l \( N’L'+ f’cl || _
+ 1+ 2 2 2 2 —27 2 2 ) > T 2 2 2 2 =0
L +o, L +o, L +o, L +o, L +o, L' +o,

(DC.41a)

and

. 1,2 02,22 272872 272 2 .2
i sin(v,7) ,_3Tf0,+T°L'N _%TZ(MH_ (DC.41b)

sin(2v,7) L’ +o’ L’+o’
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The solution of (DC.41a) and (DC.41b) is shown in the figure.
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Frequency of inertia-gravity modes on the DC-grid using scheme II.
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Numerical model results (Inertia-gravity modes):

A numerical model inspired by the scheme Il discussed above is constructed on the DC-

grid.

The equations of the system are given by

DC-grid page 9
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Predictor step (*) on the D-grid:

Corrector step (n+1) on the C-grid:

() _\0) T ) (n+1) _ (n) _ )
(wZ)i,j z(wz)i,j _Eﬂ)i(,j) (DC.50) (wz)iﬂ/z.jﬂ/z_(wz)m/z,jﬂ/z RLCTE (DC>4)
X — (n+1) _ y(n) ) (e
D,(J/z 2 = Di(+1)/z,j+1/2 D =D +1 f(wZ): _(VHPC)- j (DC.35)
(DC.51) ’ "
7 (n) =2 '
+5[f (wz),-+l/z,j+1/z‘(VHPD)M/ZJH/Z} B =B") +7N’D"" (DC.56)
(* H(n 2 n
Bi(’j) - B}’j>+%rN D}’j) (DC.52) (?2P ) (o, 1 (P) =
H" C i 4H2 C ij
2 p >, | p B (DC.57)
( H D)1+l/2,j+1/2_ m +4H2 ( D)i+1/2,j+1/2 - f(a)z)(A*?+§i(l}+l)
l,] >
(n) B(*)
f(wz )i+1/2,j+l/2 + Bi+1/2,j+l/2 where
(DC.53) .
) =) =) Vip P, +P,,+P, +P, —4P,
where (a) )z,j . Dy juyn and (VHP)i+1/2,j+1/2 are ( H )M 4> ( i+l i T h ,,,)

_\m 1
(wZ )i,_j = Z[(wz )i—1/2,j—1/2 + (COZ )i+1/2,j—1/2 +

(n)
(wz )i—l/z,j+l/2 + (a)z )i+]/2,j+1/2 :|

. 1 (v)
Di(+1)/2,j+l/2 = Z(Di+l,j+l + D:+1 J +D, .+ Di,j)

i,j+1

1
2 —
(VHP)i+l/2,j+1/2 = ?(Pi+3/2,j+1/2 +P —1/2 ,+1/2

Pi+1/2,j+3/2 + Pz+1/2 Jj-1/2 4'Pz+1/2 ]+1/2)

We made the same simulations described in “Numerical integrations” section with the DC-grid
model, which uses Egs. (DC-50)—(DC.57). We tabulate the results below.
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Table DC.1b. Same as Table 1b in page (Numerical integrations page 12), except that DC-grid
results are added to this table.
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Table DC.2b. Same as Table 2b in page (Numerical integrations page 16), except that DC-grid
results are added to this table.
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Table DC.3. Same as Table 3 in page (Numerical integrations page 17), except that DC-grid
results are added to this table.

The DC-grid frequencies are virtually identical to the C-grid frequencies in these three
tables. One exception is that, with the smallest resolvable horizontal grid distance, the vorticity
is coupled to the divergence and buoyancy perturbation with the DC-grid (Table DC.3 far right
column) unlike the C-grid, on which the vorticity is not. When the perturbation is given to the
vorticity, the divergence and buoyancy cannot recognize vorticity perturbation on both the DC-
and C-grids.

DC-grid page 13
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Normal mode analysis for the DC-grid (Rossby modes):

Predictor step (*) on the D-grid: Corrector step (n+1) on the C-grid:
n (s i) T on TPz A .
& = ud™ -~ f,D, —£—ﬁéjkPD oc.60) | A" =" —utf,D. - iu B L Ekp. (DC.65)
2 2 f, fo
0=ul’P, + fo" DC6D) |0 =f,d") + 2P, (DC.66)
. 1 -~ r(n 1 A A
BY =B" LN, (DC.63) | B = B _ N2y, (DC.68)
A . 1 ). A . 1 ).
uD,, +(£m_ﬁjwl’ = (DC.64) | D, +(£m—ﬁ)wc =0 (DC.69)

Modified system:

Since the divergence and vertical velocity are diagnostic variables in the quasi-
geostrophic (with quasi-static approximation), the system contains more equations than
needed. To find a unique solution, we ignore the equations (DC.60)—(DC.64) at the predictor
step. (See pages 51-53 of CD-grid section.) Then the equations (DC.65)—(DC.69) are modified
as follows:

& =" —utf,D.—iu B L Exp. (DC.70)
f0
0=f,0"" +*P, (DC.71)
0= —( gm+i)ﬁc + B (DC.72)
2H
B™ = B TN, (DC.73)
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A

. 1 ~
DC+(£m_ﬁjWC =0 (DC74)

Then, by eliminating w between (DC.73) and (DC.74) and using (DC.17) in all equations, we
write

(e 1), =—pzfy D L‘m?fkﬁ (DC.75)
0
ufye o, =—I*P (DC.76)
(e - 1)(im - ijé =TN’D (DC.77)
~ 2H
2 1 a . 1 —-ivt p

OZ(m + 2)P+(£m——)e “*B (DC.78)

4H 2H

Then we obtain

A

jp. (DC.79)

N2 [(e—gvr —1)L2 _ L-‘uzrﬁgke—gvr}ﬁ _ _uzfoz(e—zvr _ 1)(m2 n e
Equation (DC.79) is identical to Eq. (RS1C.2.13, page 54 of CD-grid) except the factor u’ .

Therefore, we can follow the same procedure described in pages 51-58 of CD-grid to obtain
the dispersion equation for the DC-grid by

sin(v,) _ —u’ Bk (DC.80)
2 2 '
cos(v,7) L2+.LlN]} (m2+4;[2)
and
2 p2
L2+MN]§) (m2+411_12j
A 1 - (DC.81)
{1] + NZO (mz e Hcos(vrr)—wzﬁéksin(vrr)
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Dispersion of Rossby modes on the DC-grid.
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Anelastic, Quasi-hydrostatic and Lamb wave (or shallow-water) solutions: Nonhydrostatic effects

We write the linearized fully compressible equations as

Ju o p oV o p ow 1 dp P

Gu__ 9P gy, WO P | _fyoang o _LOP_ [P QH.1

ot ax[pO]”” ot ay(poj Ju an Jat  p, 0z g(po ( )
%(80%J=—N2w where sz% (QH.2)

ap o Apw)

= *_, QH.3
ot Po ox Po dy 0z ( )
i2£:£+i where ¢; =ygH and }/EL (QH.4)
CsPo Py 6, I-x
The vorticity-divergence form of these equations are
9. __ (QH.5)
ot
oD 0 9\ p
—_—| — 4 — — |+ QH6
ot [aﬁ afj(poj fe. (o)
w__ 9P| k[P p where we used 19 __ L and Bsgi (QH.7)
ot dz\py ) H\ p, Py 02 H 0,

AN, QH, Lamb wave and shallow-water solutions: Nonhydrostatic effects, page 1 (Doc. page 162)
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Typewritten Text
   (Doc. page 162)


Celal Konor Supplementary Material

9B _ N 90 )__x
o~ Vw Lor at(e()]_ T

Monday, July 31, 2017

Using (QH.4)and —% = —% in (QH.3), we rewrite the continuity equation as

Po

ygH ot \ p, lox 9y \0z H H
We rewrite (QH.5)—(QH.9) as

o

> (pi@.)==1(p"D)

3 121) _ a—z a—z -1/2 129
2 (ptD)=~{ 3+ |(pi) (o)

a 1/2 a
e Ly

=/ (pi"B)==N(p;"w)

1 9, _
Vg—Hat(p‘)l/2 )

(pD)-( 2= b))

AN, QH, Lamb wave and shallow-water solutions: Nonhydrostatic effects,

page 2
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1/2
In these equations we used 9 L[ 1 9py pJ?.
dz 2\ p, 9z

By changing the variables, we rewrite (QH.10)—(QH.14) as

agt’z D (QH.15)
%?:—(£;+§§)P+fwz (@QH.16)
a—wz—(i+LjP+£P+B (QH.17)
ot 0z 2H H
%_fz_N2w (QH.18)
MLH%_I;:_D_(%_ﬁjW_%W (QH.19)

These equations produce the dispersion equation for the fully compressible system as

v4—{(N2+f2)+ng[m2+#(%—Kj }+ng(k2+€2)}v2

X (QH.20)
+N2f2+j/gHN2(k2+£2)+f2ng[m2+%(%—Kj }:0
The quasi-hydrostatic equations are (QH.15), (QH.16), (QH.18), (QH.19) and
0=—6§+—L)P+£P+B, (QH.21)
0z 2H H

AN, QH, Lamb wave and shallow-water solutions: Nonhydrostatic effects, page 3
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which is obtained by neglecting the time derivative of vertical velocity in (QH.17). The

dispersion equation for the quasi-hydrostatic system is
j/gHN2
N’ +ygH| m’ +(L—£T
r8 2H H

By assuming B=0 (and w=0) in (QH.15), (QH.16), (QH.18) and (QH.19), we obtain

2 o
vqh?tr‘ue - f +

(k*+0°) (QH.22)

the dispersion relation for the Lamb wave as

V=24 gH (K +0) (QH.23)
where H"=yH . Eq. (QH.23) is identical to the dispersion of the gravity waves with the

shallow-water equations for a depth of fluid H*. By using A= \/gH*/f, (QH.23) can be written
as

V2 e = FH A (K4 07) (QH.24)

sw_true

Fig. QH1 shows the true frequencies for the anelastic, quasi-hydrostatic inertia-gravity
modes and the Lamb wave. The frequencies for the anelastic and quasi-hydrostatic modes are

given by

Nz(k2+€2)+f2[m2+(ﬁ)2}
(

(& +€2)+[m2 +(2;Iﬂ

2
an_true ~

1% Anelastic) (QH.25)

and (QH.22), respectively. The frequency for the Lamb wave is given by (QH.23).

AN, QH, Lamb wave and shallow-water solutions: Nonhydrostatic effects, page 4
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Fig. QH1. Frequencies of the quasi-hydrostatic and anelastic inertia-gravity
modes and Lamb wave. Thin black dashed lines indicate the SRHS for the
d=2 km, 10 km, 25 km and 100 km horizontal grid spacings.

AN, QH, Lamb wave and shallow-water solutions: Nonhydrostatic effects, page 5
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We define a nonhydrostaticness index as

N, = Lahme (QH.26)

an_true

Fig. QH2 shows the nonhydrostaticness index for the inertia-gravity modes as a function of the
composite horizontal wavenumber and vertical integer wavenumber. The vertically deep

modes are generally more nonhydrostatic compared to the shallow modes, and the
nonhydrostaticness increases with increasing horizontal wavenumber.

Fig. QH2.

AN, QH, Lamb wave and shallow-water solutions: Nonhydrostatic effects, page 6
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Why nonhydrostaticness shows a pattern shown in Fig. QH2 can also be seen in Fig.
QH1. The frequency of the anelastic inertia-gravity modes is bounded by the Brunt-Vaisala
frequency at the upper end. The frequency of the quasi-hydrostatic inertia-gravity modes,
however, is not bounded. What is seen in Fig. QH2 is a reflection of the impact of the upper
bound brought by the nonhydrostatic effects in the anelastic modes. The nonhydrostatic effects
slow down the inertia-gravity waves with short horizontal and long vertical scales, and the
group velocity of these modes is nearly zero. This has a substantial effect on the reduction of
discretization errors due to finite-difference approximation in the anelastic system compared to
the quasi-hydrostatic system, which we will examine next. The discretization errors due to

variable averaging are not effected.

For the C and Z grids, Egs. (QH.22), (QH.23) and (QH.25) can be written as

C-grid:
HN?
V;h_Cfgrid = Au2f2 + yg 1 1 2 (€2k2 +n2£2) (QH27)
N> +ygH|m’ +| ———
+7g [m +(2H H) }
and
V‘YZW_C—grid = :lefz + gI{1< (ézkz + nzfz) [and vs2w_C—grid = u2f2 + fZAZ (€2k2 + n2£2)] (QH28)
and

N® (52162 +7‘]2€2)+,u2f2 {mz +(2;—IJ2}
. = (

van?C—grid_ 1 2
2k2+ 2(2 + 2+( )
(@)l e 1y

anelastic) (QH.28")

AN, QH, Lamb wave and shallow-water solutions: Nonhydrostatic effects, page 7
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where the definitions of u, & and n are given in Section that discusses the C-grid.

Z-grid:
2
vjh_Z—grid = f2 + vshN ) » 2 (dfzkz +772€2) (QH.29)
N? +}/gH[m2 +(—) }
2H H
and
Vo 2w =F +YH(EK+0°C) [and V), , ., =+ A (8K +0°0)] (QH.31)

2 Nz(é2k2+nzgz)+f2|:m2+(2lH) :|

van?Z—grid = 1 2
2k2 + 2g2 + 2 + ( )
(&% +n707) {m oh

(anelastic) (QH.31")

Anelastic vs. quasi-hydrostatic and shallow-water analyses

Now we examine the differences between the use of the anelastic, quasi-hydrostatic
and shallow-water equations to assess the discretization errors with the Z and C grids. We
define an error in the form of the ratio of discrete to true frequencies (hereafter discretization

ratio-error) as

- _ Van_z-gria (QH.32)

an_Z-grid —
an_true

Similarly we define r, , .., and r,

sw_Z—grid ?

and also the ones corresponding to the C-grid. We

also define the difference between these errors that are obtained by the anelastic and quasi-

hydrostatic systems as

AN, QH, Lamb wave and shallow-water solutions: Nonhydrostatic effects, page 8
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0 (QH.33)

an—qh _Z—grid = ran _Z—grid - rqh _Z—grid

Additionally, we define 6, .. e =7 cogria = Ton c—gria -

The errors due to finite-difference approximations in discrete dispersion equations (QH.

27)—(QH.31") are represented by the factors & and n , which modify the horizontal

wavenumbers. Since they are always equal to or smaller than the unity, being close to the
unity for small horizontal wavenumbers and being the smallest at the SRHS, the modified
wavenumbers with discretization are effectively smaller than the continuous case. Then the
discrete frequency is equal to the true frequency corresponding to a smaller horizontal
wavenumber. For Z and C grids, this is approximately 10% reduction of wavenumber.
Naturally, if the frequency is not changing with the horizontal wavenumber, as with the

anelastic case in the high horizontal wavenumber range, the discretization errors remain very

small. The magnitude of finite-difference errors should depend on the magnitude of dv|/ok" ,

which is also known as the horizontal group velocity.

We present tables of the discretization ratio-errors at the SHRS for the anelastic (Table
QH.1), quasi-hydrostatic (Table QH.2) and shallow-water (Table QH.3) systems. The SHRS is

selected because the discretization errors are expected to be the largest. Our motivation is to
identify the differences, if any, between the use of the anelastic equations and the quasi-

hydrostatic and shallow-water equations in the assessment of discretization errors.

Findings:

1) The Z grid with the anelastic system produces overall the least errors among the three
systems (Tables QH1, QH2 and QHB3).

2) The errors of the Z-grid increases with the increasing vertical wavenumbers (of degreasing

fluid depth in the shallow-water system) for d=2km and d=10km. The errors for the d=25km
and d=100km and for very high vertical wavenumbers (say n=1280) are very small again

because the Z-grid cannot generate frequencies less than the rotational frequency (see Eqgs.

AN, QH, Lamb wave and shallow-water solutions: Nonhydrostatic effects, page 9
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QH.29 QH. 31 QH. 31" where the Coriolis term is not averaged). There is no room between the
true and Z-grid frequencies at d=25km and d=100km (see Fig. QH1).

3) At the high horizontal wavenumber end, the errors of the Z-grid decreases in the anelastic
case, particularly for the deep modes, because the anelastic frequency levels at the Brunt-

Vaisala frequency which decreases finite-difference approximation errors.

4) The C-grid produces the least errors with the anelastic system. The C-grid produces both
averaging and finite-difference errors. Again these errors are smaller with the nonhydrostatic

anelastic system than the quasi-hydrostatic system.

5) If we use the quasi-hydrostatic and the shallow-water equations to assess the discretization
errors with the Z and C grids for the deep modes (or deep fluid depths), we can find higher

discretization errors (approximately 10%) than the anelastic system. The numbers (6, ,,)

within the parentheses in Table QH.2 indicates the difference. The difference between the
results for the anelastic and quasi-hydrostatic (and shallow-water) systems seems to be

related to the nonhydrostaticness (index increases with increasing nonhydrostaticness).

AN, QH, Lamb wave and shallow-water solutions: Nonhydrostatic effects, page 10
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Table QH.1. Tabulation of the frequency errors in a form of the ratio of the discrete to true
solutions with the Z and C grids (7, , .., and 7, ..., ) for the four SRHS’ (d=2km, 10km,

25km and 100km), and the four vertical integer wavenumbers. Blue numbers corresponds to
the errors of the discrete frequencies that are lower than the rotational frequency ( f ). Red

numbers are the group velocity.

AN, QH, Lamb wave and shallow-water solutions: Nonhydrostatic effects, page 11
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Table QH.2. Tabulation of the frequency errors in a form of the ratio of the discrete to true
solutions with the Z and C grids (r,, , .., and 7, .., ) for the four SRHS’ (d=2km, 10km,

25km and 100km), and the four vertical integer wavenumbers. Blue numbers corresponds to
the errors of the discrete frequencies that are lower than the rotational frequency (f ).

Numbers within the parentheses are the difference of errors between the anelastic (tabulated
in Table QH.1) and quasi-hydrostatic systems.

AN, QH, Lamb wave and shallow-water solutions: Nonhydrostatic effects, page 12
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Table QH.3. Tabulation of the frequency errors in a form of the ratio of the discrete to true
solutions with the Z and C grids (7, , .., and 7, .., ) for the four SRHS’ (d=2km, 10km,

25km and 100km), and for three fluid depths. Blue numbers corresponds to the errors of the
discrete frequencies that are lower than the rotational frequency (f ). Numbers within the

parentheses are the corresponding Rossby radius of deformation divided by the grid spacing.

AN, QH, Lamb wave and shallow-water solutions: Nonhydrostatic effects, page 13
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Baroclinic Rossby Modes with the Fully Compressible, Quasi-hydrostatic and Anelastic

Systems

1- Basic linearized equations for a midlatitude g -plane

0 du 0’ v
FYE e ( ] [fi+B(y- yo)]a
d du 0’ v
Wy axay[poj +[ £ +B(y- yO)]ay pv
d dv 0’ ou
on ayax(poj LA+BO-w)]5

Jd v 9’ Ju
atay ay( j I:fo"'ﬁy yo):lay Pu

With the assumption £, > B(y—y,), We write vorticity and divergence equations as

d( du dv du Jv
at( 9y ax] fO(ax ayJ_ﬂv

Qo ) (T 0V p), [ )
ot ax ay ox> 9y’ ’\ 9y ox

The vertical momentum, thermodynamic and continuity equations are given by

w__9fp |, K[r], [0
ot dz\py ) H\ p, 0,
a 6 5
- i :_N
ar(geoJ Y
1 9 p ou Jv (E) K‘j 1
— | = =] —F+— W [+—Ww
ygH at\ p, ox dy \dz H H

Baroclinic Rossby modes with the FC, QH and AN systems, page 1

(Doc.

(BB.1)

(BB.2)

(BB.3)

(BB.4)

(BB.5)

(BB.6)

(BB.7)

(BB.8)

(BB.9)
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We make following definitions and variable transformations:

6
P=p,"p, szé/zg[e_]’ pu=u, pi'v=v,and p"w=w.
0

Then, Egs. (BB.5)—(BB.9) can be written as

i _a_u+a_v :_f a_u+a_v _ﬁv
ot\ dy oJx L ox 9y

dfou ) (& @& u v
SR BT I NI L9V
at(ax+ay] (8x2+8y2J o 8y+8xj pu

ow o 1(1 ]
E——|:8—Z+E(E—K)_P+B

9B _
or

_L 9P _ _(ou_ dv)_ i_i(l_,() "
ygH ot  \dx dy dz H\2

USing b= (i)ei(kx*'fwmz—vt)

—N*w

—tvii+ kvo = —if, (kii+ 00) - B0

kvii+ (vo = (k> + 0 ) P+ if, (— L+ kD) — Bi

—ivB=-N*W

i ! }3:—(gkﬁ+£€f))—{gm—i(l—xﬂw
H\2

A%
ygH
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(BB.10)

(BB.11)

(BB.12)

(BB.13)

(BB.14)

(BB.15)

(BB.16)

(BB.17)

(BB.18)

(BB.19)
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To find a real frequency, we ignore Bu and assume /=0.

ifkit+(kv+B)0=0 (BB.20)
kvii — if k0 = k*P (BB.21)
2 2\~ . . 1(1 14
(v -N )w=—p{gm+—(——l{) P (BB.22)
H\(2 )
S B T 1(1 N
—iv P=—ikiu— lm——(——l(' w (BB.23)
= ygH - = H\2
The dispersion relation for the fully compressible system:
Form (BB.20)—(BB.23), we obtain
kv’ + vt — k[N2 + £ +ygHk® + )/gH(m2 +0§1)}v3 - ﬁ[}/ngz +N° +}/gH(m2 +(7fn)}v2
(BB.24)
+ k[ngkzN2 +Nf} +ygH (m’ +0'j1)f;)2}v+ﬁngk2N2 =0
where
o’ =L(1—K)2 (BB.25)
" H\2 ' '
The dispersion relation for the quasi-hydrostatic (primitive) system:
For the quasi-hydrostatic (primitive) system, (BB.22) is written as
” . 1(1 A
-N w:—gv[gm+—(——KﬂP (BB.26)
H\2

Using (BB.20), (BB.21), (BB.23) and (BB.26), we obtain the dispersion relation for the quasi-
hydrostatic (primitive) system as

—k[N2 +)/gH(m2 +6§1):'V3 —ﬁ[N2 +}/gH(m2 +6§l)]v2

2a72 2 2 2 2\ 2 272 _ (BB.27)
+k[ngkN +N*f, +ng(m +0'm)f0 Jv+,8ngkN =0
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The dispersion relation for the anelastic system:

We use Lipps-Hemler anelastic system, in which (BB.22) and (BB.23) are approximated

as
2 2\~ . . 1(1 -~
(v -N )w=—gv[gm+—(—ﬂP (BB.28)
H\2
and
oy A . 1 1 A
O=—lku—[1m——(—ﬂw, (BB.29)
- - H\2

respectively. From (BB.20), (BB.21), (BB.28) and (BB.29), we obtain the dispersion relation for
the anelastic system as

—k[ngk2 +j/gH(m2 +6'31)}v3 —ﬂ[ngkz +j/gH(m2 +6',f1)}v2
, (BB.30
+ k| ygHK*N® +ygH (m* + 67 ) f;’ v+ BygHK’N* =0 ( )

where

(BB.31)

The dispersion relation for the quasi-geostrophic (quasi-static) system:

For comparison, we write the dispersion for the quasi-geostrophic (quasi-static) we used
in this study for only zonal modes as

v= _fck (BB.32)

+FG~

We found the roots (frequencies) of (BB.24), (BB.27), (BB.30) that are between —107"°
and —107 (-107 <v<-107") as a function of the horizontal wavenumber (k) for given vertical

wavenumber (n). These roots corresponds to the baroclinic Rossby modes. Also, we

computed the frequencies for the baroclinic Rossby modes from (BB.32) for the quasi-
geostrophic system. Fig. BB.1 shows the frequencies of the baroclinic Rossby modes with the
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fully compressible, quasi-hydrostatic (primitive), anelastic and quasi-geostrophic (quasi-static)
system of equations.

Fig. BB.1. The frequencies of baroclinic Rossby modes with (a) the fully
compressible, (b) quasi-hydrostatic (primitive), (c) anelastic, (d) quasi-geostrophic
(quasi-static) system of equations.

The frequencies obtained with these systems are virtually identical to each other. This
confirms that the baroclinic Rossby modes are not significantly influenced from the
nonhydrostatic effects, and therefore, the use of the quasi-geostrophic theory is highly
justifiable.
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Numerical Simulations with Noisy Forcing

Physical processes can be source of noise in atmospheric models. To assess the performance of the

Z, C, D and CD grids under such conditions, we made numerical integrations with the models discussed

in the numerical integration section, which are modified by adding forcing terms (aé/ at) to their

forcing

buoyancy prediction equations. The equations of the Z-, C-, D- and CD-grid models with the forcing

terms are given by

Equations on Z grid:
Ao )i’j =-/D (RF.1)
ot o '

oD, , .
—=f(o.),~(ViP), (RE2)
0B, . N
7”’ = N°D,, + [(E)B/ 8t)fmmg l,,- (RF.3)

. 1 .
(VIZLIP)i,j B (mz + 4H? )Plj = f(wz )i,j + Bi,j > (RF.4)
where

- 1
(VHP)I.J = ?(Piﬂ,j th th B~ 4Pi,j)

and

e

Mo\oz 2H )M
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Equations on C grid: Equations on D grid:
o Z)H%H _ Aw.),,  _
> =— jDH%H (RF.5) N /D, (RF.9)
aDi, j C aDHi, j+L =
- j_ f(wz)i,j —(VilP)i,j (RE.6) a;j 2 = f(o, )H%H —(VﬁIP)H%H (RF.10)
9B, N*D, +[(az§/az) } reny| 2B - pop B
ot i.j forcing i (RE.7) W =N Divj +[(8B/at)forcing :|i,j (REID)
~ 1 — ~ ~ 1
(VﬁIP)i’j (mz t jP,,, = f(w.), +B,, ®ES) (Vﬁ,P)H%J% - (mz t j o=
Wflere 1 flo, )Hl’j+l + :H%H (RF.12)
(ViP), = (P * Py 4 P+ By =4B,) |
N 3 1 o2 _ L(
_ 1 R+i,j+i + Pi+i, ! 4Pi+‘,/'+i) >
DH%,./% = Z(D it Do+ Dy + D i+17.i+1) 2 ) -
D, = l(D., D, D+ D)
R 4 1=7.] i+7,] 1=, =573
and
! and
(@), =7[(@), (@), * -
o, il -+15_|: o, ; o, il
(a)z)l_%’j% +( Z)i+;,j+5:|. ( ) i 4 ( ) j ( ) 1j
( Z)i,j+1 ((DZ )i+1,j+1:| :
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Predictor step (*) on the C-grid: Corrector step (n+1) on the D-grid:
() _ (n) (n) (n+1) (n) ()
(wz)i+1/2.j+1/2 - (a)z )i+1/2,j+1/2 - %Tﬂ) w22 (REL3) (a)z )i i (wz )i J D i (REL7)

_ I _ o R —(n+1) ~
D) =D" + %r[ flo, )(,) - (Vf{P) ] RE14) | D3 jn = D jn 47T [f (@) - (VﬁP )]

i,j

)

i+1/2,j+1/2
BY)=B" +1tN’D") (RF.15) (RF.18)
B =B") +7tN*D"" + 1| (0B/0r) (RF.19)
=) 5 1 (*) = (%) i.J ij i forcing ij ’
(ViP) —|m TTE P, =flw.), +B — '

= 1
2 2, L _
(RF.16) (VHP)Z'+]/2J'+]/2 B (m + 4H?> jPi+1/2»J'+1/2
where (ﬁiP) _is given by (RF.16). ——(n+1) =
" f(wz ),‘+1/2,j+1/2 + Bi(ﬁ-;/—lz),j+l/2 (RF-ZO)

® 1
(COZ )i,j = Z[(wz )i—l/z,j—l/z + (wZ )i+l/2,j—l/2 +
i+1/2,j+1/2

“
(o, )i—1/2,j+1/2 +(wz)i+1/2,j+1/2j| (0. )E:lz),jﬂ/z _ i[(wz )i,j +(, )M’j N
(D

i~1/2,j-1/2 + Di+1/2,j71/2 + ( z )i,j+l +( < )i+1>j+1 }(M)

where (6§P) is given by (RF.20), and

N

(n)
Di—l/2,j+1/2 + Di_l/Z,j_]/2) §Fn+l) 1 ( D + é + B + B )(n+1)

i+1/2,j+1/2 = Z i i+1,j i j+l i+1,j+1

A randomly produced buoyancy forcing pattern shown in Fig. BF1, which remains unchanged during

integrations, is used to introduce noise to the buoyancy. We prescribe (aé/ at) =F1s~ in these

forcing

simulations. Note that the domain averaged (83/ at) is virtually zero. The horizontal grid spacing

forcing

and the vertical wavenumber are 50 m and #=320, respectively. The simulations start from the
unperturbed initial prognostic variables. Fig. RF2 shows the buoyancy for the 24, 96 and 168 secs of the
integration from the Z-grid and D-grid models. In the D-grid simulation, the noise in the buoyancy
expands and the amplitude of the noise steadily increases with time. The time evolution of the maximum

and minimum of buoyancy perturbation over the entire horizontal domain from the Z-, C-, D- and CD-

Numerical simulations with noisy forcing, page 3
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grid models is shown in Fig. BF3. In the Z- and C-grid simulations, the amplitude of buoyancy
perturbation does not increase, which implies that the divergence (or vertical velocity) responds
efficiently to counter the forcing. The D- and CD-grid simulations, the divergence response is not

efficient enough to prevent the increase of the amplitude of buoyancy perturbation.

Horizontal Pattern of the Random Forcing

280
250
200
”
(0]
2 150
ke]
(O]
100
Max and min
of random
=5 buoyancy (3) forcing (33/31) v
. forcing
is +1 s° ‘
(Horizontal grid spacing: 50 m)
0
0 50 100 150 200 250 280
Grid index, i
Fig. RF1.

Numerical simulations with noisy forcing, page 4



Celal Konor Supplementary Material Monday, July 31, 2017

Fig. RF2.
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Fig. RF3.
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Horizontal momentum modes with the A, E and B grids
Continuous solution:

In this section, we derive the continuous and discrete dispersion equations using the
momentum equations instead of the vorticity and divergence equations. So far we examined
the modes that are governed by the vorticity and divergence dynamics. Now we examine the
modes that are governed by the momentum dynamics. Our main purpose is to answer the
question that whether of not the prediction of horizontal momentum allow additional
dynamically inert modes that are on top of those obtained using the vorticity and divergence
dynamics.

From (1.18)—(1.22) we write

g_bt‘:_g_i+fv, (Mom.1)
ov  JdP
= fu, Mom.2
ot ox Ju (Mom.2)
P (g, [op (& \n)(2u, v (Mom.3)
077 \2p, 9z ) |0t \of dox dy ) '
. * N/l (1 apY .
By replacing P by gh,and —| —5+N | T by gH , we obtain a system of
ot 0z 2p, 9z
equations that resembles to the shallow-water system. Then we can write
ou oh
o Mom.4
v oh
AP L Mom.
oh du 0V
o gl 2L Mom.6
or (afay) (Mom.6)

From these equations we obtain
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o’ ou o> 9° \ou 9’ ov 0> 9° \ov
(?+f2)$=gH(ﬁ+Wj§ [and (?-%fz}E:gH(a?"‘a—yz)g I. (Mom.7)

Eq. (Mom.7) produces

v[vz—fz—gH(szrEz)}:O. (Mom.8)
Eq. (Mom.8) yields v=0 solution because the amplitude of either u or v can be zero while an
inertia-gravity wave propagate. The divergence produces v> — f> — gH (k2 + Kz) =0.
A-grid.

The discretization of (Mom.4)—(Mom.6) on the A-grid yields

aui,j =—g hi+1,j B hi—l,j + fu,

. Mom.A.1
ot 2d " ( )
ov. . h . —h .
R o W M P Mom.A.2
5 g ¥ ful’j ( )
ahij Ui j— Uiy Vi~V
g DL H - L (Mom.A.3)
ot 2d 2d
Then using
u dh. —h. . v
o L i) i1, + L) , Mom.A.4
or’ 5t 2d ! ot ( )
i hi+1,j _hifl,j —_H ui+2,j—2ul.’j+u,.72!j _H(vi+1,j+l _’Uifl,j-*—l)_(viﬂ,jfl _vifl,jfl) (MomA5)
ot 2d 4d’ 4d’ ’
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E (vi+1,j+1 ~Vijn ) - (vi+1,j—l B Ui—l,j—l) _

ot 4d’
_ g(hm,ﬁz - hi+l,j8;3hi1,j+2 + hi—l,j _ hi+l,j - hi+1,j28‘_13hil,j + hi—l,j—2 j , (Mom.A.6)
_f (ui+1,j+1 - ui—l,j+l)_(ui+l,j—l - ui—l,j—l)
4d’
and (Mom.A.2), we obtain
2 du, . U U, U —4u,
[%+f2j—g;” = gH%(u”z” == ’Z’C’; - u“j (Mom.A.7)
Similarly
2 o, . V.,.+U._, . +0V. .., +V. ., —40, .
(Lo o 2ttt Vst ) omagy
From (Mom.A.7) and (Mom.A.8), the dispersion equation for u and v is
v[v2 - -gH (& +ﬁ2z2)}=0 . (Mom.A.9)

The definitions of f and 1 are given by (14b) in A-grid section. For d - 0, Eq. (Mom.A.9) is

identical to the continuous dispersion equation given by (Mom.8). From (7°) in A-grid section,
we can write

2 D. . +D_,. +D... +D . —4D..
[%+f2jDi,,-=gH[ B 4:;2 n ’] (Mom.A.10)

for the divergence. The momentum and divergence have the same dispersion equations
except the the momentum has an unmoving mode (v =0). The prediction of momentum on the

A-grid does not allow any dynamically inert modes on top of the divergence modes.

E-grid:

The discretization of (Mom.4)—(Mom.6) on the E-grid yields
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For integer mass points:

a”m/z,j _ hi+1,j - hi,j
FYR -8 J + fvi+1/2,j
N, B i, = Mo
i+1)2. i+1/2,j+1/2 i+1/2,j-1/2
i _ —g J -y2 fuu

at d i+l/2,j

ahi,j —_H Winjpj Ui, _H U vz =V

ot d d

For half-integer mass points:

aui,j+l/2 _ hi+l/2,j+l/2 - hi—l/2,j+l/2
Y =—8 d + fvi,j+1/2

avi,j+1/2 _ h

o —=h .
i,j+1 i,j
Y —§ d - ﬁ'ti,j+1/2

ahi+l/2,j+1/2 —_H Ui oy " Uijn H Viny2,in1 ~ Vipyj

ot d d

Using (Mom.A.1) and (Mom.A.3), we derive

(Mom.E.1)

(Mom.E.2)

(Mom.E.3)

(Mom.E.4)

(Mom.E.5)

(Mom.E.6)

2
d Uinpy Uizp,— 2ui+l/2,j —Ui (vi+1,j+l/2 ~V; a2 ) - (Ui+1,j—1/2 ~Vi o ) avi+1/2,j
—=5; = gH > + gH 5 + f
ot d d ot
(Mom.E.7)
From (Mom.A.5), we write
i (vi+1,j+1/2 -V, j+1/2 ) - (vi+1, J-1/2 v;, j—1/2 ) _
5 =
o d (Mom.E.8)

(hi+1,j+1 —2h,, ;+hy

i+l,j

i+1,j-1 ) - (hi,j+1 - 2hi,j + hi,j—l ) _ f (ui+1,j+l/2 U jap ) - (ui+l,j—l/2 Ui

d3 d2

From (Mom.A.5), we write
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0 (hi+l/2,j+l/2 - hi+l/2,j—l/2 ) _

or d (Mom.E.9)

Ui jri2 ;ui,j+1/2 “H Ui j2 :ui,j—l/Z _H Vi1 va/z,j “H Vit _;)i+1/2,j—1
d d d d

-H

Using (Mom.A.2), (Mom.A.7), (Mom.A.8), and (Mom.A.9), we derive the wave equation

9’ 29 O ( Uiy F Uiy gt ¥ Uipyp o T Uiy = My
—+ —U. =oH — sy EL A /2] /2 /2 . Mom.E.10
(atz f at i+1/2,j 8 at dz ( )
Similarly
a_2 42 iu o gHi Wiy jurp T Uy jpn TU jon TUG jyp — 4ui,j+l/2 ’ (Mom.E.11)
or’ or ot d?
(aa—zz""fz ] avgl/z,j — gHaﬁ(vm/z,jﬂ +vi+l/2,j—l +v;—§/2,j + vi—l/z,j - 4Ui+l/2,j ] ’ (Mom.E.1 2)
t t t

0’ v, , O Vit s TU 10 T Vs i3 T 0y iy — 40,
(a—2+f2 a,7j+1/2 — gHa_ +1,j+1/2 1,j+1/2 ,jd+;/2 1/2,j-1/2 J+1/2 ) (MomE1 3)
t t t

These equations yield the following dispersion equation

[V - - gH (&K +n°0*)|=0 K = L =270/ d (Mom.E.14)

For d >0, Eq. (Mom.A.14) is identical to the continuous dispersion equation given by (Mom.

8). The momentum and divergence have the same dispersion equations except the
momentum has an unmoving mode (v =0). The prediction of momentum on the E-grid does

not allow any additional dynamically inert modes on top of the divergence modes.

B-grid:

The discretization of (Mom.4)—(Mom.6) on the B-grid yields

a”i, i _ —g hi+l/2,j+l/2 + hi+1/2, = hi—l/2,j+l/2 - hi—l/Z, j-1/2 " fU

== 5 i (Mom.B.1)
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. . R S S S
al,, - g i+1/2,j+1/2 { 1/2,,+1/22d +1/2,j-1/2 12,j-1/2 f”ij (Mom.B.2)
¢ .
ahi+1/2,j+]/2 —_H Uiy jor T Uiy U g — Ui _H Vi1 jnt TV = Vi — Uy (Mom.B.3)
ot 2d 2d
From these equations, we derive
2
d Ui _ . (um,m +2u,,, U ) - 2(ui’j+1 +2u,  +u, ) + (uH,j+1 +2u,,;+ uH’H)
or? 4d’
(Mom.B.4)
+gH (vi+l,j+l ~ Vit l;gvi—l,jﬂ ~ Vi ) +f a;)i,j
t
and
0 (viH g+ Uy -1 ) - (vt‘—l,j+1 —U, J-1 ) _ hi+3/2,j+3/2 + hi+l/2,j+3/2 - hi+3/2,j+1/2 - hi+l/2,j+l/2
o 4d? -8 8d°
+g hi+3/2,j—1/2 + hi+1/2, -2 hi+3/2, =32 hi+1/2,j—3/2 +g hi—1/2, J+3/2 + hi—3/2, 32 hi—1/2, J+2 T hi—3/2,j+1/2 (M om.B 5)
8d’ 8d’ ' o
_g hi—l/2,j—1/2 + hi—3/2,j—1/2 - hi—l/2,j—3/2 - hi—3/2,j—3/2 _f Wigy jor = Uiy joy — Wiy jg T U
8d’ 4d>

Using (Mom.B.2) and (Mom.B.5) in (Mom.B.4) and after lengthly derivations, we obtain

° ., \ou,; O Uy iy ¥l U o FU,  — U,
ot | St=gH | L Mom.B.6
(aﬂ / j o 2d* ( )
Similarly,
(aa_;-l_fz]a;);j — gH%(le,jH +vi+l,j—1 +1;i;lléj+l +vi—l,j—l _401',]‘] . (Mom.B.7)

Then the dispersion equation is

v[v2 - f? —gH(ézkz +n*0? —%dzézkzn%ﬂ =0. (Mom.B.8)
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For d - 0, Eq. (Mom.B.8) is identical to the continuous dispersion equation given by (Mom.8).

The momentum and divergence have the same dispersion equations except the momentum
has an unmoving mode (v =0). The prediction of momentum on the B-grid does not allow any

additional dynamically inert modes on top of the divergence modes.
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