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1-. . .”Unrepresentative of the discretizations used in modern dynamical cores”. . .:

We do not agree that the linear analyses presented in this paper are irrelevant for
today’s dynamical cores. The methods that grid-point models use to simulate wave
propagation have not changed over the years.

2-. . .”Analyzing an oversimplifies second-order centered-difference system”. . .:
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Gravity waves propagate horizontally in all directions with the same speed, so the
horizontal discretization of terms responsible for gravity wave propagation should be
based on a centered treatment. Since our main concern is the behavior of the solutions
near the smallest resolved horizontal scale (SRHS), we used a second-order scheme.
Higher-order schemes produce more accurate solutions of the well-resolved features,
but low-order schemes can actually be more accurate near the SRHS. We comment
on the potential impact of higher-order schemes in section 7c below.

3-. . .”Analysis method neglects nonlinear vorticity advection”. . .:

Nonlinear processes are important to control the spurious cascades of (potential) en-
strophy and kinetic energy to small scales, and they limit the accumulation of noise
near the SRHS. They act slowly, however, and should not be expected to “cure” the
rapid adverse-effects of poorly simulated linear wave dispersion.

When parameterized physical processes and topography are included, noise can be
generated even without a spurious cascade. In such a case, wave propagation on the
smallest resolved scales can disperse the energy and thereby reduce the noise. Of
course, diffusion can also help to dissipate the noise, but a poor scheme may require
excessive diffusion that also damps some of the better-resolved scales, thus effectively
reducing the resolution of the model.

4-. . .”The analysis is entirely inviscid”. . .:

Yes, our analysis is entirely inviscid, and it should be. Viscous effects do not affect
the dispersion of waves, but simply reduce their amplitudes. Avoiding the need for
excessive diffusion is an important example of “good practices in dynamical core de-
velopment.”

5-. . .” The CD grid analyzed has little resemblance to that used in the FV3”. . .:

We gave the reviewers every chance to tell us what their scheme is. We person-
ally asked them twice. In response, they gave some references, which describe the
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scheme in vague terms, without equations. The Editor asked the reviewers to spec-
ify the changes that would be needed to make equations (32)-(42) consistent with the
formulation of FV3. The reviewers have not responded.

We have analyzed more than a dozen possible CD schemes, some of which have
not produced closed systems of equations. (We will explain what we mean by closed
systems in item 7a below.) All of the schemes that produced closed systems have
been analyzed and presented in our manuscript and the supplementary material.

6-. . .” The C grid vorticity temperature and mass discarded”. . .:

Schemes III and V (pages 57 and 70 of the supplementary material, respectively) dis-
card the vorticity obtained on the C grid, and pass the divergence to the D grid. At least
in the shallow water sense, these schemes mimic what the reviewers describe as their
scheme. The frequencies for scheme III and V are shown in figures on page 62 and
page 75 of the supplementary material, respectively. The frequencies shown in these
figures are virtually identical to the frequencies for scheme I that is discussed in the
manuscript and all other schemes discretized on the CD grid.

All of the CD schemes presented in our manuscript and in the supplementary material
correspond to closed systems. In all cases, the CD grid behaves like the D grid as far
as the propagation of the gravity waves is considered.

In short, we stand behind our linear analysis of the CD grid. Our conclusions are
consistent with those of Skamarock (2008).

7-Further comments :

7a-In what sense are some schemes not closed?:

The CD grid discretization combines the C and D grid solutions in a time-split predictor-
corrector sequence. The linearized system solves for the unknowns that are the values
of predicted variables (divergence, vorticity, potential temperature etc.) in the next time
step using the values of the known quantities that are provided for present time step.
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The number of unknowns must be equal to the number of equations to have a closed
system.

7b-What are the consequences if the system is not closed? :

With a scheme that is not closed, the solutions can include physically decoupled com-
putational modes.

Here is a simple example: A large majority of the CD schemes that do not produce
closed systems fail to produce a quadratic equation for the frequency, or an equivalent
form given by Eq. (46a), which yields the same solution for positive or negative real-
frequencies. Since the gravity waves horizontally propagate with the same speed every
direction, this condition has to be satisfied by every “consistent” scheme.

Another example is the C-grid staggering on the triangular grid, which does not yield a
closed system (Gassmann, 2011). An early version of ICON was based on a triangular
grid and suffered from a checkerboard pattern its the divergence field as reported by
its developers. Diffusion can of course render such noise invisible.

7c-How are these solutions affected by the use of high-order schemes? :

The use of high-order schemes has only a minor impact on our analysis. To see this,
consider the discrete dispersion relation for the C-grid given by

[see Fig. 1 for this equation],

which is Eq. (17) of Part I. This form will be the same for high-order schemes, but with
different definitions of ksi and eta. What is gained with the use of higher-order schemes
is that the errors will be more confined near the SRHS. The errors at the SRHS are not
improved by the use of higher-order schemes.

7d-Comments on the importance and use of linear analysis:

Linear analysis is an optimal tool to examine the behavior of waves near the SRHS. Ob-
viously, we expect significant errors near the SRHS, but our manuscript demonstrates
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that the nature and size of the errors depend on the grid used. In the development of a
dynamical core, it is useful to choose the grid staggering that behaves as well as pos-
sible near the SRHS, all other factors being equal. If there are compelling reasons to
select a different grid, then the advantages of that grid should be demonstrated through
precise quantitative tests.

Linear tests also allow us to determine whether all of the primary dynamical processes
properly interact with each other in the discrete system. In particular, the unknowns and
the number of equations should be balanced for the system to be closed. Without such
closure, uncontrolled modes may appear. The C-grid discretization of the momentum
equations on the hexagonal system has been achieved in this way (Gassmann, 2011).
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Fig. 1. Equation
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