Articles | Volume 11, issue 4
Geosci. Model Dev., 11, 1443–1465, 2018
https://doi.org/10.5194/gmd-11-1443-2018
Geosci. Model Dev., 11, 1443–1465, 2018
https://doi.org/10.5194/gmd-11-1443-2018

Development and technical paper 16 Apr 2018

Development and technical paper | 16 Apr 2018

The impact of precipitation evaporation on the atmospheric aerosol distribution in EC-Earth v3.2.0

Marco de Bruine et al.

Related authors

Explicit aerosol–cloud interactions in the Dutch Atmospheric Large-Eddy Simulation model DALES4.1-M7
Marco de Bruine, Maarten Krol, Jordi Vilà-Guerau de Arellano, and Thomas Röckmann
Geosci. Model Dev., 12, 5177–5196, https://doi.org/10.5194/gmd-12-5177-2019,https://doi.org/10.5194/gmd-12-5177-2019, 2019
Short summary
Age of air as a diagnostic for transport timescales in global models
Maarten Krol, Marco de Bruine, Lars Killaars, Huug Ouwersloot, Andrea Pozzer, Yi Yin, Frederic Chevallier, Philippe Bousquet, Prabir Patra, Dmitry Belikov, Shamil Maksyutov, Sandip Dhomse, Wuhu Feng, and Martyn P. Chipperfield
Geosci. Model Dev., 11, 3109–3130, https://doi.org/10.5194/gmd-11-3109-2018,https://doi.org/10.5194/gmd-11-3109-2018, 2018
Short summary
Pathfinder: applying graph theory to consistent tracking of daytime mixed layer height with backscatter lidar
Marco de Bruine, Arnoud Apituley, David Patrick Donovan, Hendrik Klein Baltink, and Marijn Jorrit de Haij
Atmos. Meas. Tech., 10, 1893–1909, https://doi.org/10.5194/amt-10-1893-2017,https://doi.org/10.5194/amt-10-1893-2017, 2017
Short summary
Evaluation of column-averaged methane in models and TCCON with a focus on the stratosphere
Andreas Ostler, Ralf Sussmann, Prabir K. Patra, Sander Houweling, Marko De Bruine, Gabriele P. Stiller, Florian J. Haenel, Johannes Plieninger, Philippe Bousquet, Yi Yin, Marielle Saunois, Kaley A. Walker, Nicholas M. Deutscher, David W. T. Griffith, Thomas Blumenstock, Frank Hase, Thorsten Warneke, Zhiting Wang, Rigel Kivi, and John Robinson
Atmos. Meas. Tech., 9, 4843–4859, https://doi.org/10.5194/amt-9-4843-2016,https://doi.org/10.5194/amt-9-4843-2016, 2016
Short summary

Related subject area

Climate and Earth system modeling
NorCPM1 and its contribution to CMIP6 DCPP
Ingo Bethke, Yiguo Wang, François Counillon, Noel Keenlyside, Madlen Kimmritz, Filippa Fransner, Annette Samuelsen, Helene Langehaug, Lea Svendsen, Ping-Gin Chiu, Leilane Passos, Mats Bentsen, Chuncheng Guo, Alok Gupta, Jerry Tjiputra, Alf Kirkevåg, Dirk Olivié, Øyvind Seland, Julie Solsvik Vågane, Yuanchao Fan, and Tor Eldevik
Geosci. Model Dev., 14, 7073–7116, https://doi.org/10.5194/gmd-14-7073-2021,https://doi.org/10.5194/gmd-14-7073-2021, 2021
Short summary
ENSO-ASC 1.0.0: ENSO deep learning forecast model with a multivariate air–sea coupler
Bin Mu, Bo Qin, and Shijin Yuan
Geosci. Model Dev., 14, 6977–6999, https://doi.org/10.5194/gmd-14-6977-2021,https://doi.org/10.5194/gmd-14-6977-2021, 2021
Short summary
Topography-based local spherical Voronoi grid refinement on classical and moist shallow-water finite-volume models
Luan F. Santos and Pedro S. Peixoto
Geosci. Model Dev., 14, 6919–6944, https://doi.org/10.5194/gmd-14-6919-2021,https://doi.org/10.5194/gmd-14-6919-2021, 2021
Short summary
Decadal climate predictions with the Canadian Earth System Model version 5 (CanESM5)
Reinel Sospedra-Alfonso, William J. Merryfield, George J. Boer, Viatsheslav V. Kharin, Woo-Sung Lee, Christian Seiler, and James R. Christian
Geosci. Model Dev., 14, 6863–6891, https://doi.org/10.5194/gmd-14-6863-2021,https://doi.org/10.5194/gmd-14-6863-2021, 2021
Short summary
The Simplified Chemistry-Dynamical Model (SCDM V1.0)
Hao-Jhe Hong and Thomas Reichler
Geosci. Model Dev., 14, 6647–6660, https://doi.org/10.5194/gmd-14-6647-2021,https://doi.org/10.5194/gmd-14-6647-2021, 2021
Short summary

Cited articles

Aan de Brugh, J. M. J., Schaap, M., Vignati, E., Dentener, F., Kahnert, M., Sofiev, M., Huijnen, V., and Krol, M. C.: The European aerosol budget in 2006, Atmos. Chem. Phys., 11, 1117–1139, https://doi.org/10.5194/acp-11-1117-2011, 2011.
Barth, M. C., Hegg, D. A., and Hobbs, P. V.: Numerical modeling of cloud and precipitation chemistry associated with two rainbands and some comparisons with observations, J. Geophys. Res.-Atmos., 97, 5825–5845, https://doi.org/10.1029/92JD00464, 1992.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S., Sherwood, S., Stevens, B., and Zhang, X.: Clouds and Aerosols, chap. 7, Cambridge University Press, Cambridge, UK, New York, NY, USA, 571–658, https://doi.org/10.1017/CBO9781107415324.016, 2013.
Bourgeois, Q. and Bey, I.: Pollution transport efficiency toward the Arctic: Sensitivity to aerosol scavenging and source regions, J. Geophys. Res.-Atmos., 116, D08213, https://doi.org/10.1029/2010JD015096, 2011.
Chin, M., Rood, R. B., Lin, S.-J., Müller, J.-F., and Thompson, A. M.: Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties, J. Geophys. Res.-Atmos., 105, 24671–24687, https://doi.org/10.1029/2000JD900384, 2000.
Download
Short summary
Precipitation evaporation (PE) and subsequent aerosol resuspension (AR) are currently ignored or implemented only crudely in GCMs. This research introduces PE to Earth system model EC-Earth and explores ways to treat AR and the impact on global aerosol burden. Simple 1:1 scaling of AR with PE leads to an increase (+8 to 15.9 %). Taking into account raindrop size distribution and/or accounting for in-rain aerosol processing decreases aerosol burden -1.5 to 6.2 % and -10 to -11 %, respectively.