Articles | Volume 11, issue 4
https://doi.org/10.5194/gmd-11-1405-2018
https://doi.org/10.5194/gmd-11-1405-2018
Model description paper
 | 
13 Apr 2018
Model description paper |  | 13 Apr 2018

OpenDrift v1.0: a generic framework for trajectory modelling

Knut-Frode Dagestad, Johannes Röhrs, Øyvind Breivik, and Bjørn Ådlandsvik

Related authors

ChemicalDrift 1.0: an open-source Lagrangian chemical-fate and transport model for organic aquatic pollutants
Manuel Aghito, Loris Calgaro, Knut-Frode Dagestad, Christian Ferrarin, Antonio Marcomini, Øyvind Breivik, and Lars Robert Hole
Geosci. Model Dev., 16, 2477–2494, https://doi.org/10.5194/gmd-16-2477-2023,https://doi.org/10.5194/gmd-16-2477-2023, 2023
Short summary
The effect of vertical mixing on the horizontal drift of oil spills
Johannes Röhrs, Knut-Frode Dagestad, Helene Asbjørnsen, Tor Nordam, Jørgen Skancke, Cathleen E. Jones, and Camilla Brekke
Ocean Sci., 14, 1581–1601, https://doi.org/10.5194/os-14-1581-2018,https://doi.org/10.5194/os-14-1581-2018, 2018
Short summary
Revisiting the DeepWater Horizon spill: High resolution model simulations of effects of oil droplet size distribution and river fronts
Lars R. Hole, Knut-Frode Dagestad, Johannes Röhrs, Cecilie Wettre, Vassiliki H. Kourafalou, Ioannis Androulidakis, Matthieu Le Hénaff, Heesook Kang, and Oscar Garcia-Pineda
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-130,https://doi.org/10.5194/os-2018-130, 2018
Revised manuscript not accepted
Short summary

Related subject area

Oceanography
GREAT v1.0: Global Real-time Early Assessment of Tsunamis
Usama Kadri, Ali Abdolali, and Maxim Filimonov
Geosci. Model Dev., 18, 3487–3507, https://doi.org/10.5194/gmd-18-3487-2025,https://doi.org/10.5194/gmd-18-3487-2025, 2025
Short summary
Using automatic calibration to improve the physics behind complex numerical models: an example from a 3D lake model using Delft3D (v6.02.10) and DYNO-PODS (v1.0)
Marina Amadori, Abolfazl Irani Rahaghi, Damien Bouffard, and Marco Toffolon
Geosci. Model Dev., 18, 3473–3486, https://doi.org/10.5194/gmd-18-3473-2025,https://doi.org/10.5194/gmd-18-3473-2025, 2025
Short summary
Improvements to the Met Office's global ocean–sea ice forecasting system including model and data assimilation changes
Davi Mignac, Jennifer Waters, Daniel J. Lea, Matthew J. Martin, James While, Anthony T. Weaver, Arthur Vidard, Catherine Guiavarc'h, Dave Storkey, David Ford, Edward W. Blockley, Jonathan Baker, Keith Haines, Martin R. Price, Michael J. Bell, and Richard Renshaw
Geosci. Model Dev., 18, 3405–3425, https://doi.org/10.5194/gmd-18-3405-2025,https://doi.org/10.5194/gmd-18-3405-2025, 2025
Short summary
Resolution dependence of interlinked Southern Ocean biases in global coupled HadGEM3 models
David Storkey, Pierre Mathiot, Michael J. Bell, Dan Copsey, Catherine Guiavarc'h, Helene T. Hewitt, Jeff Ridley, and Malcolm J. Roberts
Geosci. Model Dev., 18, 2725–2745, https://doi.org/10.5194/gmd-18-2725-2025,https://doi.org/10.5194/gmd-18-2725-2025, 2025
Short summary
A new global high-resolution wave model for the tropical ocean using WAVEWATCH III version 7.14
Axelle Gaffet, Xavier Bertin, Damien Sous, Héloïse Michaud, Aron Roland, and Emmanuel Cordier
Geosci. Model Dev., 18, 1929–1946, https://doi.org/10.5194/gmd-18-1929-2025,https://doi.org/10.5194/gmd-18-1929-2025, 2025
Short summary

Cited articles

Ådlandsvik, B. and Sundby, S.: Modelling the transport of cod larvae from the Lofoten area, ICES J. Mar. Sci. Symp., 198, 379–392, available at: https://www.scienceopen.com/document?vid=53b16ebf-bddc-4332-8719-1bb180e1cdaa (last access: 9 April 2018), 1994.
Allen, A. and Plourde, J. V.: Review of Leeway: Field Experiments and Implementation, US Coast Guard Research and Development Center, 1082 Shennecossett Road, Groton, CT, USA, Tech. Rep. CG-D-08-99, available through: http://www.ntis.gov (last access: 9 April 2018), 1999.
Bartnicki, J., Amundsen, I., Brown, J., Hosseini, A., Hov, O., Haakenstad, H., Klein, H., Lind, O. C., Salbu, B., Szacinski Wendel, C. C., and Ytre-Eide, M. A.: Atmospheric transport of radioactive debris to Norway in case of a hypothetical accident related to the recovery of the Russian submarine K-27, J. Environ. Radioactiv., 151, 404–416, https://doi.org/10.1016/j.jenvrad.2015.02.025, 2016.
Berry, A., Dabrowski, T., and Lyons, K.: The oil spill model OILTRANS and its application to the Celtic Sea, Mar. Pollut. Bull., 64, 2489–2501, https://doi.org/10.1016/j.marpolbul.2012.07.036, 2012.
Blanke, B., Raynaud, S., Blanke, B., and Raynaud, S.: Kinematics of the Pacific Equatorial Undercurrent: An Eulerian and Lagrangian Approach from GCM Results, J. Phys. Oceanogr., 27, 1038–1053, https://doi.org/10.1175/1520-0485(1997)027<1038:KOTPEU>2.0.CO;2, 1997.
Download
Short summary
We have developed a computer code with ability to predict how various substances and objects drift in the ocean. This may be used to, e.g. predict the drift of oil to aid cleanup operations, the drift of man-over-board or lifeboats to aid search and rescue operations, or the drift of fish eggs and larvae to understand and manage fish stocks. This new code merges all such applications into one software tool, allowing to optimise and channel any available resources and developments.
Share