Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
Volume 11, issue 3
Geosci. Model Dev., 11, 1199–1228, 2018
https://doi.org/10.5194/gmd-11-1199-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 11, 1199–1228, 2018
https://doi.org/10.5194/gmd-11-1199-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model evaluation paper 29 Mar 2018

Model evaluation paper | 29 Mar 2018

Calibrating the sqHIMMELI v1.0 wetland methane emission model with hierarchical modeling and adaptive MCMC

Jouni Susiluoto et al.

Related authors

Efficient multi-scale Gaussian process regression for massive remote sensing data with satGP v0.1.2
Jouni Susiluoto, Alessio Spantini, Heikki Haario, Teemu Härkönen, and Youssef Marzouk
Geosci. Model Dev., 13, 3439–3463, https://doi.org/10.5194/gmd-13-3439-2020,https://doi.org/10.5194/gmd-13-3439-2020, 2020
Short summary
Parameter calibration and stomatal conductance formulation comparison for boreal forests with adaptive population importance sampler in the land surface model JSBACH
Jarmo Mäkelä, Jürgen Knauer, Mika Aurela, Andrew Black, Martin Heimann, Hideki Kobayashi, Annalea Lohila, Ivan Mammarella, Hank Margolis, Tiina Markkanen, Jouni Susiluoto, Tea Thum, Toni Viskari, Sönke Zaehle, and Tuula Aalto
Geosci. Model Dev., 12, 4075–4098, https://doi.org/10.5194/gmd-12-4075-2019,https://doi.org/10.5194/gmd-12-4075-2019, 2019
Short summary
HIMMELI v1.0: HelsinkI Model of MEthane buiLd-up and emIssion for peatlands
Maarit Raivonen, Sampo Smolander, Leif Backman, Jouni Susiluoto, Tuula Aalto, Tiina Markkanen, Jarmo Mäkelä, Janne Rinne, Olli Peltola, Mika Aurela, Annalea Lohila, Marin Tomasic, Xuefei Li, Tuula Larmola, Sari Juutinen, Eeva-Stiina Tuittila, Martin Heimann, Sanna Sevanto, Thomas Kleinen, Victor Brovkin, and Timo Vesala
Geosci. Model Dev., 10, 4665–4691, https://doi.org/10.5194/gmd-10-4665-2017,https://doi.org/10.5194/gmd-10-4665-2017, 2017
Short summary
Constraining ecosystem model with adaptive Metropolis algorithm using boreal forest site eddy covariance measurements
Jarmo Mäkelä, Jouni Susiluoto, Tiina Markkanen, Mika Aurela, Heikki Järvinen, Ivan Mammarella, Stefan Hagemann, and Tuula Aalto
Nonlin. Processes Geophys., 23, 447–465, https://doi.org/10.5194/npg-23-447-2016,https://doi.org/10.5194/npg-23-447-2016, 2016
Short summary
Optimization of NWP model closure parameters using total energy norm of forecast error as a target
P. Ollinaho, H. Järvinen, P. Bauer, M. Laine, P. Bechtold, J. Susiluoto, and H. Haario
Geosci. Model Dev., 7, 1889–1900, https://doi.org/10.5194/gmd-7-1889-2014,https://doi.org/10.5194/gmd-7-1889-2014, 2014

Related subject area

Biogeosciences
Stoichiometrically coupled carbon and nitrogen cycling in the MIcrobial-MIneral Carbon Stabilization model version 1.0 (MIMICS-CN v1.0)
Emily Kyker-Snowman, William R. Wieder, Serita D. Frey, and A. Stuart Grandy
Geosci. Model Dev., 13, 4413–4434, https://doi.org/10.5194/gmd-13-4413-2020,https://doi.org/10.5194/gmd-13-4413-2020, 2020
Short summary
Short-term forecasting of regional biospheric CO2 fluxes in Europe using a light-use-efficiency model (VPRM, MPI-BGC version 1.2)
Jinxuan Chen, Christoph Gerbig, Julia Marshall, and Kai Uwe Totsche
Geosci. Model Dev., 13, 4091–4106, https://doi.org/10.5194/gmd-13-4091-2020,https://doi.org/10.5194/gmd-13-4091-2020, 2020
Short summary
FLiES-SIF version 1.0: three-dimensional radiative transfer model for estimating solar induced fluorescence
Yuma Sakai, Hideki Kobayashi, and Tomomichi Kato
Geosci. Model Dev., 13, 4041–4066, https://doi.org/10.5194/gmd-13-4041-2020,https://doi.org/10.5194/gmd-13-4041-2020, 2020
Short summary
The importance of management information and soil moisture representation for simulating tillage effects on N2O emissions in LPJmL5.0-tillage
Femke Lutz, Stephen Del Grosso, Stephen Ogle, Stephen Williams, Sara Minoli, Susanne Rolinski, Jens Heinke, Jetse J. Stoorvogel, and Christoph Müller
Geosci. Model Dev., 13, 3905–3923, https://doi.org/10.5194/gmd-13-3905-2020,https://doi.org/10.5194/gmd-13-3905-2020, 2020
Short summary
Evaluation of CH4MODwetland and Terrestrial Ecosystem Model (TEM) used to estimate global CH4 emissions from natural wetlands
Tingting Li, Yanyu Lu, Lingfei Yu, Wenjuan Sun, Qing Zhang, Wen Zhang, Guocheng Wang, Zhangcai Qin, Lijun Yu, Hailing Li, and Ran Zhang
Geosci. Model Dev., 13, 3769–3788, https://doi.org/10.5194/gmd-13-3769-2020,https://doi.org/10.5194/gmd-13-3769-2020, 2020
Short summary

Cited articles

Arah, J. R. M. and Stephen, K. D.: A Model of the Processes Leading to Methane Emission from Peatland, Atmos. Environ., 32, 3257–3264, 1998.
Aurela, M., Tuovinen, J.-P., and Laurila, T.: Net CO2 exchange of a subarctic mountain birch ecosystem, Theor. Appl. Climatol., 70, 135–148, https://doi.org/10.1007/s007040170011, 2001.
Aurela, M., Riutta, T., Laurila, T., Tuovinen, J.-V., Vesala, T., Tuittila, E.-S., Jinne, J., Haapanala, S., and Laine, J.: CO2 exchange of a sedge fen in southern Finland–the impact of a drought period, Tellus B, 59, 826–837, https://doi.org/10.1111/j.1600-0889.2007.00309.x, 2007.
Bellisario, L. M., Bubier, J. L., Moore, T. R., and Chanton, J. P.: Controls on CH4 emissions from a northern peatland, Global Biogeochem. Cy., 13, 81–91, https://doi.org/10.1029/1998GB900021, 1999.
Bergman, I., Klarqvist, M., and Nilsson, M.: Seasonal variation in rates of methane production from peat of various botanical origins: effects of temperature and substrate quality, FEMS Microbiol. Ecol., 33, 181–189, https://doi.org/10.1111/j.1574-6941.2000.tb00740.x, 2000.
Publications Copernicus
Download
Short summary
Methane is an important greenhouse gas and methane emissions from wetlands contribute to the warming of the climate. Wetland methane emissions are also challenging to estimate. We analyze the performance of a new wetland emission computer model utilizing mathematical methods and using data from a wetland in southern Finland. The analysis helps to explain how wetlands produce methane and how emission modeling can be improved and uncertainties in the emission estimates reduced in future studies.
Methane is an important greenhouse gas and methane emissions from wetlands contribute to the...
Citation