Articles | Volume 10, issue 6
Geosci. Model Dev., 10, 2141–2156, 2017
https://doi.org/10.5194/gmd-10-2141-2017
Geosci. Model Dev., 10, 2141–2156, 2017
https://doi.org/10.5194/gmd-10-2141-2017

Model description paper 06 Jun 2017

Model description paper | 06 Jun 2017

A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARTs version 1.0)

A. Anthony Bloom et al.

Related authors

Estimating 2010–2015 Anthropogenic and Natural Methane Emissions in Canada using ECCC Surface and GOSAT Satellite Observations
Sabour Baray, Daniel J. Jacob, Joannes D. Massakkers, Jian-Xiong Sheng, Melissa P. Sulprizio, Dylan B. A. Jones, A. Anthony Bloom, and Robert McLaren
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1195,https://doi.org/10.5194/acp-2020-1195, 2021
Preprint under review for ACP
Short summary
Lagged effects regulate the inter-annual variability of the tropical carbon balance
A. Anthony Bloom, Kevin W. Bowman, Junjie Liu, Alexandra G. Konings, John R. Worden, Nicholas C. Parazoo, Victoria Meyer, John T. Reager, Helen M. Worden, Zhe Jiang, Gregory R. Quetin, T. Luke Smallman, Jean-François Exbrayat, Yi Yin, Sassan S. Saatchi, Mathew Williams, and David S. Schimel
Biogeosciences, 17, 6393–6422, https://doi.org/10.5194/bg-17-6393-2020,https://doi.org/10.5194/bg-17-6393-2020, 2020
Short summary
Reliability ensemble averaging of 21st century projections of terrestrial net primary productivity reduces global and regional uncertainties
Jean-François Exbrayat, A. Anthony Bloom, Pete Falloon, Akihiko Ito, T. Luke Smallman, and Mathew Williams
Earth Syst. Dynam., 9, 153–165, https://doi.org/10.5194/esd-9-153-2018,https://doi.org/10.5194/esd-9-153-2018, 2018
Short summary
Global evaluation of gross primary productivity in the JULES land surface model v3.4.1
Darren Slevin, Simon F. B. Tett, Jean-François Exbrayat, A. Anthony Bloom, and Mathew Williams
Geosci. Model Dev., 10, 2651–2670, https://doi.org/10.5194/gmd-10-2651-2017,https://doi.org/10.5194/gmd-10-2651-2017, 2017
What are the greenhouse gas observing system requirements for reducing fundamental biogeochemical process uncertainty? Amazon wetland CH4 emissions as a case study
A. Anthony Bloom, Thomas Lauvaux, John Worden, Vineet Yadav, Riley Duren, Stanley P. Sander, and David S. Schimel
Atmos. Chem. Phys., 16, 15199–15218, https://doi.org/10.5194/acp-16-15199-2016,https://doi.org/10.5194/acp-16-15199-2016, 2016
Short summary

Related subject area

Biogeosciences
Addressing biases in Arctic–boreal carbon cycling in the Community Land Model Version 5
Leah Birch, Christopher R. Schwalm, Sue Natali, Danica Lombardozzi, Gretchen Keppel-Aleks, Jennifer Watts, Xin Lin, Donatella Zona, Walter Oechel, Torsten Sachs, Thomas Andrew Black, and Brendan M. Rogers
Geosci. Model Dev., 14, 3361–3382, https://doi.org/10.5194/gmd-14-3361-2021,https://doi.org/10.5194/gmd-14-3361-2021, 2021
Short summary
Cutting out the middleman: calibrating and validating a dynamic vegetation model (ED2-PROSPECT5) using remotely sensed surface reflectance
Alexey N. Shiklomanov, Michael C. Dietze, Istem Fer, Toni Viskari, and Shawn P. Serbin
Geosci. Model Dev., 14, 2603–2633, https://doi.org/10.5194/gmd-14-2603-2021,https://doi.org/10.5194/gmd-14-2603-2021, 2021
Short summary
Ecosystem age-class dynamics and distribution in the LPJ-wsl v2.0 global ecosystem model
Leonardo Calle and Benjamin Poulter
Geosci. Model Dev., 14, 2575–2601, https://doi.org/10.5194/gmd-14-2575-2021,https://doi.org/10.5194/gmd-14-2575-2021, 2021
Short summary
CLASSIC v1.0: the open-source community successor to the Canadian Land Surface Scheme (CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM) – Part 2: Global benchmarking
Christian Seiler, Joe R. Melton, Vivek K. Arora, and Libo Wang
Geosci. Model Dev., 14, 2371–2417, https://doi.org/10.5194/gmd-14-2371-2021,https://doi.org/10.5194/gmd-14-2371-2021, 2021
Short summary
How to reconstruct aerosol-induced diffuse radiation scenario for simulating GPP in land surface models? An evaluation of reconstruction methods with ORCHIDEE_DFv1.0_DFforc
Yuan Zhang, Olivier Boucher, Philippe Ciais, Laurent Li, and Nicolas Bellouin
Geosci. Model Dev., 14, 2029–2039, https://doi.org/10.5194/gmd-14-2029-2021,https://doi.org/10.5194/gmd-14-2029-2021, 2021
Short summary

Cited articles

Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., and Enrich-Prast, A.: Freshwater methane emissions offset the continental carbon sink, Science, 331, p. 50, https://doi.org/10.1126/science.1196808, 2011.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106, 23073–23096, https://doi.org/10.1029/2001JD000807, 2001.
Bloom, A. A. and Williams, M.: Constraining ecosystem carbon dynamics in a data-limited world: integrating ecological “common sense” in a model–data fusion framework, Biogeosciences, 12, 1299–1315, https://doi.org/10.5194/bg-12-1299-2015, 2015.
Bloom, A. A., Palmer, P. I., Fraser, A., Reay, D. S., and Frankenberg, C.: Large-Scale Controls of Methanogenesis Inferred from Methane and Gravity Spaceborne Data, Science, 327, 322–325, https://doi.org/10.1126/Science.1175176, 2010.
Bloom, A. A., Palmer, P. I., Fraser, A., and Reay, D. S.: Seasonal variability of tropical wetland CH4 emissions: the role of the methanogen-available carbon pool, Biogeosciences, 9, 2821–2830, https://doi.org/10.5194/bg-9-2821-2012, 2012.
Download
Short summary
Wetland emissions are a principal source of uncertainty in the global atmospheric methane budget due to poor knowledge of wetland processes. We construct a wetland methane emission and uncertainty dataset for use in global atmospheric methane models. Our wetland model ensemble is based on static wetland maps, satellite-derived inundation and carbon cycle models. The ensemble performs favourably against regional flux estimates and atmospheric methane measurements relative to previous studies.