
Geosci. Model Dev., 10, 2141–2156, 2017
https://doi.org/10.5194/gmd-10-2141-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

A global wetland methane emissions and uncertainty dataset for
atmospheric chemical transport models (WetCHARTs version 1.0)
A. Anthony Bloom1, Kevin W. Bowman1, Meemong Lee1, Alexander J. Turner2, Ronny Schroeder3, John R. Worden1,
Richard Weidner1, Kyle C. McDonald1,3, and Daniel J. Jacob2

1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
2School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
3The City College of New York, New York, NY, USA

Correspondence to: A. Anthony Bloom (abloom@jpl.nasa.gov)

Received: 23 August 2016 – Discussion started: 7 September 2016
Revised: 13 April 2017 – Accepted: 24 April 2017 – Published: 6 June 2017

Abstract. Wetland emissions remain one of the principal
sources of uncertainty in the global atmospheric methane
(CH4) budget, largely due to poorly constrained process con-
trols on CH4 production in waterlogged soils. Process-based
estimates of global wetland CH4 emissions and their associ-
ated uncertainties can provide crucial prior information for
model-based top-down CH4 emission estimates. Here we
construct a global wetland CH4 emission model ensemble for
use in atmospheric chemical transport models (WetCHARTs
version 1.0). Our 0.5◦× 0.5◦ resolution model ensemble is
based on satellite-derived surface water extent and precipi-
tation reanalyses, nine heterotrophic respiration simulations
(eight carbon cycle models and a data-constrained terres-
trial carbon cycle analysis) and three temperature depen-
dence parameterizations for the period 2009–2010; an ex-
tended ensemble subset based solely on precipitation and the
data-constrained terrestrial carbon cycle analysis is derived
for the period 2001–2015. We incorporate the mean of the
full and extended model ensembles into GEOS-Chem and
compare the model against surface measurements of atmo-
spheric CH4; the model performance (site-level and zonal
mean anomaly residuals) compares favourably against pub-
lished wetland CH4 emissions scenarios. We find that uncer-
tainties in carbon decomposition rates and the wetland ex-
tent together account for more than 80 % of the dominant
uncertainty in the timing, magnitude and seasonal variability
in wetland CH4 emissions, although uncertainty in the tem-
perature CH4 : C dependence is a significant contributor to
seasonal variations in mid-latitude wetland CH4 emissions.
The combination of satellite, carbon cycle models and tem-

perature dependence parameterizations provides a physically
informed structural a priori uncertainty that is critical for top-
down estimates of wetland CH4 fluxes. Specifically, our en-
semble can provide enhanced information on the prior CH4
emission uncertainty and the error covariance structure, as
well as a means for using posterior flux estimates and their
uncertainties to quantitatively constrain the biogeochemical
process controls of global wetland CH4 emissions.

1 Introduction

Methane (CH4) is a potent greenhouse gas with a global
warming potential more than 25 times that of CO2 on a 100-
year time horizon (Myhre et al., 2013). The global CH4 bud-
get and growth rate remain poorly understood, largely due
to the poorly resolved evolution of atmospheric CH4 sources
and sinks (Nisbet et al., 2014). Wetland CH4 emissions are
the largest natural source of atmospheric CH4, amounting
to roughly 20–40 % of global CH4 emissions (Ciais et al.,
2013). The large disparities between a range of top-down
and bottom-up wetland CH4 estimates (Kirschke et al., 2013;
Melton et al., 2013) arise from large uncertainties in the tim-
ing, distribution and the underlying processes controlling net
wetland CH4 production.

In wetland soils, CH4 is produced through the decom-
position of organic matter in anaerobic (oxygen-depleted)
environments. The dominant processes controlling the sea-
sonal and inter-annual variations include the carbon avail-
ability (soil C substrate) and decomposition rate, wetland
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inundation extent and temperature (Yvon-Durocher et al.,
2014). Other important controls on wetland CH4 emissions
include the presence of macrophytes (Laanbroek, 2010), or-
ganic C decomposition rates (Miyajima et al., 1997) and
soil pH (Singh et al., 2000), amongst other factors. The link
between terrestrial carbon–water cycling and wetland CH4
emissions is of particular interest from a terrestrial green-
house gas emissions standpoint: inter-annual variations in
terrestrial carbon cycling (Le Quéré et al., 2013) can affect
wetland CH4 emissions on seasonal to century timescales
(Hodson et al., 2011). The role of carbon cycle dynamics
in global wetland CH4 emissions is increasingly recognized.
Temporal variations in gross primary production influence
the short-term carbon supply (such as carbon inputs from
root exudates and fine litter) as well as long-lived carbon
stores (such as wood litter turnover or soil organic C) in wet-
land soils (Riley et al., 2011; Bloom et al., 2012; Melton et
al., 2013). The combined response of CO2 and CH4 fluxes to
climatic variability remains poorly characterized. For exam-
ple, increasing temperatures in boreal ecosystems could lead
to higher carbon uptake, increased respiration and drier soils
(Watts et al., 2014), and it is currently unclear whether these
processes amount to an amplifying or a dampening effect on
boreal CH4 emissions. From a greenhouse gas balance stand-
point, quantifying the global-scale process links between ter-
restrial carbon cycling and wetland CH4 emissions is crucial
to characterizing the combined terrestrial biosphere CO2 and
CH4 flux response to climatic variability.

The quantification of regional wetland CH4 emissions re-
mains challenging. While wetland CH4 emissions are rela-
tively well constrained on a global scale (Kirschke et al.,
2013; Saunois et al., 2016), regional CH4 fluxes are diffi-
cult to detect due to their comparatively diffuse nature rela-
tive to anthropogenic point sources and the scarcity of direct
measurements of wetland CH4 emissions. From a bottom-
up perspective, challenges in wetland CH4 modelling stem
from order-of-magnitude uncertainties in wetland CH4 emis-
sion factors and their spatio-temporal dependence on biogeo-
chemical process controls. Nonetheless, for top-down CH4
emission estimates, prior knowledge of wetland CH4 emis-
sions and their associated uncertainty is critical in the formu-
lation of Bayesian atmospheric CH4 inversions. Atmospheric
inversions combine CH4 measurements from surface, aircraft
and satellites (Wecht et al., 2014a; Jacob et al., 2016) and
the prior probability of the magnitude and uncertainty char-
acteristics of CH4 emissions (Bousquet et al., 2011; Pison
et al., 2013; Fraser et al., 2013; Turner et al., 2015). Typ-
ically, CH4 inversions do not explicitly formulate wetland
CH4 emission uncertainty correlations; rather, prior wetland
CH4 uncertainty correlations are either absent or implicitly
prescribed through space–time correlation lengths on CH4
emissions. However, inter-model similarities reveal signifi-
cant levels of emergent correlations in the timing, magnitude
and spatial variability of wetland CH4 emissions. For exam-
ple, the Wetland CH4 Inter-comparison of Models Project

(WETCHIMP) model ensemble (Melton et al., 2013) re-
veals varying levels of spatial and temporal agreement be-
tween models; these correlations stem from large-scale pat-
terns in biogeochemical process controls (such as temper-
ature, inundation and carbon cycling). Given the relatively
large WETCHIMP CH4 emission uncertainties (the model
range is typically 150–300 % of the model mean over ma-
jor wetland areas and greater elsewhere), this prior “bio-
geochemical covariance” can potentially amount to a critical
constraint on atmospheric CH4 inversions; such a covariance
structure can be incorporated into an atmospheric inversion
cost function (Michalak et al., 2005) or as a means of im-
proving the attribution of posterior CH4 fluxes to wetland
CH4 emissions (Wecht et al., 2014b).

Here we propose a process-informed wetland CH4 emis-
sion and uncertainty dataset for atmospheric chemistry and
transport modelling (WetCHARTs) based on multiple terres-
trial biosphere models, wetland extent scenarios and CH4 : C
temperature dependencies. In contrast to a conventional
process-based model inter-comparison approach, our wet-
land CH4 emission ensemble members are derived by ex-
haustively combining a range of temperature, carbon and
wetland extent parameterizations. An advantage of our ap-
proach is that it provides a prior probability distribution of
biogeochemical process control uncertainty. Top-down CH4
emission estimates can then be used to quantify (a) the proba-
bility of individual ensemble members and (b) the combined
probability distribution of carbon models, CH4 : C tempera-
ture dependencies and wetland extent scenarios.

We formulate a full (2009–2010) and extended (2001–
2015) estimate of wetland CH4 emission magnitude and its
associated biogeochemical covariance structure, based on
knowledge of the global wetland CH4 source and the primary
biogeochemical process controls. We validate and compare
the wetland CH4 emissions ensemble against a suite of re-
gional flux estimates; we use a global atmospheric chemical
transport model (GEOS-Chem; Bey et al., 2001) to evaluate
the CH4 emissions ensemble mean relative to existing wet-
land CH4 emission models (Sects. 2 and 3). Finally, we sum-
marize the strengths and limitations of our wetland emissions
ensemble and outline its potential applications in global at-
mospheric inversion frameworks (Sect. 4).

2 Wetland CH4 model ensemble

The wetland CH4 emissions ensemble provides CH4 fluxes
and the associated uncertainty estimates based on four
wetland extent parameterizations, nine terrestrial biosphere
models of heterotrophic respiration and three CH4 : C
temperature parameterizations. Global monthly 0.5◦× 0.5◦

emissions and their associated uncertainty structure span
2009–2010 (full ensemble, henceforth FE); we also evalu-
ate a subset of the model ensemble spanning 2001–2015 (ex-
tended ensemble, henceforth EE). We validate FE and EE
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emissions against a range of regional CH4 emission esti-
mates. Finally, we incorporate FE, EE and existing wetland
emission inventories into GEOS-Chem and evaluate the at-
mospheric CH4 simulations against 104 surface CH4 mea-
surement sites.

2.1 Wetland CH4 emissions and uncertainty

We derive wetland CH4 emissions F (mg CH4 m−2 day−1)

at time t and location x as

F(t,x) = s A(t,x) R (t,x) q
T (t,x)

10
10 , (1)

where A(t,x) is the wetland extent fraction, R(t,x) is the C
heterotrophic respiration per unit area at time t , q

T (t,x)/10
10 is

the temperature dependence of the ratio of C respired as CH4
(where q10 is the relative CH4 : C respiration for a 10 ◦C in-
crease and T (t,x) is the surface skin temperature) and s

is a global scaling factor. This empirical parameterization
provides first-order constraints on the role of carbon, water
and temperature variability in the global spatial and tempo-
ral variability of wetland CH4 emissions. Variants of the Eq.
(1) parameterization have been used within a range of wet-
land CH4 emission models (e.g. Hodson et al., 2011; Pickett-
Heaps et al., 2011; Bloom et al., 2012; Melton et al., 2013).

In our approach, wetland CH4 emission statistics within
and across 0.5◦× 0.5◦ grid cells are derived based on an
ensemble of wetland CH4 emission simulations. The 324-
member FE is based on 3 CH4 : C temperature dependen-
cies, 9 heterotrophic respiration configurations, 4 wetland
extent scenarios and 3 global-scale factor configurations
(3× 9× 4× 3= 324); the 18-member EE ensemble is a sub-
set of FE based on data availability during 2001–2015 (see
Table 1 for details).

The heterotrophic respiration configurations are de-
rived from eight terrestrial biosphere models used in the
Multi-scale Synthesis and Terrestrial Model Intercompari-
son Project (MsTMIP BG1 simulations; see Huntzinger et
al. (2013) and Wei et al. (2014) for the model and experiment
details) and the global CARbon DAta MOdel fraMework
(CARDAMOM) terrestrial carbon analysis (Bloom et al.,
2016). V1.0 outputs from the MsTMIP are available for the
period 1900–2010 (Huntzinger et al., 2016), and the CAR-
DAMOM analysis was extended to span 2001–2015 based
on the Bloom et al. (2016) methodology (see Appendix A
for details). Since MsTMIP and CARDAMOM respiration
estimates vary intrinsically as a function of temperature, q10
only accounts for the temperature dependence of the fraction
of C respired as CH4. We prescribe three CH4 : C temper-
ature dependencies (Table 1) which are broadly equivalent
to a ±50 % range on the CH4 : CO2 temperature dependence
reported by Yvon-Durocher et al. (2014).

Here we use two spatial (i = 1,2) and two temporal (j =
1,2) wetland extent parameterization approaches to represent
the uncertainty associated with the role of hydrology in wet-

land CH4 emissions. Each temporal and spatial wetland ex-
tent parameterization, Ai,j (t,x), is derived as

Ai,j (t,x)= wi (x)hi,j (t,x) , (2)

where wi(x) represents the wetland extent fraction, and
hi,j (t ,x) represents the temporal variability relative to wi(x).
w1(x) is the sum of all GLOBCOVER wetland and freshwa-
ter land cover types (all flooded, waterlogged and inland wa-
ter body land cover types; Bontemps et al., 2011); w2(x) is
the Global Lakes and Wetlands Database (GLWD) maximum
recorded wetland and freshwater body extent map by Lehner
and Döll (2004).

For h∗,j (t ,x), we use (a) the Surface WAter Microwave
Product Series (SWAMPS) multi-satellite surface water
product (Schroeder et al., 2015; j = 1) and the (b) monthly
ERA-Interim precipitation (j = 2). For i = 1 (i = 2),
hi,j (t,x) is normalized such that the mean (maximum)
hi,j (t,x) is equal to 1. In order avoid physically unrealistic
outcomes, we derive A1,j (t,x) as min{w1(x)h1,j (t,x),1},
where the “min{}” function represents the minimum between
the two bracketed values.

We note that the two hydrological proxies provide con-
trasting advantages and disadvantages. Satellite-retrieved
surface water extent provides an observation-based con-
straint on the spatial and temporal extent of wetlands and
freshwater bodies. While our temporal scaling of static wet-
land and freshwater extent mitigates the role of spatial biases
in satellite-retrieved inundation, vegetation cover remains a
major confounding variable in satellite-constrained wetland
extent (Schroeder et al., 2015). Moreover, satellites cannot
directly observe subsurface soil saturation, even though these
soils amount to significant CH4 fluxes to the atmosphere
(Turetsky et al., 2014). On the other hand, precipitation does
not provide a direct constraint on the wetland and freshwa-
ter extent; however, it provides an aggregate constraint on
ecosystem hydrological variability and wall-to-wall cover-
age across the globe. We henceforth refer to F as “wetland
CH4 emissions”; however, we recognize that lakes, rivers and
reservoirs account for ∼ 20 % of the total wetland and fresh-
water body extent (Lehner and Döll, 2004). We discuss the
implications of including non-wetland freshwater bodies in
Sect. 4.

For each of the 324 FE configurations (c = 1–324) and 18
EE configurations (c = 1–18), we derive sc such that

sc =
G

6t6x Fc(t,x)a(x)1t
n

, (3)

where Fc(t,x) are the cth ensemble member emissions at
grid cell x and time t , a(x) is the area of grid cell x,
1t is the time step (1 month), n is the number of years
and G is the global total CH4 emitted from wetlands.
We derive sc such that the FE and EE ensemble mem-
bers amount to a mean global annual flux of G= 124.5,
166 or 207.5 g CH4 yr−1 during 2009–2010. The prescribed
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Table 1. Wetland CH4 model ensemble configurations.

Parameter Description Ensemble configurations

s Global scaling factor 3 configurations: emissions are scaled such that 2009–2010
emissions amount to 124.5, 166 or 207.5 Tg CH4 yr−1

A Wetland extent 2 spatial extent parameterization (scaled using GLOBCOVER
and GLWD)
2 temporal variability parameterizations (SWAMPS inundation
extent∗ and ERA-Interim precipitation)

R Heterotrophic respiration 8 MsTMIP terrestrial C models∗

CARDAMOM terrestrial C cycle analysis

q10(c) Temperature-dependent CH4 respiration fraction 3 CH4 : C temperature parameterizations; q10(c) = [1,2,3]

∗ These datasets are only used in the 2009–2010 “full ensemble” (FE).

range of total wetland CH4 emissions spans the Saunois et
al. (2016) mean 2000–2009 top-down wetland CH4 emission
estimates (166 Tg CH4 yr−1; 125–204 Tg CH4 yr−1).

We attribute the uncertainty in the timing and magnitude of
F(t,x) (namely, the maximum CH4 emission month, mean
CH4 emissions and CH4 emission variability) to carbon de-
composition, wetland extent and CH4 : C temperature depen-
dence uncertainty. The derivation of the “dominant uncer-
tainty” within each zonal band (i.e. the dominance of carbon,
water or temperature as the dominant source of uncertainty)
is fully described in Appendix C.

2.2 GEOS-Chem atmospheric CH4 simulations

We evaluate the FE and EE wetland CH4 emission means
against the World Data Centre for Greenhouse Gases (WD-
CGG) CH4 measurement sites by incorporating these into
the 4◦× 5◦ resolution GEOS-Chem atmospheric chemical
and transport model (version 10.01; acmg.seas.harvard.edu/
geos). We benchmark the FE and EE runs against GEOS-
Chem simulations with the GEOS-Chem wetland CH4 emis-
sions inventory (Pickett-Heaps et al., 2011; 2009–2010
derivation described in Turner et al., 2015; henceforth GC)
and the Bloom et al. (2012) satellite-constrained wetland
emissions (henceforth BL), as these emission estimates have
been used in a range of atmospheric chemical transport
model simulations (Fraser et al., 2013; Turner et al., 2015;
and Wilson et al., 2016, amongst others). We perform each
GEOS-Chem forward run for the period 2009–2010 with a
4-year (2005–2009) spin-up period. The non-wetland CH4
sources in GEOS-Chem consist of biofuel, fossil fuel, live-
stock, waste, rice (EDGAR v4.2; European Commission,
2011), fires (Global Fire Emissions Database version 4; van
der Werf et al., 2010), soil C sinks and termites (Fung et al.,
1991). The non-wetland CH4 fluxes are the same in each run,
with the exception of the rice source in run BL (as global wet-
land and rice emissions are treated as one source by Bloom
et al., 2012). While model CH4 surface concentrations are

strongly influenced by wetland CH4 magnitude, timing and
distribution (Bloom et al., 2012; Meng et al., 2015), compar-
isons between GEOS-Chem outputs and surface CH4 mea-
surements may also be affected by errors in non-wetland CH4
emissions and in transport. However, Wecht et al. (2012) and
Turner et al. (2015) show that the GEOS-Chem emissions
and transport provide an unbiased representation of the ob-
served latitudinal background. The global inversion of Turner
et al. (2015) using GEOS-Chem emissions as prior further
shows no large errors in non-wetland emissions that would
confound the analysis presented here.

For each of the four runs (FE, EE, GC and BL), we use
the Wecht et al. (2014b) 1 January 2005 initial conditions for
atmospheric CH4 concentrations in GEOS-Chem. For each
simulation, we performed a 4-year spin-up period (2005–
2009) using 2009 emissions to reduce the potential inconsis-
tency between the initial conditions and the global distribu-
tion of wetland CH4 emissions; this spin-up ensures that the
relative variations in 1 January 2009 CH4 concentrations for
each run are broadly consistent with each emission scenario.
We save GEOS-Chem atmospheric CH4 concentrations ev-
ery 3 h. We compare the mean monthly GEOS-Chem output
against all WDCGG sites (104 sites with monthly 2009–2010
data in total). For each site, the nearest 4◦× 5◦ GEOS-Chem
grid cell is used for comparison. We note that the GEOS-
Chem analysis outlined here is not a direct validation of FE
and EE; rather, it provides supporting evidence for the plau-
sibility of FE and EE emissions relative to existing wetland
CH4 emission datasets.

3 Results, comparison and validation

Mean full ensemble (FE) global wetland emissions are
largely accounted for by three high-latitude regions, three
tropical regions and subtropical southeast Asia (Fig. 1).
North American, Scandinavian and Siberian median (5th–
95th percentiles) CH4 fluxes amount to 10 % (3–30 %), 2 %
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Figure 1. Top row (a, b): 2009–2010 full model ensemble (FE; left) and extended model ensemble (EE; right) mean wetland CH4 emis-
sions. Middle row (c, d): 2009–2010 emissions from the GEOS-Chem wetland CH4 emissions inventory (GC; left) model and the satellite-
constrained estimates by Bloom et al. (2012) (BL; right). Bottom row (e, f): mean 2009–2010 FE 5th–95th percentile range (left) and
uncertainty factor (5th–95th percentile range normalized by mean 2009–2010 emissions; right).

Figure 2. Mean wetland CH4 emission zonal profiles: full ensem-
ble mean (FE: red line) and corresponding range (pink area); ex-
tended ensemble mean (EE; black line) and corresponding range
(grey area); GEOS-Chem emissions inventory (GC; dashed blue
line); Bloom et al. (2012) emissions (BL; dashed orange line).

(1–6 %) and 2 % (1–6 %) of global emissions, respectively.
Amazon wetland emissions (29 %; 20–37 %) account for the
largest tropical emission source, followed by the Indone-
sian archipelago (13 %; 7–23 %) and central Africa (12 %;
7–23 %). Subtropical southeast Asian emissions account for
5 % (1–10 %). High-latitude (> 50◦ N) and tropical emis-

sions amount to 12 % (5–31 %) and 66 % (43–83 %) of global
wetland CH4 emissions, respectively. Gridded FE uncertain-
ties (shown as the 5th–95th percentile ranges; Fig. 1e) are
largely comparable in magnitude to FE emissions (Fig. 1a).
Relative FE uncertainties (shown as the ratio of the 90 % con-
fidence range to mean emissions in Fig. 1f) are the lowest in
high-emission areas, notably the wetland regions in the Ama-
zon and Congo basins, North America and western Eurasia.

Mean FE and extended ensemble (EE) CH4 emission pat-
terns exhibit close agreement across all tropical continents
and the high northern-latitude wetland regions (Fig. 1a and
b). The comparison between zonal mean emissions (Fig. 2)
reveals differences of less than 1 Tg/yr/◦ lat between FE and
EE. On a continental scale, FE and EE emission patterns
are in broad agreement with the Pickett-Heaps et al. (2011)
wetland CH4 emissions (GC; Fig. 1c) and the Bloom et
al. (2012) emissions (BL; Fig. 1d). High-latitude FE and
EE emissions peak roughly between 45 and 60◦ N (Fig. 2),
which is in agreement with GC and BL emission peaks (∼ 60
and∼ 50◦ N, respectively) and tropical emissions for all four
emission dataset peaks within 0–5◦ S. The FE zonal mean
is comparable to the BL in the near-equatorial tropics and
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Figure 3. Seasonally averaged 2009–2010 wetland CH4 emissions for this study (full ensemble: FE; extended ensemble: EE), Bloom et
al. (2012) wetland emissions (BL) and GEOS-Chem wetland emissions inventory (GC) across North and South America (left column; 180–
35◦W), Europe and Africa (centre column; 35◦W–55◦ E) and Asia and Oceania (right column; 55–180◦ E). The emissions for each region
are reported as total monthly fluxes across 5◦ latitude bins. The black dotted line denotes the maximum emission month within each 5◦

latitude bin.

significantly lower (with respect to the FE model ensemble
90 % confidence range) everywhere else; the FE zonal mean
is comparable to GC in high-latitude and temperate regions,
but significantly lower than GC in the tropics and the South-
ern Hemisphere.

All CH4 emission models show similar patterns in the tem-
poral distribution of CH4 emissions in high-latitude and tem-
perate regions (with CH4 emissions peaking between July
and September; Fig. 3). We note that the larger CH4 fluxes
in the BL emissions over Asia and Oceania are due to rice
paddy CH4 emissions. All emission models exhibit high-
latitude (> 50◦ N) maximum CH4 emissions between June
and August. In tropical South America (0–20◦ S), FE and
EE emissions peak between February and April, which is
comparable to BL (February–March) and overall earlier than

GC (5–20◦ S emission peak in September). There is con-
siderable disagreement between northern tropical African
emission variability amongst all models, with 0–15◦ N emis-
sions peaking in February (GC), April–October (FE, EE)
and September–November (BL). Subtropical Asian FE and
EE emissions (20–30◦ N) peak in June–July, earlier than BL
emissions (August–September) and comparable to GC emis-
sions (June).

We compare the mean FE and EE (2009–2010) wet-
land emissions against a range of independent wetland
CH4 regional emission estimates (Fig. 4). Emissions from
the Siberian wetlands (Glagolev et al., 2011), the Hudson
Bay lowlands (Pickett-Heaps et al., 2011) and the Ama-
zon River basin (Melack et al., 2004) are within the 25th–
75th percentile estimates of FE and EE wetland CH4 emis-

Geosci. Model Dev., 10, 2141–2156, 2017 www.geosci-model-dev.net/10/2141/2017/
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Figure 4. A comparison between the mean annual regional wetland CH4 emission estimates of (1) Glagolev et al. (2011), (2) Pickett-Heaps
et al. (2011), (3) Chang et al. (2014) and (4) Melack et al. (2004) and the global wetland emission datasets by Bloom et al. (2012) (BL), the
GEOS-Chem wetland CH4 emissions inventory (GC), this study (full ensemble: FE; extended ensemble: EE) and the range of WETCHIMP
models (Melton et al., 2013). Wetland emissions (horizontal axis) correspond to the mean annual totals within the regions shown in the inset
map.

Figure 5. The global wetland CH4 emission inter-annual variability
range of the FE (2009–2010) and EE (2001–2015) emission models,
normalized relative to 2009 emissions; the WETCHIMP (Melton
et al., 2013) model ensemble inter-annual variability is normalized
relative to 2001–2004 mean emissions.

sions. Alaskan wetland emissions (Chang et al., 2014; May–
September) are higher (2.1 Tg CH4 yr−1) but within the 5th–
95th percentile range of FE and EE wetland CH4 emission
estimates. With the exception of the Amazon River basin
estimates, the FE and EE emission uncertainty estimates
are larger than the Melton et al. (2013) wetland CH4 emis-
sion model (WETCHIMP 1993–2004) range. BL (2009–
2010) and GC (2009–2010) estimates are also within all
regional 5th–95th percentile ranges. We note the temporal
mismatch between the modelled and regional wetland CH4
emission estimates in Fig. 4; however, based on a range of
process model approaches (e.g. Bloom et al., 2010; Melton
et al., 2013), we expect the inter-annual variation in wet-
land CH4 emissions to be substantially smaller than the FE
and EE estimate uncertainty. For example, the maximum-

Figure 6. The dominant uncertainty attribution of the maximum
CH4 emission month (left), magnitude (centre) and seasonal vari-
ability (right) to carbon decomposition, temperature CH4 : C depen-
dence (q10) and wetland extent parameterization within 5◦ latitude
bins. The derivation of dominant uncertainties is described in Ap-
pendix C.

to-minimum ratios of WETCHIMP 1993–2004 annual emis-
sions are ≤ 5.1 across the three extratropical regions and ≤
1.4 in the Amazon River basin; in contrast, FE and EE uncer-
tainty intervals span factors of 5.8–156.3 in the extratropics
and 2.3–3.9 in the Amazon River basin.

FE and EE ensemble models exhibit a median of 6.7 and a
7.2 % increase in global emissions between 2009 and 2010
(Fig. 5). BL and GC changes from 2009 to 2010 (+1.8
and +3.2 %) are within the FE uncertainty range (−2.6
to +13.4 %). Uncertainties in the WETCHIMP inter-annual
variations (IAV; relative to the 2001–2004 model means) are
larger than EE IAV uncertainty throughout 2001–2015 (rela-
tive to 2009) and smaller than the FE change uncertainty for
2009 to 2010. For the 2003–2013 period, BL IAV is gener-
ally lower or within the range of EE IAV. In comparison to re-
gional top-down constraints, we find that the regional EE IAV
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Figure 7. The full ensemble (FE) spatial and temporal error covariance, summarized as a monthly error correlation across boreal and Arctic
(> 55◦ N) temperate (23–55◦ N), tropical (23◦ S–23◦ N) and Southern Hemisphere (< 23◦ S) latitudes. A correlation between two location-
and-time indices indicates the degree to which models consistently over- or under-predict wetland CH4 emissions relative to the ensemble
mean. The non-zero off-diagonal correlation patterns emerge as a function of varying biogeochemical commonalities across ensemble mem-
bers, such as wetland CH4 dependencies on temperature, carbon availability and wetland extent. Negative correlations between tropical and
Northern Hemisphere extratropical (i.e. temperate, boreal and Arctic) wetlands emerge as a function of a global constraint on wetland CH4
emissions (166 Tg CH4 yr−1

± 25 %).

is comparable to the Miller et al. (2016) 2012–2014 annual
Alaskan wetland emission variability (coefficient of variation
observed= 4.9 %, EE= 4.2–6.9 %), and within the Wilson et
al. (2016) constraints on the change in annual Amazon wet-
land emissions for 2010 to 2011 (coefficient of variation: ob-
served < 20 %; EE= 0.5–2.9 %).

On a zonal basis, the “dominant uncertainty”, i.e. the dom-
inant source of uncertainty within each band, in mean CH4
emissions and the timing of maximum CH4 emissions is al-
most completely dominated by carbon decomposition and
wetland extent uncertainties (Fig. 6). Seasonal variability in
CH4 emissions is also largely dominated by carbon and ex-
tent uncertainties, although the temperature CH4 : C depen-
dence is the dominant source of uncertainty in temperate lat-
itudes. At latitudes > 20◦ N, wetland extent is the dominant
source of uncertainty in mean CH4 emissions, while the tem-
perature CH4 : C dependence accounts for < 5 % of the domi-
nant uncertainty attribution. Across tropical latitudes (23◦ S–
23◦ N) and northern high latitudes (> 45◦ N), carbon decom-
position is the dominant source of uncertainty in the timing
of wetland CH4 emissions.

We summarize the FE global error covariance structure
as an error correlation matrix between mean monthly 2009–
2010 emissions across boreal and Arctic (> 55◦ N) temper-
ate (23–55◦ N), tropical (23◦ S–23◦ N) and Southern Hemi-
sphere (< 23◦ S) latitudes (Fig. 7); the error correlation ma-
trix quantitatively summarizes similarities in the spatial and
temporal patterns between ensemble members relative to
the ensemble mean (see Appendix B for a description and
interpretation). The FE error correlation matrix highlights
the positively correlated ensemble member CH4 emissions
within each region, with larger correlations (generally Pear-
son’s r > 0.8) between emissions separated by 1–2 months.
Tropical emissions exhibit the largest overall temporal cor-
relations (r > 0.5). Tropical emissions exhibit negative cor-
relations against temperate emissions (r <−0.3) and boreal
and Arctic CH4 emissions (r <−0.1).

Mean 2009–2010 observed and GEOS-Chem forward
model run CH4 concentrations (with FE, EE, BL and GC
wetland emissions) are broadly consistent on a latitudinal
basis. The observed and modelled zonal atmospheric CH4
concentration anomaly (relative to mean global 2009–2010
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Figure 8. Mean 2009–2010 CH4 measurements and model CH4
zonal anomalies (1CH4) relative to the mean 2009–2010 global
CH4 concentration. The black dots denote the mean WDCGG net-
work observed CH4 concentrations within 5◦ latitude bins; the grey
envelope denotes the mean 2009–2010 standard deviation across all
sites within 5◦ latitude bins. The coloured symbols and error bars
denote the GEOS-Chem equivalent model concentration statistics
based on the FE and EE ensembles (this study), Bloom et al. (2012)
(BL) and the GEOS-Chem emissions inventory (GC) wetland CH4
emission datasets.

CH4 concentrations) is shown in Fig. 8 (the zonal profile root
mean square errors (RMSEs) are 6.5, 6.6, 8.4 and 9.2 ppb for
FE, EE, BL and GC relative to the observed CH4 anomaly
zonal profile). Within the primary wetland CH4 emission lat-
itudes (10◦ S–80◦ N; Fig. 2), all mean CH4 model estimates
are within the mean standard deviation of observed CH4, ex-
cept for GC at > 60◦ N and all models at 80◦ N.

The median site-level correlation (Pearson’s r) between
the observed and modelled de-trended CH4 concentrations
(Fig. 9) is the highest for BL (0.75), followed by EE (0.74),
FE (0.73) and GC (0.72). The median RMSEs between
the observed and modelled de-trended CH4 concentrations
for FE (11.78 ppb) and EE (11.89 ppb) are lower than BL
(12.42 ppb) and GC (13.27 ppb). FE and EE improvements
(relative to GC and BL Pearson’s r and RMSE) are primar-
ily in Northern Hemisphere high latitudes (> 50◦ N; Fig. 9).
In the Southern Hemisphere extratropical latitudes (< 23◦ S),
FE and EE exhibit a comparable performance relative to GC,
while BL outperforms both FE and EE.

4 Discussion

4.1 Model limitations

Densely vegetated wetland areas are likely to amount to a
large component of the global wetland CH4 sources; a high
carbon density (and high temperatures in the case of trop-
ical wetlands) results in high CH4 emissions under inun-
dated conditions. However, satellite-derived observations of
surface water area (Schroeder et al., 2015) are ill-equipped
to observe densely vegetated wetland areas, as the passive
microwave sensors become increasingly sensitive to vege-
tation moisture within high-biomass ecosystems (Sippel et
al., 1994). For example, FE estimates of Amazon River basin
wetland CH4 emissions amount to 16–29 % (5th–95th per-
centiles) of the global wetland emissions source; the high
biomass density in this region (Saatchi et al., 2011) may be
a significant source of inundation area bias. Therefore, while
we incorporate prior information on the mean and maximum
wetland extent to scale the satellite-derived inundation frac-
tion, we anticipate that errors in seasonal and inter-annual in-
undation variability are likely to be larger within densely veg-
etated wetland areas. We are optimistic that current and up-
coming missions such as SMAP and BIOMASS (Entekhabi
et al., 2010; Le Toan et al., 2011) combined with data inte-
gration approaches (Schroeder et al., 2015; Fluet-Chouinard
et al., 2015) can potentially provide the additional constraints
required to extend current inundation datasets and to improve
current surface inundation detection capabilities.

The MsTMIP model ensemble provides a first-order esti-
mate of the magnitude and variability of C decomposition
within each 0.5◦× 0.5◦ grid cell. Here we highlight four
potentially major sources of error: (a) differences in aero-
bic : anaerobic turnover rates of major (labile and recalci-
trant) C pools, (b) systematic differences in wetland and
non-inundated area carbon uptake within each 0.5◦× 0.5◦

grid cell, (c) systematic differences in dead organic mat-
ter C stocks and accumulation between wetland and non-
inundated areas and (d) lateral flows of C into (or out of) wet-
land areas. Top-down estimates of seasonal and inter-annual
terrestrial CO2 fluxes (e.g. Liu et al., 2014) could be used to
independently assess the validity of heterotrophic respiration
from the MsTMIP models and CARDAMOM. In turn, top-
down CH4 and CO2 flux retrievals and a range of in situ and
regional-scale CH4 flux estimates (Schriel-Uijl et al., 2011;
Chang et al., 2014; and Budishchev et al., 2014, amongst
others) can be combined to assess whether our empirical pa-
rameterization is able to capture regional, seasonal and inter-
annual wetland CH4 emission variability and their link to the
broader terrestrial carbon cycle. Finally, in succession to the
eddy covariance tower-site analyses of CO2 respiration de-
pendence on temperature (Mahecha et al., 2010), we antic-
ipate that CH4 eddy covariance measurements will provide
critical site-level constraints on the temperature dependence
of wetland CH4 emissions.
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Figure 9. The symbol colours denote the monthly de-trended CH4 Pearson’s r correlation (left column) for the model observations and
RMSE (right column) for the FE (top row) and EE (bottom row) wetland CH4 emissions (monthly CH4 observations are from the WDCGG
measurement site network). The y axis denotes the difference between FE and EE and the model runs with Bloom et al. (2012) wetland CH4
emissions (BL) and the GEOS-Chem wetland CH4 emissions inventory (GC).

Rice paddies likely amount to < 20 % of wetland CH4
emissions, and the majority of rice paddy areas are implic-
itly excluded from our analysis. GLOBCOVER distinguishes
between natural and irrigated water bodies, and GLWD ex-
plicitly excludes rice paddy extents in China (which alone
account for a large portion of global rice paddy CH4 emis-
sions). However, satellite-based inundation fraction retrievals
are unable to distinguish the temporal variability in co-
located agriculture and natural wetland inundation extent.
Moreover, a 0.5◦× 0.5◦ carbon cycle model resolution may
be insufficient to resolve spatial differences in wetland and
agricultural C cycling. The inadvertent inclusion of co-
located rice CH4 emissions is therefore a potential source of
bias in our approach. We note that the distinction between
wetland and rice CH4 emissions has yet to be consistently
addressed in global wetland CH4 emission quantification ef-
forts (see Bloom et al., 2010; Hodson et al., 2011; Melton et
al., 2013, and the references therein).

CH4 production in non-wetland freshwater bodies, such
as very small ponds (Holgerson and Raymond, 2016), lakes
(Wik et al., 2016) and rivers (Bastviken et al., 2011), is poten-
tially a significant, albeit highly uncertain, term in the global
CH4 budget (Kirschke et al., 2013; Bridgham et al., 2013).
Our approach implicitly accounts for non-wetland freshwa-
ter body emissions, since their extent is incorporated in grid-
cell scaling factors (see Eq. 2). We recognize the challenge in

explicitly distinguishing between wetlands and non-wetland
freshwater body CH4 emissions, as well as the associated
physical and biogeochemical process controls. The quanti-
tative distinction of CH4 emissions from wetland and non-
wetland freshwater extent remains challenging with the cur-
rent spatial resolution (∼ 25 km) of surface inundation re-
trievals (Prigent et al., 2007; Schroeder et al., 2015). Equally,
the current global carbon cycle model resolutions (≥ 0.5◦)
are insufficient to resolve spatial variations in heterotrophic
processes across ≤ 1 km of wetland and freshwater land
cover definitions (Lehner and Döll, 2004). Contingent on fu-
ture resolution enhancements in surface inundation and car-
bon cycle models, we recommend further investigation of the
adequate distinction and estimation of non-wetland freshwa-
ter CH4 emissions for atmospheric CH4 chemical transport
modelling applications.

By constraining global emission estimates to the Saunois
et al. (2016) model range, our approach does not chal-
lenge the global annual CH4 source and uncertainty;
rather, it places constraints on spatial and temporal wet-
land CH4 source variability. Since the global uncertainty
(166 Tg CH4 yr−1; range=±25 %) is substantially smaller
than regional uncertainties (spanning a factor of 2–156; see
Fig. 4), new or improved constraints on the global wetland
CH4 source are unlikely to significantly influence our re-
gional CH4 flux confidence range estimates. We therefore
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anticipate that wetland CH4 in situ measurements and asso-
ciated up-scaling efforts (e.g. Olefeldt et al., 2013; Turetsky
et al., 2014; and Sjörgesten et al., 2014, amongst others) will
undoubtedly become critical for reducing emission and pro-
cess uncertainty in future wetland emission model ensem-
bles.

4.2 Applications

Based on comparisons against measured CH4 concentrations
and a range of regional and global CH4 emission estimates
(Figs. 2–4, 7–8), we have shown that the FE and EE wetland
CH4 emission ensembles robustly represent the global mag-
nitude and uncertainty of wetland CH4 emissions. The com-
bined ensemble configurations of inundation extent, carbon
decomposition and temperature dependence have provided
a characterization of the dominant source of uncertainty in
global wetland CH4 estimates (Fig. 6). The approach out-
lined here provides a framework for producing prior emis-
sion estimates and the associated uncertainty. The error co-
variance structure, along with the CH4 observation system
capabilities (Wecht et al., 2014b), can be used to devise an
optimal strategy for spatially and/or temporally aggregating
CH4 fluxes in an atmospheric inversion framework. The re-
trieved CH4 flux from assimilating atmospheric CH4 obser-
vations in an inverse modelling framework (e.g. Fraser et
al., 2013) could in turn provide a quantitative constraint on
the wetland ensemble; the FE and EE model members can
be treated as an ensemble of probable biogeochemical pro-
cess hypotheses that can be weighted against atmospheric
constraints. In contrast to conventional wetland CH4 emis-
sion estimates (Riley et al., 2011; Pickett-Heaps et al., 2011)
and model inter-comparisons (Melton et al., 2013), top-down
CH4 flux estimates can constrain the joint probability distri-
bution of FE carbon models, wetland extent parameteriza-
tions and temperature dependencies. We note that due to the
smaller ensemble size and the use of only one carbon model
(see Table 1), the 2001–2015 EE emission variability should
be interpreted with caution and, where possible, evaluated
against the FE ensemble during the 2009–2010 period.

We anticipate extensions of the FE beyond the 2009–2010
time period, contingent on the extensions of the MsTMIP
and SWAMPS datasets beyond 2010 and 2012, respectively.
In light of continued satellite CH4 retrievals from GOSAT
(Parker et al., 2011; Butz et al., 2011) and upcoming satel-
lite CH4 measurements from the TROPOMI on-board ESA
Sentinel-5 precursor (Veefkind et al., 2012), we anticipate
that the FE and EE datasets will provide key process-based
prior knowledge in future atmospheric CH4 inversions.

Data availability. The full ensemble (FE) and extended ensem-
ble (EE) datasets (Bloom et al., 2017) are available from the
Oak Ridge National Laboratory Distributed Active Archive Cen-
ter (ORNL DAAC; http://dx.doi.org/10.3334/ORNLDAAC/1502).
MsTMIP monthly 0.5◦× 0.5◦ datasets (Huntzinger et al., 2016)
were obtained from http://nacp.ornl.gov/MsTMIP.shtml. ERA-
Interim datasets were obtained from http://apps.ecmwf.int/datasets/
data/interim-full-mnth. CARDAMOM 2001–2010 heterotrophic
respiration outputs are available at http://datashare.is.ed.ac.uk/
handle/10283/875; the complete 2001–2015 heterotrophic exten-
sion outputs are included in the Supplement. Inundation datasets
were obtained from http://wetlands.jpl.nasa.gov. The GLWD
dataset was obtained from http://gcmd.gsfc.nasa.gov. The GLOB-
COVER dataset was obtained from http://due.esrin.esa.int. The
WDCGG data were obtained from http://ds.data.jma.go.jp/gmd/
wdcgg. The Surface WAter Microwave Product Series inundation
dataset (described by Schroeder et al., 2015) was obtained from
http://wetlands.jpl.nasa.gov (accessed on 5 June 2014); European
Centre for Medium-Range Weather Forecasts reanalysis (ECMWF
ERA-Interim) synoptic monthly means were downloaded from http:
//apps.ecmwf.int. The code used to generate the FE and EE datasets
is included in the Supplement.
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Appendix A: CARDAMOM extension

CARDAMOM heterotrophic respiration was derived from
the Bloom et al. (2016) global terrestrial C cycle 1◦× 1◦

analysis. CARDAMOM-retrieved C-state and process vari-
ables for the period 2001–2010 were used to run the ecosys-
tem carbon balance model DALEC2 (Bloom and Williams,
2015) to span 2001–2015. The 2011–2015 ERA-Interim me-
teorological drivers and MODIS-burned area were obtained
as described by Bloom et al. (2016). The CARDAMOM out-
put consists of 4000 heterotrophic respiration realizations
at each monthly time step; for each time step, we use the
median CARDAMOM heterotrophic respiration output. We
downscale the data to a 0.5◦× 0.5◦ resolution using a nearest
neighbour interpolation.

Appendix B: Error correlation structure

We derive the model ensembles’ space–time n× n error cor-
relation matrix M as follows:

Mij = cor(Ai,∗,Aj,∗), (B1)

where n corresponds to the number of space and time wet-
land CH4 emission aggregations, and i and j span 1 to n.
Ai,m and Aj,m correspond to the total CH4 flux for model
m within the ith and j th space–time aggregations (i.e. to-
tal wetland CH4 emissions within a given time and area);
Ai,∗ and Aj,∗ are 1×N vectors, where N is the number of
models within the ensemble. The “cor()” operator denotes
the Pearson’s correlation coefficient between the two brack-
eted vectors. For Fig. 7, we aggregated model wetland CH4
emissions for each month across four zonal bands: boreal and
Arctic (> 55◦ N) temperate (23–55◦ N), tropical (23–23◦ N)
and Southern Hemisphere (< 23◦ S). A perfect correlation
between the ith and j th indices (Mij = 1) indicates that the
models are consistently over- or under-predicting CH4 emis-
sions at times-and-locations i and j relative to the ensem-
ble mean; a perfect anti-correlation (Mij =−1) indicates that
the models are consistently over-predicting CH4 emissions at
time-and-location i and consistently under-predicting CH4
emissions at time-and-location j (relative to the ensemble
mean) and vice versa.

Appendix C: Dominant process uncertainty

We quantify the dominant process uncertainty of wetland
CH4 emission state variables (s = 1–3; (1) maximum emis-
sion month, (2) mean CH4 emissions and (3) seasonal vari-
ability in terms of standard deviation) to wetland emis-
sion controls (e = 1–3; (1) model carbon decomposition,
(2) CH4 : C temperature dependence and (3) wetland extent
parameterization) at location x as follows:

Rx,s,e =

N∑
c=1

max
(
Mx,s,mc

)
−min

(
Mx,s,mc

)
N

, (C1)

where Rx,s,e is the mean range of state variable s across the
ensemble given a fixed emission control e. Mx,s,∗ is a vec-
tor of all ensemble member state variables s at location x,
mc denotes the indices of the ensemble subset driven by cth
emission control e, and N values are the number of config-
urations for each e (the ensemble configuration details are
show in Table 1). The “max()” and “min()” functions de-
note the maximum and minimum elements of the bracketed
vectors. For example, R100,3,1 is the mean range of seasonal
CH4 variability (s = 3) for a fixed carbon model configura-
tion (e = 1) at the 100th grid cell (x = 100). We attribute the
zonal dominant uncertainty of state variable s to emission
control e as

Pz,s,e =

∑
xz

rxz,s,e Fxz∑
xz

Fxz

× 100%, (C2)

where xz values are the pixels x within a 5◦ zonal band z,Fxz

is the mean 2009–2010 area-integrated CH4 flux (Eq. 1 in
the main text) and rxz,s,e = 1 if Rxz,s,e =min(Rxz,s,∗); oth-
erwise, rxz,s,e = 0. Therefore, e is the largest source of uncer-
tainty when the mean range in state variable s is the smallest
for a fixed e. Pz,s,e denotes the percentage of zonal band z

where emission control e is the greatest source of uncertainty
for each s.
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