Articles | Volume 9, issue 6
Model experiment description paper
29 Jun 2016
Model experiment description paper |  | 29 Jun 2016

The Arctic Predictability and Prediction on Seasonal-to-Interannual TimEscales (APPOSITE) data set version 1

Jonathan J. Day, Steffen Tietsche, Mat Collins, Helge F. Goessling, Virginie Guemas, Anabelle Guillory, William J. Hurlin, Masayoshi Ishii, Sarah P. E. Keeley, Daniela Matei, Rym Msadek, Michael Sigmond, Hiroaki Tatebe, and Ed Hawkins

Related authors

The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0
Paul J. Valdes, Edward Armstrong, Marcus P. S. Badger, Catherine D. Bradshaw, Fran Bragg, Michel Crucifix, Taraka Davies-Barnard, Jonathan J. Day, Alex Farnsworth, Chris Gordon, Peter O. Hopcroft, Alan T. Kennedy, Natalie S. Lord, Dan J. Lunt, Alice Marzocchi, Louise M. Parry, Vicky Pope, William H. G. Roberts, Emma J. Stone, Gregory J. L. Tourte, and Jonny H. T. Williams
Geosci. Model Dev., 10, 3715–3743,,, 2017
Short summary
Estimating the extent of Antarctic summer sea ice during the Heroic Age of Antarctic Exploration
Tom Edinburgh and Jonathan J. Day
The Cryosphere, 10, 2721–2730,,, 2016
Short summary

Related subject area

Climate and Earth system modeling
UKESM1.1: development and evaluation of an updated configuration of the UK Earth System Model
Jane P. Mulcahy, Colin G. Jones, Steven T. Rumbold, Till Kuhlbrodt, Andrea J. Dittus, Edward W. Blockley, Andrew Yool, Jeremy Walton, Catherine Hardacre, Timothy Andrews, Alejandro Bodas-Salcedo, Marc Stringer, Lee de Mora, Phil Harris, Richard Hill, Doug Kelley, Eddy Robertson, and Yongming Tang
Geosci. Model Dev., 16, 1569–1600,,, 2023
Short summary
Porting the WAVEWATCH III (v6.07) wave action source terms to GPU
Olawale James Ikuyajolu, Luke Van Roekel, Steven R. Brus, Erin E. Thomas, Yi Deng, and Sarat Sreepathi
Geosci. Model Dev., 16, 1445–1458,,, 2023
Short summary
Yeti 1.0: a generalized framework for constructing bottom-up emission inventories from traffic sources at road-link resolutions
Edward C. Chan, Joana Leitão, Andreas Kerschbaumer, and Timothy M. Butler
Geosci. Model Dev., 16, 1427–1444,,, 2023
Short summary
Analysis of systematic biases in tropospheric hydrostatic delay models and construction of a correction model
Haopeng Fan, Siran Li, Zhongmiao Sun, Guorui Xiao, Xinxing Li, and Xiaogang Liu
Geosci. Model Dev., 16, 1345–1358,,, 2023
Short summary
A new precipitation emulator (PREMU v1.0) for lower-complexity models
Gang Liu, Shushi Peng, Chris Huntingford, and Yi Xi
Geosci. Model Dev., 16, 1277–1296,,, 2023
Short summary

Cited articles

Arzel, O., Fichefet, T., Goosse, H.: Sea ice evolution over the 20th and 21st centuries as simulated by current AOGCMs, Ocean Model., 12, 401–415,, 2006.
Blanchard-Wrigglesworth, E., Armour, K. C., Bitz, C. M., and DeWeaver, E.: Persistence and Inherent Predictability of Arctic Sea Ice in a GCM Ensemble and Observations, J. Climate, 24, 231–250,, 2011a.
Blanchard-Wrigglesworth, E., Bitz, C., and Holland, M.: Influence of initial conditions and climate forcing on predicting Arctic sea ice, Geophys. Res. Lett., 38, L18503,, 2011b.
Chevallier, M., Salas y Mélia, D., Voldoire, A., Déqué, M., and Garric, G.: Seasonal Forecasts of the Pan-Arctic Sea Ice Extent Using a GCM-Based Seasonal Prediction System, J. Climate, 26, 6092–6104,, 2013.
Collins, M.: Climate predictability on interannual to decadal time scales: the initial value problem, Clim. Dynam., 19, 671–692,, 2002.
Short summary
Recent decades have seen significant developments in seasonal-to-interannual timescale climate prediction. However, until recently the potential of such systems to predict Arctic climate had not been assessed. This paper describes a multi-model predictability experiment which was run as part of the Arctic Predictability and Prediction On Seasonal to Interannual Timescales (APPOSITE) project. The main goal of APPOSITE was to quantify the timescales on which Arctic climate is predictable.