Articles | Volume 9, issue 3
https://doi.org/10.5194/gmd-9-1087-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gmd-9-1087-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
ISSM-SESAW v1.0: mesh-based computation of gravitationally consistent sea-level and geodetic signatures caused by cryosphere and climate driven mass change
Surendra Adhikari
CORRESPONDING AUTHOR
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Erik R. Ivins
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Eric Larour
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Related authors
Lambert Caron, Erik Ivins, Eric Larour, Surendra Adhikari, and Laurent Metivier
EGUsphere, https://doi.org/10.5194/egusphere-2024-3414, https://doi.org/10.5194/egusphere-2024-3414, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Presented here is a new model of the solid-Earth response to tides and mass changes in ice sheets, oceans, and groundwater, in of terms of gravity change and bedrock motion. The model is capable simulating mantle deformation including elasticity, transient and steady-state viscous flow. We detail our approach to numerical optimization, and report the accuracy of results with respect to community benchmarks. The resulting coupled system features kilometer-scale resolution and fast computation.
Luc Houriez, Eric Larour, Lambert Caron, Nicole-Jeanne Schlegel, Surendra Adhikari, Erik Ivins, Tyler Pelle, Hélène Seroussi, Eric Darve, and Martin Fischer
EGUsphere, https://doi.org/10.5194/egusphere-2024-4136, https://doi.org/10.5194/egusphere-2024-4136, 2025
Short summary
Short summary
We studied how interactions between the ice sheet and the Earth’s evolving surface affect the future of Thwaites Glacier in Antarctica. We find that small features in the bedrock play a major role in these interactions which can delay the glacier’s retreat by decades or even centuries. This can significantly reduce sea-level rise projections. Our work highlights resolution requirements for similar ice—earth models, and the importance of bedrock mapping efforts in Antarctica.
Flavien Beaud, Saif Aati, Ian Delaney, Surendra Adhikari, and Jean-Philippe Avouac
The Cryosphere, 16, 3123–3148, https://doi.org/10.5194/tc-16-3123-2022, https://doi.org/10.5194/tc-16-3123-2022, 2022
Short summary
Short summary
Understanding sliding at the bed of glaciers is essential to understand the future of sea-level rise and glacier-related hazards. Yet there is currently no universal law to describe this mechanism. We propose a universal glacier sliding law and a method to qualitatively constrain it. We use satellite remote sensing to create velocity maps over 6 years at Shisper Glacier, Pakistan, including its recent surge, and show that the observations corroborate the generalized theory.
Eric Larour, Lambert Caron, Mathieu Morlighem, Surendra Adhikari, Thomas Frederikse, Nicole-Jeanne Schlegel, Erik Ivins, Benjamin Hamlington, Robert Kopp, and Sophie Nowicki
Geosci. Model Dev., 13, 4925–4941, https://doi.org/10.5194/gmd-13-4925-2020, https://doi.org/10.5194/gmd-13-4925-2020, 2020
Short summary
Short summary
ISSM-SLPS is a new projection system for future sea level that increases the resolution and accuracy of current projection systems and improves the way uncertainty is treated in such projections. This will pave the way for better inclusion of state-of-the-art results from existing intercomparison efforts carried out by the scientific community, such as GlacierMIP2 or ISMIP6, into sea-level projections.
Surendra Adhikari, Erik R. Ivins, Eric Larour, Lambert Caron, and Helene Seroussi
The Cryosphere, 14, 2819–2833, https://doi.org/10.5194/tc-14-2819-2020, https://doi.org/10.5194/tc-14-2819-2020, 2020
Short summary
Short summary
The mathematical formalism presented in this paper aims at simplifying computational strategies for tracking ice–ocean mass exchange in the Earth system. To this end, we define a set of generic, and quite simple, descriptions of evolving land, ocean and ice interfaces and present a unified method to compute the sea-level contribution of evolving ice sheets. The formalism can be applied to arbitrary geometries and at all timescales.
Surendra Adhikari, Erik R. Ivins, Thomas Frederikse, Felix W. Landerer, and Lambert Caron
Earth Syst. Sci. Data, 11, 629–646, https://doi.org/10.5194/essd-11-629-2019, https://doi.org/10.5194/essd-11-629-2019, 2019
Short summary
Short summary
We compute monthly solutions of changes in relative sea level, geoid height, and vertical bedrock displacement and uncertainties therein for the period April 2002–August 2016. These are based on the Release-06 GRACE Level-2 Stokes coefficients distributed by three premier data processing centers: CSR, GFZ, and JPL. Solutions are provided with and without Earth's rotational feedback included and in both the center-of-mass and center-of-figure reference frames.
Lambert Caron, Erik Ivins, Eric Larour, Surendra Adhikari, and Laurent Metivier
EGUsphere, https://doi.org/10.5194/egusphere-2024-3414, https://doi.org/10.5194/egusphere-2024-3414, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Presented here is a new model of the solid-Earth response to tides and mass changes in ice sheets, oceans, and groundwater, in of terms of gravity change and bedrock motion. The model is capable simulating mantle deformation including elasticity, transient and steady-state viscous flow. We detail our approach to numerical optimization, and report the accuracy of results with respect to community benchmarks. The resulting coupled system features kilometer-scale resolution and fast computation.
Luc Houriez, Eric Larour, Lambert Caron, Nicole-Jeanne Schlegel, Surendra Adhikari, Erik Ivins, Tyler Pelle, Hélène Seroussi, Eric Darve, and Martin Fischer
EGUsphere, https://doi.org/10.5194/egusphere-2024-4136, https://doi.org/10.5194/egusphere-2024-4136, 2025
Short summary
Short summary
We studied how interactions between the ice sheet and the Earth’s evolving surface affect the future of Thwaites Glacier in Antarctica. We find that small features in the bedrock play a major role in these interactions which can delay the glacier’s retreat by decades or even centuries. This can significantly reduce sea-level rise projections. Our work highlights resolution requirements for similar ice—earth models, and the importance of bedrock mapping efforts in Antarctica.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Mattia Poinelli, Michael Schodlok, Eric Larour, Miren Vizcaino, and Riccardo Riva
The Cryosphere, 17, 2261–2283, https://doi.org/10.5194/tc-17-2261-2023, https://doi.org/10.5194/tc-17-2261-2023, 2023
Short summary
Short summary
Rifts are fractures on ice shelves that connect the ice on top to the ocean below. The impact of rifts on ocean circulation below Antarctic ice shelves has been largely unexplored as ocean models are commonly run at resolutions that are too coarse to resolve the presence of rifts. Our model simulations show that a kilometer-wide rift near the ice-shelf front modulates heat intrusion beneath the ice and inhibits basal melt. These processes are therefore worthy of further investigation.
Alex S. Gardner, Nicole-Jeanne Schlegel, and Eric Larour
Geosci. Model Dev., 16, 2277–2302, https://doi.org/10.5194/gmd-16-2277-2023, https://doi.org/10.5194/gmd-16-2277-2023, 2023
Short summary
Short summary
This is the first description of the open-source Glacier Energy and Mass Balance (GEMB) model. GEMB models the ice sheet and glacier surface–atmospheric energy and mass exchange, as well as the firn state. The model is evaluated against the current state of the art and in situ observations and is shown to perform well.
Flavien Beaud, Saif Aati, Ian Delaney, Surendra Adhikari, and Jean-Philippe Avouac
The Cryosphere, 16, 3123–3148, https://doi.org/10.5194/tc-16-3123-2022, https://doi.org/10.5194/tc-16-3123-2022, 2022
Short summary
Short summary
Understanding sliding at the bed of glaciers is essential to understand the future of sea-level rise and glacier-related hazards. Yet there is currently no universal law to describe this mechanism. We propose a universal glacier sliding law and a method to qualitatively constrain it. We use satellite remote sensing to create velocity maps over 6 years at Shisper Glacier, Pakistan, including its recent surge, and show that the observations corroborate the generalized theory.
Blake A. Castleman, Nicole-Jeanne Schlegel, Lambert Caron, Eric Larour, and Ala Khazendar
The Cryosphere, 16, 761–778, https://doi.org/10.5194/tc-16-761-2022, https://doi.org/10.5194/tc-16-761-2022, 2022
Short summary
Short summary
In the described study, we derive an uncertainty range for global mean sea level rise (SLR) contribution from Thwaites Glacier in a 200-year period under an extreme ocean warming scenario. We derive the spatial and vertical resolutions needed for bedrock data acquisition missions in order to limit global mean SLR contribution from Thwaites Glacier to ±2 cm in a 200-year period. We conduct sensitivity experiments in order to present the locations of critical regions in need of accurate mapping.
Kevin Bulthuis and Eric Larour
Geosci. Model Dev., 15, 1195–1217, https://doi.org/10.5194/gmd-15-1195-2022, https://doi.org/10.5194/gmd-15-1195-2022, 2022
Short summary
Short summary
We present and implement a stochastic solver to sample spatially and temporal varying uncertain input parameters in the Ice-sheet and Sea-level System Model, such as ice thickness or surface mass balance. We represent these sources of uncertainty using Gaussian random fields with Matérn covariance function. We generate random samples of this random field using an efficient computational approach based on solving a stochastic partial differential equation.
Daniel Cheng, Wayne Hayes, Eric Larour, Yara Mohajerani, Michael Wood, Isabella Velicogna, and Eric Rignot
The Cryosphere, 15, 1663–1675, https://doi.org/10.5194/tc-15-1663-2021, https://doi.org/10.5194/tc-15-1663-2021, 2021
Short summary
Short summary
Tracking changes in Greenland's glaciers is important for understanding Earth's climate, but it is time consuming to do so by hand. We train a program, called CALFIN, to automatically track these changes with human levels of accuracy. CALFIN is a special type of program called a neural network. This method can be applied to other glaciers and eventually other tracking tasks. This will enhance our understanding of the Greenland Ice Sheet and permit better models of Earth's climate.
Eric Larour, Lambert Caron, Mathieu Morlighem, Surendra Adhikari, Thomas Frederikse, Nicole-Jeanne Schlegel, Erik Ivins, Benjamin Hamlington, Robert Kopp, and Sophie Nowicki
Geosci. Model Dev., 13, 4925–4941, https://doi.org/10.5194/gmd-13-4925-2020, https://doi.org/10.5194/gmd-13-4925-2020, 2020
Short summary
Short summary
ISSM-SLPS is a new projection system for future sea level that increases the resolution and accuracy of current projection systems and improves the way uncertainty is treated in such projections. This will pave the way for better inclusion of state-of-the-art results from existing intercomparison efforts carried out by the scientific community, such as GlacierMIP2 or ISMIP6, into sea-level projections.
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Short summary
In this paper we use a large ensemble of Greenland ice sheet models forced by six different global climate models to project ice sheet changes and sea-level rise contributions over the 21st century.
The results for two different greenhouse gas concentration scenarios indicate that the Greenland ice sheet will continue to lose mass until 2100, with contributions to sea-level rise of 90 ± 50 mm and 32 ± 17 mm for the high (RCP8.5) and low (RCP2.6) scenario, respectively.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Surendra Adhikari, Erik R. Ivins, Eric Larour, Lambert Caron, and Helene Seroussi
The Cryosphere, 14, 2819–2833, https://doi.org/10.5194/tc-14-2819-2020, https://doi.org/10.5194/tc-14-2819-2020, 2020
Short summary
Short summary
The mathematical formalism presented in this paper aims at simplifying computational strategies for tracking ice–ocean mass exchange in the Earth system. To this end, we define a set of generic, and quite simple, descriptions of evolving land, ocean and ice interfaces and present a unified method to compute the sea-level contribution of evolving ice sheets. The formalism can be applied to arbitrary geometries and at all timescales.
Sophie Nowicki, Heiko Goelzer, Hélène Seroussi, Anthony J. Payne, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Patrick Alexander, Xylar S. Asay-Davis, Alice Barthel, Thomas J. Bracegirdle, Richard Cullather, Denis Felikson, Xavier Fettweis, Jonathan M. Gregory, Tore Hattermann, Nicolas C. Jourdain, Peter Kuipers Munneke, Eric Larour, Christopher M. Little, Mathieu Morlighem, Isabel Nias, Andrew Shepherd, Erika Simon, Donald Slater, Robin S. Smith, Fiammetta Straneo, Luke D. Trusel, Michiel R. van den Broeke, and Roderik van de Wal
The Cryosphere, 14, 2331–2368, https://doi.org/10.5194/tc-14-2331-2020, https://doi.org/10.5194/tc-14-2331-2020, 2020
Short summary
Short summary
This paper describes the experimental protocol for ice sheet models taking part in the Ice Sheet Model Intercomparion Project for CMIP6 (ISMIP6) and presents an overview of the atmospheric and oceanic datasets to be used for the simulations. The ISMIP6 framework allows for exploring the uncertainty in 21st century sea level change from the Greenland and Antarctic ice sheets.
Hélène Seroussi, Sophie Nowicki, Erika Simon, Ayako Abe-Ouchi, Torsten Albrecht, Julien Brondex, Stephen Cornford, Christophe Dumas, Fabien Gillet-Chaulet, Heiko Goelzer, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Thomas Kleiner, Eric Larour, Gunter Leguy, William H. Lipscomb, Daniel Lowry, Matthias Mengel, Mathieu Morlighem, Frank Pattyn, Anthony J. Payne, David Pollard, Stephen F. Price, Aurélien Quiquet, Thomas J. Reerink, Ronja Reese, Christian B. Rodehacke, Nicole-Jeanne Schlegel, Andrew Shepherd, Sainan Sun, Johannes Sutter, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, and Tong Zhang
The Cryosphere, 13, 1441–1471, https://doi.org/10.5194/tc-13-1441-2019, https://doi.org/10.5194/tc-13-1441-2019, 2019
Short summary
Short summary
We compare a wide range of Antarctic ice sheet simulations with varying initialization techniques and model parameters to understand the role they play on the projected evolution of this ice sheet under simple scenarios. Results are improved compared to previous assessments and show that continued improvements in the representation of the floating ice around Antarctica are critical to reduce the uncertainty in the future ice sheet contribution to sea level rise.
Surendra Adhikari, Erik R. Ivins, Thomas Frederikse, Felix W. Landerer, and Lambert Caron
Earth Syst. Sci. Data, 11, 629–646, https://doi.org/10.5194/essd-11-629-2019, https://doi.org/10.5194/essd-11-629-2019, 2019
Short summary
Short summary
We compute monthly solutions of changes in relative sea level, geoid height, and vertical bedrock displacement and uncertainties therein for the period April 2002–August 2016. These are based on the Release-06 GRACE Level-2 Stokes coefficients distributed by three premier data processing centers: CSR, GFZ, and JPL. Solutions are provided with and without Earth's rotational feedback included and in both the center-of-mass and center-of-figure reference frames.
Joshua K. Cuzzone, Nicole-Jeanne Schlegel, Mathieu Morlighem, Eric Larour, Jason P. Briner, Helene Seroussi, and Lambert Caron
The Cryosphere, 13, 879–893, https://doi.org/10.5194/tc-13-879-2019, https://doi.org/10.5194/tc-13-879-2019, 2019
Short summary
Short summary
We present ice sheet modeling results of ice retreat over southwestern Greenland during the last 12 000 years, and we also test the impact that model horizontal resolution has on differences in the simulated spatial retreat and its associated rate. Results indicate that model resolution plays a minor role in simulated retreat in areas where bed topography is not complex but plays an important role in areas where bed topography is complex (such as fjords).
Nicole-Jeanne Schlegel, Helene Seroussi, Michael P. Schodlok, Eric Y. Larour, Carmen Boening, Daniel Limonadi, Michael M. Watkins, Mathieu Morlighem, and Michiel R. van den Broeke
The Cryosphere, 12, 3511–3534, https://doi.org/10.5194/tc-12-3511-2018, https://doi.org/10.5194/tc-12-3511-2018, 2018
Short summary
Short summary
Using NASA supercomputers and a novel framework, in which Sandia National Laboratories' statistical software is embedded in the Jet Propulsion Laboratory's ice sheet model, we run a range of 100-year warming scenarios for Antarctica. We find that 1.2 m of sea level contribution is achievable, but not likely. Also, we find that bedrock topography beneath the ice drives potential for regional sea level contribution, highlighting the need for accurate bedrock mapping of the ice sheet interior.
Joshua K. Cuzzone, Mathieu Morlighem, Eric Larour, Nicole Schlegel, and Helene Seroussi
Geosci. Model Dev., 11, 1683–1694, https://doi.org/10.5194/gmd-11-1683-2018, https://doi.org/10.5194/gmd-11-1683-2018, 2018
Short summary
Short summary
This paper details the implementation of higher-order vertical finite elements in the Ice Sheet System Model (ISSM). When using higher-order vertical finite elements, fewer vertical layers are needed to accurately capture the thermal structure in an ice sheet versus a conventional linear vertical interpolation, therefore greatly improving model runtime speeds, particularly in higher-order stress balance ice sheet models. The implications for paleoclimate ice sheet simulations are discussed.
Konstanze Haubner, Jason E. Box, Nicole J. Schlegel, Eric Y. Larour, Mathieu Morlighem, Anne M. Solgaard, Kristian K. Kjeldsen, Signe H. Larsen, Eric Rignot, Todd K. Dupont, and Kurt H. Kjær
The Cryosphere, 12, 1511–1522, https://doi.org/10.5194/tc-12-1511-2018, https://doi.org/10.5194/tc-12-1511-2018, 2018
Short summary
Short summary
We investigate the effect of neglecting calving on Upernavik Isstrøm, West Greenland, between 1849 and 2012.
Our simulation is forced with observed terminus positions in discrete time steps and is responsive to the prescribed ice front changes.
Simulated frontal retreat is needed to obtain a realistic ice surface elevation and velocity evolution of Upernavik.
Using the prescribed terminus position change we gain insight to mass loss partitioning during different time periods.
Heiko Goelzer, Sophie Nowicki, Tamsin Edwards, Matthew Beckley, Ayako Abe-Ouchi, Andy Aschwanden, Reinhard Calov, Olivier Gagliardini, Fabien Gillet-Chaulet, Nicholas R. Golledge, Jonathan Gregory, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Joseph H. Kennedy, Eric Larour, William H. Lipscomb, Sébastien Le clec'h, Victoria Lee, Mathieu Morlighem, Frank Pattyn, Antony J. Payne, Christian Rodehacke, Martin Rückamp, Fuyuki Saito, Nicole Schlegel, Helene Seroussi, Andrew Shepherd, Sainan Sun, Roderik van de Wal, and Florian A. Ziemen
The Cryosphere, 12, 1433–1460, https://doi.org/10.5194/tc-12-1433-2018, https://doi.org/10.5194/tc-12-1433-2018, 2018
Short summary
Short summary
We have compared a wide spectrum of different initialisation techniques used in the ice sheet modelling community to define the modelled present-day Greenland ice sheet state as a starting point for physically based future-sea-level-change projections. Compared to earlier community-wide comparisons, we find better agreement across different models, which implies overall improvement of our understanding of what is needed to produce such initial states.
Eric Larour, Daniel Cheng, Gilberto Perez, Justin Quinn, Mathieu Morlighem, Bao Duong, Lan Nguyen, Kit Petrie, Silva Harounian, Daria Halkides, and Wayne Hayes
Geosci. Model Dev., 10, 4393–4403, https://doi.org/10.5194/gmd-10-4393-2017, https://doi.org/10.5194/gmd-10-4393-2017, 2017
Short summary
Short summary
This work presents a new way of carrying out simulations using the C++ based Ice Sheet System Model (ISSM) within a web page. This allows for a new generation of websites that can rely on the entire code of a climate model, without compromising or simplifying the physics implemented in such a model. We believe this approach will enable better education/outreach websites as well as improve access to complex climate models without compromising their integrity.
Feras Habbal, Eric Larour, Mathieu Morlighem, Helene Seroussi, Christopher P. Borstad, and Eric Rignot
Geosci. Model Dev., 10, 155–168, https://doi.org/10.5194/gmd-10-155-2017, https://doi.org/10.5194/gmd-10-155-2017, 2017
Short summary
Short summary
This work presents the results from testing a suite of numerical solvers on a standard ice sheet benchmark test. We note the relevance of this test to practical simulations and identify the fastest solvers for the transient simulation. The highlighted solvers show significant speed-ups in relation to the default solver (~1.5–100 times faster) and enable a new capability for solving massive, high-resolution models that are critical for improving projections of ice sheets and sea-level change.
Sophie M. J. Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, Heiko Goelzer, William Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, and Andrew Shepherd
Geosci. Model Dev., 9, 4521–4545, https://doi.org/10.5194/gmd-9-4521-2016, https://doi.org/10.5194/gmd-9-4521-2016, 2016
Short summary
Short summary
This paper describes an experimental protocol designed to quantify and understand the global sea level that arises due to past, present, and future changes in the Greenland and Antarctic ice sheets, along with investigating ice sheet–climate feedbacks. The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) protocol includes targeted experiments, and a set of output diagnostic related to ice sheets, that are part of the 6th phase of the Coupled Model Intercomparison Project (CMIP6).
Eric Larour, Jean Utke, Anton Bovin, Mathieu Morlighem, and Gilberto Perez
Geosci. Model Dev., 9, 3907–3918, https://doi.org/10.5194/gmd-9-3907-2016, https://doi.org/10.5194/gmd-9-3907-2016, 2016
Short summary
Short summary
We present an approach to derive the adjoint state of the C++ coded Ice Sheet System Model. The approach enables data assimilation of observations to improve projections of polar ice sheet mass balance and contribution to sea-level rise. It is applicable to other Earth science frameworks relying on C++ and parallel computing, is non-intrusive, and enables computation of transient adjoints for any type of physics, hence providing insights into the sensitivities of any model to its inputs.
Nicole-Jeanne Schlegel, David N. Wiese, Eric Y. Larour, Michael M. Watkins, Jason E. Box, Xavier Fettweis, and Michiel R. van den Broeke
The Cryosphere, 10, 1965–1989, https://doi.org/10.5194/tc-10-1965-2016, https://doi.org/10.5194/tc-10-1965-2016, 2016
Short summary
Short summary
We investigate Greenland Ice Sheet mass change from 2003–2012 by comparing observations from GRACE with state-of-the-art atmospheric and ice sheet model simulations. We find that the largest discrepancies (in the northwest and southeast) are likely controlled by errors in modeled surface climate as well as ice–ocean interaction and hydrological processes (not included in the models). Models should consider such processes at monthly to seasonal resolutions in order to improve future projections.
Patrick M. Alexander, Marco Tedesco, Nicole-Jeanne Schlegel, Scott B. Luthcke, Xavier Fettweis, and Eric Larour
The Cryosphere, 10, 1259–1277, https://doi.org/10.5194/tc-10-1259-2016, https://doi.org/10.5194/tc-10-1259-2016, 2016
Short summary
Short summary
We compared satellite-derived estimates of spatial and seasonal variations in Greenland Ice Sheet mass with a set of model simulations, revealing an agreement between models and satellite estimates for the ice-sheet-wide seasonal fluctuations in mass, but disagreement at finer spatial scales. The model simulations underestimate low-elevation mass loss. Improving the ability of models to capture variations and trends in Greenland Ice Sheet mass is important for estimating future sea level rise.
Johannes H. Bondzio, Hélène Seroussi, Mathieu Morlighem, Thomas Kleiner, Martin Rückamp, Angelika Humbert, and Eric Y. Larour
The Cryosphere, 10, 497–510, https://doi.org/10.5194/tc-10-497-2016, https://doi.org/10.5194/tc-10-497-2016, 2016
Short summary
Short summary
We implemented a level-set method in the ice sheet system model. This method allows us to dynamically evolve a calving front subject to user-defined calving rates. We apply the method to Jakobshavn Isbræ, West Greenland, and study its response to calving rate perturbations. We find its behaviour strongly dependent on the calving rate, which was to be expected. Both reduced basal drag and rheological shear margin weakening sustain the acceleration of this dynamic outlet glacier.
E. Larour, J. Utke, B. Csatho, A. Schenk, H. Seroussi, M. Morlighem, E. Rignot, N. Schlegel, and A. Khazendar
The Cryosphere, 8, 2335–2351, https://doi.org/10.5194/tc-8-2335-2014, https://doi.org/10.5194/tc-8-2335-2014, 2014
Short summary
Short summary
We present a temporal inversion of surface mass balance and basal friction for the Northeast Greenland Ice Sheet between 2003 and 2009, using the altimetry record from ICESat. The inversion relies on automatic differentiation of ISSM and demonstrates the feasibility of assimilating altimetry records into reconstructions of the Greenland Ice Sheet. The boundary conditions provide a snapshot of the state of the ice for this period and can be used for further process studies.
H. Seroussi, M. Morlighem, E. Larour, E. Rignot, and A. Khazendar
The Cryosphere, 8, 2075–2087, https://doi.org/10.5194/tc-8-2075-2014, https://doi.org/10.5194/tc-8-2075-2014, 2014
H. Seroussi, M. Morlighem, E. Rignot, J. Mouginot, E. Larour, M. Schodlok, and A. Khazendar
The Cryosphere, 8, 1699–1710, https://doi.org/10.5194/tc-8-1699-2014, https://doi.org/10.5194/tc-8-1699-2014, 2014
S. Adhikari, E. R. Ivins, E. Larour, H. Seroussi, M. Morlighem, and S. Nowicki
Solid Earth, 5, 569–584, https://doi.org/10.5194/se-5-569-2014, https://doi.org/10.5194/se-5-569-2014, 2014
I. Sasgen, H. Konrad, E. R. Ivins, M. R. Van den Broeke, J. L. Bamber, Z. Martinec, and V. Klemann
The Cryosphere, 7, 1499–1512, https://doi.org/10.5194/tc-7-1499-2013, https://doi.org/10.5194/tc-7-1499-2013, 2013
Related subject area
Climate and Earth system modeling
SURFER v3.0: a fast model with ice sheet tipping points and carbon cycle feedbacks for short- and long-term climate scenarios
NMH-CS 3.0: a C# programming language and Windows-system-based ecohydrological model derived from Noah-MP
A method for quantifying uncertainty in spatially interpolated meteorological data with application to daily maximum air temperature
Baseline Climate Variables for Earth System Modelling
PaleoSTeHM v1.0: a modern, scalable spatiotemporal hierarchical modeling framework for paleo-environmental data
The Tropical Basin Interaction Model Intercomparison Project (TBIMIP)
ZEMBA v1.0: an energy and moisture balance climate model to investigate Quaternary climate
Development and evaluation of a new 4DEnVar-based weakly coupled ocean data assimilation system in E3SMv2
TemDeep: a self-supervised framework for temporal downscaling of atmospheric fields at arbitrary time resolutions
The ensemble consistency test: from CESM to MPAS and beyond
Presentation, calibration and testing of the DCESS II Earth system model of intermediate complexity (version 1.0)
Synthesizing global carbon–nitrogen coupling effects – the MAGICC coupled carbon–nitrogen cycle model v1.0
Historical trends and controlling factors of isoprene emissions in CMIP6 Earth system models
Investigating carbon and nitrogen conservation in reported CMIP6 Earth system model data
From weather data to river runoff: using spatiotemporal convolutional networks for discharge forecasting
A Fortran–Python interface for integrating machine learning parameterization into earth system models
A rapid-application emissions-to-impacts tool for scenario assessment: Probabilistic Regional Impacts from Model patterns and Emissions (PRIME)
The DOE E3SM version 2.1: overview and assessment of the impacts of parameterized ocean submesoscales
WRF-ELM v1.0: a regional climate model to study land–atmosphere interactions over heterogeneous land use regions
Modeling commercial-scale CO2 storage in the gas hydrate stability zone with PFLOTRAN v6.0
DiuSST: a conceptual model of diurnal warm layers for idealized atmospheric simulations with interactive sea surface temperature
High-Resolution Model Intercomparison Project phase 2 (HighResMIP2) towards CMIP7
T&C-CROP: representing mechanistic crop growth with a terrestrial biosphere model (T&C, v1.5) – model formulation and validation
An updated non-intrusive, multi-scale, and flexible coupling interface in WRF 4.6.0
Monitoring and benchmarking Earth system model simulations with ESMValTool v2.12.0
The Earth Science Box Modeling Toolkit (ESBMTK 0.14.0.11): a Python library for research and teaching
CropSuite v1.0 – a comprehensive open-source crop suitability model considering climate variability for climate impact assessment
ICON ComIn – the ICON Community Interface (ComIn version 0.1.0, with ICON version 2024.01-01)
Using feature importance as an exploratory data analysis tool on Earth system models
A new metrics framework for quantifying and intercomparing atmospheric rivers in observations, reanalyses, and climate models
The real challenges for climate and weather modelling on its way to sustained exascale performance: a case study using ICON (v2.6.6)
COSP-RTTOV-1.0: Flexible radiation diagnostics to enable new science applications in model evaluation, climate change detection, and satellite mission design
Improving the representation of major Indian crops in the Community Land Model version 5.0 (CLM5) using site-scale crop data
Evaluation of CORDEX ERA5-forced NARCliM2.0 regional climate models over Australia using the Weather Research and Forecasting (WRF) model version 4.1.2
Design, evaluation, and future projections of the NARCliM2.0 CORDEX-CMIP6 Australasia regional climate ensemble
The Detection and Attribution Model Intercomparison Project (DAMIP v2.0) contribution to CMIP7
Amending the algorithm of aerosol–radiation interactions in WRF-Chem (v4.4)
The very-high-resolution configuration of the EC-Earth global model for HighResMIP
GOSI9: UK Global Ocean and Sea Ice configurations
Decomposition of skill scores for conditional verification: impact of Atlantic Multidecadal Oscillation phases on the predictability of decadal temperature forecasts
Virtual Integration of Satellite and In-situ Observation Networks (VISION) v1.0: In-Situ Observations Simulator (ISO_simulator)
Climate model downscaling in central Asia: a dynamical and a neural network approach
Advanced climate model evaluation with ESMValTool v2.11.0 using parallel, out-of-core, and distributed computing
Multi-year simulations at kilometre scale with the Integrated Forecasting System coupled to FESOM2.5 and NEMOv3.4
Subsurface hydrological controls on the short-term effects of hurricanes on nitrate–nitrogen runoff loading: a case study of Hurricane Ida using the Energy Exascale Earth System Model (E3SM) Land Model (v2.1)
The Development and Application of an Arctic Sea Ice Emulator v.1
CARIB12: a regional Community Earth System Model/Modular Ocean Model 6 configuration of the Caribbean Sea
Process-based modeling framework for sustainable irrigation management at the regional scale: Integrating rice production, water use, and greenhouse gas emissions
A regional physical-biogeochemical ocean model for marine resource applications in the Northeast Pacific (MOM6-COBALT-NEP10k v1.0)
Architectural insights into and training methodology optimization of Pangu-Weather
Victor Couplet, Marina Martínez Montero, and Michel Crucifix
Geosci. Model Dev., 18, 3081–3129, https://doi.org/10.5194/gmd-18-3081-2025, https://doi.org/10.5194/gmd-18-3081-2025, 2025
Short summary
Short summary
We present SURFER v3.0, a simple climate model designed to estimate the impact of CO2 and CH4 emissions on global temperatures, sea levels, and ocean pH. We added new carbon cycle processes and calibrated the model to observations and results from more complex models, enabling use over timescales ranging from decades to millions of years. SURFER v3.0 is fast, transparent, and easy to use, making it an ideal tool for policy assessments and suitable for educational purposes.
Yong-He Liu and Zong-Liang Yang
Geosci. Model Dev., 18, 3157–3174, https://doi.org/10.5194/gmd-18-3157-2025, https://doi.org/10.5194/gmd-18-3157-2025, 2025
Short summary
Short summary
NMH-CS 3.0 is a C#-based ecohydrological model reconstructed from the WRF-Hydro/Noah-MP model by translating the Fortran code of WRF-Hydro 3.0 and integrating a parallel river routing module. It enables efficient execution on multi-core personal computers. Simulations in the Yellow River basin demonstrate its consistency with WRF-Hydro outputs, providing a reliable alternative to the original Noah-MP model.
Conor T. Doherty, Weile Wang, Hirofumi Hashimoto, and Ian G. Brosnan
Geosci. Model Dev., 18, 3003–3016, https://doi.org/10.5194/gmd-18-3003-2025, https://doi.org/10.5194/gmd-18-3003-2025, 2025
Short summary
Short summary
We present, analyze, and validate a methodology for quantifying uncertainty in gridded meteorological data products produced by spatial interpolation. In a validation case study using daily maximum near-surface air temperature (Tmax), the method works well and produces predictive distributions with closely matching theoretical versus actual coverage levels. Application of the method reveals that the magnitude of uncertainty in interpolated Tmax varies significantly in both space and time.
Martin Juckes, Karl E. Taylor, Fabrizio Antonio, David Brayshaw, Carlo Buontempo, Jian Cao, Paul J. Durack, Michio Kawamiya, Hyungjun Kim, Tomas Lovato, Chloe Mackallah, Matthew Mizielinski, Alessandra Nuzzo, Martina Stockhause, Daniele Visioni, Jeremy Walton, Briony Turner, Eleanor O'Rourke, and Beth Dingley
Geosci. Model Dev., 18, 2639–2663, https://doi.org/10.5194/gmd-18-2639-2025, https://doi.org/10.5194/gmd-18-2639-2025, 2025
Short summary
Short summary
The Baseline Climate Variables for Earth System Modelling (ESM-BCVs) are defined as a list of 135 variables which have high utility for the evaluation and exploitation of climate simulations. The list reflects the most frequently used variables from Earth system models based on an assessment of data publication and download records from the largest archive of global climate projects.
Yucheng Lin, Robert E. Kopp, Alexander Reedy, Matteo Turilli, Shantenu Jha, and Erica L. Ashe
Geosci. Model Dev., 18, 2609–2637, https://doi.org/10.5194/gmd-18-2609-2025, https://doi.org/10.5194/gmd-18-2609-2025, 2025
Short summary
Short summary
PaleoSTeHM v1.0 is a state-of-the-art framework designed to reconstruct past environmental conditions using geological data. Built on modern machine learning techniques, it efficiently handles the sparse and noisy nature of paleo-records, allowing scientists to make accurate and scalable inferences about past environmental change. By using flexible statistical models, PaleoSTeHM separates different sources of uncertainty, improving the precision of historical climate reconstructions.
Ingo Richter, Ping Chang, Ping-Gin Chiu, Gokhan Danabasoglu, Takeshi Doi, Dietmar Dommenget, Guillaume Gastineau, Zoe E. Gillett, Aixue Hu, Takahito Kataoka, Noel S. Keenlyside, Fred Kucharski, Yuko M. Okumura, Wonsun Park, Malte F. Stuecker, Andréa S. Taschetto, Chunzai Wang, Stephen G. Yeager, and Sang-Wook Yeh
Geosci. Model Dev., 18, 2587–2608, https://doi.org/10.5194/gmd-18-2587-2025, https://doi.org/10.5194/gmd-18-2587-2025, 2025
Short summary
Short summary
Tropical ocean basins influence each other through multiple pathways and mechanisms, referred to here as tropical basin interaction (TBI). Many researchers have examined TBI using comprehensive climate models but have obtained conflicting results. This may be partly due to differences in experiment protocols and partly due to systematic model errors. The Tropical Basin Interaction Model Intercomparison Project (TBIMIP) aims to address this problem by designing a set of TBI experiments that will be performed by multiple models.
Daniel F. J. Gunning, Kerim H. Nisancioglu, Emilie Capron, and Roderik S. W. van de Wal
Geosci. Model Dev., 18, 2479–2508, https://doi.org/10.5194/gmd-18-2479-2025, https://doi.org/10.5194/gmd-18-2479-2025, 2025
Short summary
Short summary
This work documents the first results from ZEMBA: an energy balance model of the climate system. The model is a computationally efficient tool designed to study the response of climate to changes in the Earth's orbit. We demonstrate that ZEMBA reproduces many features of the Earth's climate for both the pre-industrial period and the Earth's most recent cold extreme – the Last Glacial Maximum. We intend to develop ZEMBA further and investigate the glacial cycles of the last 2.5 million years.
Pengfei Shi, L. Ruby Leung, and Bin Wang
Geosci. Model Dev., 18, 2443–2460, https://doi.org/10.5194/gmd-18-2443-2025, https://doi.org/10.5194/gmd-18-2443-2025, 2025
Short summary
Short summary
Improving climate predictions has significant socio-economic impacts. In this study, we develop and apply a new weakly coupled ocean data assimilation (WCODA) system to a coupled climate model. The WCODA system improves simulations of ocean temperature and salinity across many global regions. This system is meant to advance our understanding of the ocean's role in climate predictability.
Liwen Wang, Qian Li, Qi Lv, Xuan Peng, and Wei You
Geosci. Model Dev., 18, 2427–2442, https://doi.org/10.5194/gmd-18-2427-2025, https://doi.org/10.5194/gmd-18-2427-2025, 2025
Short summary
Short summary
Our research presents a novel deep learning approach called "TemDeep" for downscaling atmospheric variables at arbitrary time resolutions based on temporal coherence. Results show that our method can accurately recover evolution details superior to other methods, reaching 53.7 % in the restoration rate. Our findings are important for advancing weather forecasting models and enabling more precise and reliable predictions to support disaster preparedness, agriculture, and sustainable development.
Teo Price-Broncucia, Allison Baker, Dorit Hammerling, Michael Duda, and Rebecca Morrison
Geosci. Model Dev., 18, 2349–2372, https://doi.org/10.5194/gmd-18-2349-2025, https://doi.org/10.5194/gmd-18-2349-2025, 2025
Short summary
Short summary
The ensemble consistency test (ECT) and its ultrafast variant (UF-ECT) have become powerful tools in the development community for the identification of unwanted changes in the Community Earth System Model (CESM). We develop a generalized setup framework to enable easy adoption of the ECT approach for other model developers and communities. This framework specifies test parameters to accurately characterize model variability and balance test sensitivity and computational cost.
Esteban Fernández Villanueva and Gary Shaffer
Geosci. Model Dev., 18, 2161–2192, https://doi.org/10.5194/gmd-18-2161-2025, https://doi.org/10.5194/gmd-18-2161-2025, 2025
Short summary
Short summary
We describe, calibrate and test the Danish Center for Earth System Science (DCESS) II model, a new, broad, adaptable and fast Earth system model. DCESS II is designed for global simulations over timescales of years to millions of years using limited computer resources like a personal computer. With its flexibility and comprehensive treatment of the global carbon cycle, DCESS II is a useful, computationally friendly tool for simulations of past climates as well as for future Earth system projections.
Gang Tang, Zebedee Nicholls, Alexander Norton, Sönke Zaehle, and Malte Meinshausen
Geosci. Model Dev., 18, 2193–2230, https://doi.org/10.5194/gmd-18-2193-2025, https://doi.org/10.5194/gmd-18-2193-2025, 2025
Short summary
Short summary
We studied carbon–nitrogen coupling in Earth system models by developing a global carbon–nitrogen cycle model (CNit v1.0) within the widely used emulator MAGICC. CNit effectively reproduced the global carbon–nitrogen cycle dynamics observed in complex models. Our results show persistent nitrogen limitations on plant growth (net primary production) from 1850 to 2100, suggesting that nitrogen deficiency may constrain future land carbon sequestration.
Ngoc Thi Nhu Do, Kengo Sudo, Akihiko Ito, Louisa K. Emmons, Vaishali Naik, Kostas Tsigaridis, Øyvind Seland, Gerd A. Folberth, and Douglas I. Kelley
Geosci. Model Dev., 18, 2079–2109, https://doi.org/10.5194/gmd-18-2079-2025, https://doi.org/10.5194/gmd-18-2079-2025, 2025
Short summary
Short summary
Understanding historical isoprene emission changes is important for predicting future climate, but trends and their controlling factors remain uncertain. This study shows that long-term isoprene trends vary among Earth system models mainly due to partially incorporating CO2 effects and land cover changes rather than to climate. Future models that refine these factors’ effects on isoprene emissions, along with long-term observations, are essential for better understanding plant–climate interactions.
Gang Tang, Zebedee Nicholls, Chris Jones, Thomas Gasser, Alexander Norton, Tilo Ziehn, Alejandro Romero-Prieto, and Malte Meinshausen
Geosci. Model Dev., 18, 2111–2136, https://doi.org/10.5194/gmd-18-2111-2025, https://doi.org/10.5194/gmd-18-2111-2025, 2025
Short summary
Short summary
We analyzed carbon and nitrogen mass conservation in data from various Earth system models. Our findings reveal significant discrepancies between flux and pool size data, where cumulative imbalances can reach hundreds of gigatons of carbon or nitrogen. These imbalances appear primarily due to missing or inconsistently reported fluxes – especially for land-use and fire emissions. To enhance data quality, we recommend that future climate data protocols address this issue at the reporting stage.
Florian Börgel, Sven Karsten, Karoline Rummel, and Ulf Gräwe
Geosci. Model Dev., 18, 2005–2019, https://doi.org/10.5194/gmd-18-2005-2025, https://doi.org/10.5194/gmd-18-2005-2025, 2025
Short summary
Short summary
Forecasting river runoff, which is crucial for managing water resources and understanding climate impacts, can be challenging. This study introduces a new method using convolutional long short-term memory (ConvLSTM) networks, a machine learning model that processes spatial and temporal data. Focusing on the Baltic Sea region, our model uses weather data as input to predict daily river runoff for 97 rivers.
Tao Zhang, Cyril Morcrette, Meng Zhang, Wuyin Lin, Shaocheng Xie, Ye Liu, Kwinten Van Weverberg, and Joana Rodrigues
Geosci. Model Dev., 18, 1917–1928, https://doi.org/10.5194/gmd-18-1917-2025, https://doi.org/10.5194/gmd-18-1917-2025, 2025
Short summary
Short summary
Earth system models (ESMs) struggle with the uncertainties associated with parameterizing subgrid physics. Machine learning (ML) algorithms offer a solution by learning the important relationships and features from high-resolution models. To incorporate ML parameterizations into ESMs, we develop a Fortran–Python interface that allows for calling Python functions within Fortran-based ESMs. Through two case studies, this interface demonstrates its feasibility, modularity, and effectiveness.
Camilla Mathison, Eleanor J. Burke, Gregory Munday, Chris D. Jones, Chris J. Smith, Norman J. Steinert, Andy J. Wiltshire, Chris Huntingford, Eszter Kovacs, Laila K. Gohar, Rebecca M. Varney, and Douglas McNeall
Geosci. Model Dev., 18, 1785–1808, https://doi.org/10.5194/gmd-18-1785-2025, https://doi.org/10.5194/gmd-18-1785-2025, 2025
Short summary
Short summary
We present PRIME (Probabilistic Regional Impacts from Model patterns and Emissions), which is designed to take new emissions scenarios and rapidly provide regional impact information. PRIME allows large ensembles to be run on multi-centennial timescales, including the analysis of many important variables for impact assessments. Our evaluation shows that PRIME reproduces the climate response for known scenarios, providing confidence in using PRIME for novel scenarios.
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025, https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed-layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer bias reduction in temperature, salinity, and sea ice extent in the North Atlantic; a small strengthening of the Atlantic meridional overturning circulation; and improvements to many atmospheric climatological variables.
Huilin Huang, Yun Qian, Gautam Bisht, Jiali Wang, Tirthankar Chakraborty, Dalei Hao, Jianfeng Li, Travis Thurber, Balwinder Singh, Zhao Yang, Ye Liu, Pengfei Xue, William J. Sacks, Ethan Coon, and Robert Hetland
Geosci. Model Dev., 18, 1427–1443, https://doi.org/10.5194/gmd-18-1427-2025, https://doi.org/10.5194/gmd-18-1427-2025, 2025
Short summary
Short summary
We integrate the E3SM Land Model (ELM) with the WRF model through the Lightweight Infrastructure for Land Atmosphere Coupling (LILAC) Earth System Modeling Framework (ESMF). This framework includes a top-level driver, LILAC, for variable communication between WRF and ELM and ESMF caps for ELM initialization, execution, and finalization. The LILAC–ESMF framework maintains the integrity of the ELM's source code structure and facilitates the transfer of future ELM model developments to WRF-ELM.
Michael Nole, Jonah Bartrand, Fawz Naim, and Glenn Hammond
Geosci. Model Dev., 18, 1413–1425, https://doi.org/10.5194/gmd-18-1413-2025, https://doi.org/10.5194/gmd-18-1413-2025, 2025
Short summary
Short summary
Safe carbon dioxide (CO2) storage is likely to be critical for mitigating some of the most severe effects of climate change. We present a simulation framework for modeling CO2 storage beneath the seafloor, where CO2 can form a solid. This can aid in permanent CO2 storage for long periods of time. Our models show what a commercial-scale CO2 injection would look like in a marine environment. We discuss what would need to be considered when designing a subsea CO2 injection.
Reyk Börner, Jan O. Haerter, and Romain Fiévet
Geosci. Model Dev., 18, 1333–1356, https://doi.org/10.5194/gmd-18-1333-2025, https://doi.org/10.5194/gmd-18-1333-2025, 2025
Short summary
Short summary
The daily cycle of sea surface temperature (SST) impacts clouds above the ocean and could influence the clustering of thunderstorms linked to extreme rainfall and hurricanes. However, daily SST variability is often poorly represented in modeling studies of how clouds cluster. We present a simple, wind-responsive model of upper-ocean temperature for use in atmospheric simulations. Evaluating the model against observations, we show that it performs significantly better than common slab models.
Malcolm J. Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
Geosci. Model Dev., 18, 1307–1332, https://doi.org/10.5194/gmd-18-1307-2025, https://doi.org/10.5194/gmd-18-1307-2025, 2025
Short summary
Short summary
HighResMIP2 is a model intercomparison project focusing on high-resolution global climate models, that is, those with grid spacings of 25 km or less in the atmosphere and ocean, using simulations of decades to a century in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present-day and future projections and to build links with other communities to provide more robust climate information.
Jordi Buckley Paules, Simone Fatichi, Bonnie Warring, and Athanasios Paschalis
Geosci. Model Dev., 18, 1287–1305, https://doi.org/10.5194/gmd-18-1287-2025, https://doi.org/10.5194/gmd-18-1287-2025, 2025
Short summary
Short summary
We present and validate enhancements to the process-based T&C model aimed at improving its representation of crop growth and management practices. The updated model, T&C-CROP, enables applications such as analysing the hydrological and carbon storage impacts of land use transitions (e.g. conversions between crops, forests, and pastures) and optimizing irrigation and fertilization strategies in response to climate change.
Sébastien Masson, Swen Jullien, Eric Maisonnave, David Gill, Guillaume Samson, Mathieu Le Corre, and Lionel Renault
Geosci. Model Dev., 18, 1241–1263, https://doi.org/10.5194/gmd-18-1241-2025, https://doi.org/10.5194/gmd-18-1241-2025, 2025
Short summary
Short summary
This article details a new feature we implemented in the popular regional atmospheric model WRF. This feature allows for data exchange between WRF and any other model (e.g. an ocean model) using the coupling library Ocean–Atmosphere–Sea–Ice–Soil Model Coupling Toolkit (OASIS3-MCT). This coupling interface is designed to be non-intrusive, flexible and modular. It also offers the possibility of taking into account the nested zooms used in WRF or in the models with which it is coupled.
Axel Lauer, Lisa Bock, Birgit Hassler, Patrick Jöckel, Lukas Ruhe, and Manuel Schlund
Geosci. Model Dev., 18, 1169–1188, https://doi.org/10.5194/gmd-18-1169-2025, https://doi.org/10.5194/gmd-18-1169-2025, 2025
Short summary
Short summary
Earth system models are important tools to improve our understanding of current climate and to project climate change. Thus, it is crucial to understand possible shortcomings in the models. New features of the ESMValTool software package allow one to compare and visualize a model's performance with respect to reproducing observations in the context of other climate models in an easy and user-friendly way. We aim to help model developers assess and monitor climate simulations more efficiently.
Ulrich G. Wortmann, Tina Tsan, Mahrukh Niazi, Irene A. Ma, Ruben Navasardyan, Magnus-Roland Marun, Bernardo S. Chede, Jingwen Zhong, and Morgan Wolfe
Geosci. Model Dev., 18, 1155–1167, https://doi.org/10.5194/gmd-18-1155-2025, https://doi.org/10.5194/gmd-18-1155-2025, 2025
Short summary
Short summary
The Earth Science Box Modeling Toolkit (ESBMTK) is a user-friendly Python library that simplifies the creation of models to study earth system processes, such as the carbon cycle and ocean chemistry. It enhances learning by emphasizing concepts over programming and is accessible to students and researchers alike. By automating complex calculations and promoting code clarity, ESBMTK accelerates model development while improving reproducibility and the usability of scientific research.
Florian Zabel, Matthias Knüttel, and Benjamin Poschlod
Geosci. Model Dev., 18, 1067–1087, https://doi.org/10.5194/gmd-18-1067-2025, https://doi.org/10.5194/gmd-18-1067-2025, 2025
Short summary
Short summary
CropSuite is a new open-source crop suitability model. It provides a GUI and a wide range of options, including a spatial downscaling of climate data. We apply CropSuite to 48 staple and opportunity crops at a 1 km spatial resolution in Africa. We find that climate variability significantly impacts suitable areas but also affects optimal sowing dates and multiple cropping potential. The results provide valuable information for climate impact assessments, adaptation, and land-use planning.
Kerstin Hartung, Bastian Kern, Nils-Arne Dreier, Jörn Geisbüsch, Mahnoosh Haghighatnasab, Patrick Jöckel, Astrid Kerkweg, Wilton Jaciel Loch, Florian Prill, and Daniel Rieger
Geosci. Model Dev., 18, 1001–1015, https://doi.org/10.5194/gmd-18-1001-2025, https://doi.org/10.5194/gmd-18-1001-2025, 2025
Short summary
Short summary
The ICOsahedral Non-hydrostatic (ICON) model system Community Interface (ComIn) library supports connecting third-party modules to the ICON model. Third-party modules can range from simple diagnostic Python scripts to full chemistry models. ComIn offers a low barrier for code extensions to ICON, provides multi-language support (Fortran, C/C++, and Python), and reduces the migration effort in response to new ICON releases. This paper presents the ComIn design principles and a range of use cases.
Daniel Ries, Katherine Goode, Kellie McClernon, and Benjamin Hillman
Geosci. Model Dev., 18, 1041–1065, https://doi.org/10.5194/gmd-18-1041-2025, https://doi.org/10.5194/gmd-18-1041-2025, 2025
Short summary
Short summary
Machine learning has advanced research in the climate science domain, but its models are difficult to understand. In order to understand the impacts and consequences of climate interventions such as stratospheric aerosol injection, complex models are often necessary. We use a case study to illustrate how we can understand the inner workings of a complex model. We present this technique as an exploratory tool that can be used to quickly discover and assess relationships in complex climate data.
Bo Dong, Paul Ullrich, Jiwoo Lee, Peter Gleckler, Kristin Chang, and Travis A. O'Brien
Geosci. Model Dev., 18, 961–976, https://doi.org/10.5194/gmd-18-961-2025, https://doi.org/10.5194/gmd-18-961-2025, 2025
Short summary
Short summary
A metrics package designed for easy analysis of atmospheric river (AR) characteristics and statistics is presented. The tool is efficient for diagnosing systematic AR bias in climate models and useful for evaluating new AR characteristics in model simulations. In climate models, landfalling AR precipitation shows dry biases globally, and AR tracks are farther poleward (equatorward) in the North and South Atlantic (South Pacific and Indian Ocean).
Panagiotis Adamidis, Erik Pfister, Hendryk Bockelmann, Dominik Zobel, Jens-Olaf Beismann, and Marek Jacob
Geosci. Model Dev., 18, 905–919, https://doi.org/10.5194/gmd-18-905-2025, https://doi.org/10.5194/gmd-18-905-2025, 2025
Short summary
Short summary
In this paper, we investigated performance indicators of the climate model ICON (ICOsahedral Nonhydrostatic) on different compute architectures to answer the question of how to generate high-resolution climate simulations. Evidently, it is not enough to use more computing units of the conventionally used architectures; higher memory throughput is the most promising approach. More potential can be gained from single-node optimization rather than simply increasing the number of compute nodes.
Jonah K. Shaw, Dustin J. Swales, Sergio DeSouza-Machado, David D. Turner, Jennifer E. Kay, and David P. Schneider
EGUsphere, https://doi.org/10.5194/egusphere-2025-169, https://doi.org/10.5194/egusphere-2025-169, 2025
Short summary
Short summary
Satellites have observed earth's emission of infrared radiation since the 1970s. Because infrared wavelengths interact with the atmosphere in distinct ways, these observations contain information about the earth and atmosphere. We present a tool that runs alongside global climate models and produces output that can be directly compared with satellite measurements of infrared radiation. We then use this tool for climate model evaluation, climate change detection, and satellite mission design.
Kangari Narender Reddy, Somnath Baidya Roy, Sam S. Rabin, Danica L. Lombardozzi, Gudimetla Venkateswara Varma, Ruchira Biswas, and Devavat Chiru Naik
Geosci. Model Dev., 18, 763–785, https://doi.org/10.5194/gmd-18-763-2025, https://doi.org/10.5194/gmd-18-763-2025, 2025
Short summary
Short summary
The study aimed to improve the representation of wheat and rice in a land model for the Indian region. The modified model performed significantly better than the default model in simulating crop phenology, yield, and carbon, water, and energy fluxes compared to observations. The study highlights the need for global land models to use region-specific crop parameters for accurately simulating vegetation processes and land surface processes.
Giovanni Di Virgilio, Fei Ji, Eugene Tam, Jason P. Evans, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Yue Li, and Matthew L. Riley
Geosci. Model Dev., 18, 703–724, https://doi.org/10.5194/gmd-18-703-2025, https://doi.org/10.5194/gmd-18-703-2025, 2025
Short summary
Short summary
We evaluate the skill in simulating the Australian climate of some of the latest generation of regional climate models. We show when and where the models simulate this climate with high skill versus model limitations. We show how new models perform relative to the previous-generation models, assessing how model design features may underlie key performance improvements. This work is of national and international relevance as it can help guide the use and interpretation of climate projections.
Giovanni Di Virgilio, Jason P. Evans, Fei Ji, Eugene Tam, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Stephen White, Yue Li, Moutassem El Rafei, Rishav Goyal, Matthew L. Riley, and Jyothi Lingala
Geosci. Model Dev., 18, 671–702, https://doi.org/10.5194/gmd-18-671-2025, https://doi.org/10.5194/gmd-18-671-2025, 2025
Short summary
Short summary
We introduce new climate models that simulate Australia’s future climate at regional scales, including at an unprecedented resolution of 4 km for 1950–2100. We describe the model design process used to create these new climate models. We show how the new models perform relative to previous-generation models and compare their climate projections. This work is of national and international relevance as it can help guide climate model design and the use and interpretation of climate projections.
Nathan P. Gillett, Isla R. Simpson, Gabi Hegerl, Reto Knutti, Dann Mitchell, Aurélien Ribes, Hideo Shiogama, Dáithí Stone, Claudia Tebaldi, Piotr Wolski, Wenxia Zhang, and Vivek K. Arora
EGUsphere, https://doi.org/10.5194/egusphere-2024-4086, https://doi.org/10.5194/egusphere-2024-4086, 2025
Short summary
Short summary
Climate model simulations of the response to human and natural influences together, natural climate influences alone, and greenhouse gases alone, among others, are key to quantifying human influence on the climate. The last set of such coordinated simulations underpinned key findings in the last Intergovernmental Panel on Climate Change (IPCC) report. Here we propose a new set of such simulations to be used in the next generation of attribution studies, and to underpin the next IPCC report.
Jiawang Feng, Chun Zhao, Qiuyan Du, Zining Yang, and Chen Jin
Geosci. Model Dev., 18, 585–603, https://doi.org/10.5194/gmd-18-585-2025, https://doi.org/10.5194/gmd-18-585-2025, 2025
Short summary
Short summary
In this study, we improved the calculation of how aerosols in the air interact with radiation in WRF-Chem. The original model used a simplified method, but we developed a more accurate approach. We found that this method significantly changes the properties of the estimated aerosols and their effects on radiation, especially for dust aerosols. It also impacts the simulated weather conditions. Our work highlights the importance of correctly representing aerosol–radiation interactions in models.
Eduardo Moreno-Chamarro, Thomas Arsouze, Mario Acosta, Pierre-Antoine Bretonnière, Miguel Castrillo, Eric Ferrer, Amanda Frigola, Daria Kuznetsova, Eneko Martin-Martinez, Pablo Ortega, and Sergi Palomas
Geosci. Model Dev., 18, 461–482, https://doi.org/10.5194/gmd-18-461-2025, https://doi.org/10.5194/gmd-18-461-2025, 2025
Short summary
Short summary
We present the high-resolution model version of the EC-Earth global climate model to contribute to HighResMIP. The combined model resolution is about 10–15 km in both the ocean and atmosphere, which makes it one of the finest ever used to complete historical and scenario simulations. This model is compared with two lower-resolution versions, with a 100 km and a 25 km grid. The three models are compared with observations to study the improvements thanks to the increased resolution.
Catherine Guiavarc'h, David Storkey, Adam T. Blaker, Ed Blockley, Alex Megann, Helene Hewitt, Michael J. Bell, Daley Calvert, Dan Copsey, Bablu Sinha, Sophia Moreton, Pierre Mathiot, and Bo An
Geosci. Model Dev., 18, 377–403, https://doi.org/10.5194/gmd-18-377-2025, https://doi.org/10.5194/gmd-18-377-2025, 2025
Short summary
Short summary
The Global Ocean and Sea Ice configuration version 9 (GOSI9) is the new UK hierarchy of model configurations based on the Nucleus for European Modelling of the Ocean (NEMO) and available at three resolutions. It will be used for various applications, e.g. weather forecasting and climate prediction. It improves upon the previous version by reducing global temperature and salinity biases and enhancing the representation of Arctic sea ice and the Antarctic Circumpolar Current.
Andy Richling, Jens Grieger, and Henning W. Rust
Geosci. Model Dev., 18, 361–375, https://doi.org/10.5194/gmd-18-361-2025, https://doi.org/10.5194/gmd-18-361-2025, 2025
Short summary
Short summary
The performance of weather and climate prediction systems is variable in time and space. It is of interest how this performance varies in different situations. We provide a decomposition of a skill score (a measure of forecast performance) as a tool for detailed assessment of performance variability to support model development or forecast improvement. The framework is exemplified with decadal forecasts to assess the impact of different ocean states in the North Atlantic on temperature forecast.
Maria R. Russo, Sadie L. Bartholomew, David Hassell, Alex M. Mason, Erica Neininger, A. James Perman, David A. J. Sproson, Duncan Watson-Parris, and Nathan Luke Abraham
Geosci. Model Dev., 18, 181–191, https://doi.org/10.5194/gmd-18-181-2025, https://doi.org/10.5194/gmd-18-181-2025, 2025
Short summary
Short summary
Observational data and modelling capabilities have expanded in recent years, but there are still barriers preventing these two data sources from being used in synergy. Proper comparison requires generating, storing, and handling a large amount of data. This work describes the first step in the development of a new set of software tools, the VISION toolkit, which can enable the easy and efficient integration of observational and model data required for model evaluation.
Bijan Fallah, Masoud Rostami, Emmanuele Russo, Paula Harder, Christoph Menz, Peter Hoffmann, Iulii Didovets, and Fred F. Hattermann
Geosci. Model Dev., 18, 161–180, https://doi.org/10.5194/gmd-18-161-2025, https://doi.org/10.5194/gmd-18-161-2025, 2025
Short summary
Short summary
We tried to contribute to a local climate change impact study in central Asia, a region that is water-scarce and vulnerable to global climate change. We use regional models and machine learning to produce reliable local data from global climate models. We find that regional models show more realistic and detailed changes in heavy precipitation than global climate models. Our work can help assess the future risks of extreme events and plan adaptation strategies in central Asia.
Manuel Schlund, Bouwe Andela, Jörg Benke, Ruth Comer, Birgit Hassler, Emma Hogan, Peter Kalverla, Axel Lauer, Bill Little, Saskia Loosveldt Tomas, Francesco Nattino, Patrick Peglar, Valeriu Predoi, Stef Smeets, Stephen Worsley, Martin Yeo, and Klaus Zimmermann
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-236, https://doi.org/10.5194/gmd-2024-236, 2025
Revised manuscript accepted for GMD
Short summary
Short summary
The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool for the evaluation of Earth system models. Here, we describe recent significant improvements of ESMValTool’s computational efficiency including parallel, out-of-core, and distributed computing. Evaluations with the enhanced version of ESMValTool are faster, use less computational resources, and can handle input data larger than the available memory.
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025, https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary
Short summary
Detailed global climate model simulations have been created based on a numerical weather prediction model, offering more accurate spatial detail down to the scale of individual cities ("kilometre-scale") and a better understanding of climate phenomena such as atmospheric storms, whirls in the ocean, and cracks in sea ice. The new model aims to provide globally consistent information on local climate change with greater precision, benefiting environmental planning and local impact modelling.
Yilin Fang, Hoang Viet Tran, and L. Ruby Leung
Geosci. Model Dev., 18, 19–32, https://doi.org/10.5194/gmd-18-19-2025, https://doi.org/10.5194/gmd-18-19-2025, 2025
Short summary
Short summary
Hurricanes may worsen water quality in the lower Mississippi River basin (LMRB) by increasing nutrient runoff. We found that runoff parameterizations greatly affect nitrate–nitrogen runoff simulated using an Earth system land model. Our simulations predicted increased nitrogen runoff in the LMRB during Hurricane Ida in 2021, albeit less pronounced than the observations, indicating areas for model improvement to better understand and manage nutrient runoff loss during hurricanes in the region.
Sian Megan Chilcott and Malte Meinshausen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-203, https://doi.org/10.5194/gmd-2024-203, 2025
Preprint under review for GMD
Short summary
Short summary
Climate models are expensive to run and often underestimate how sensitive Arctic sea ice is to climate change. To address this, we developed a simple model that emulates the response of sea ice to global warming. We find the remaining carbon dioxide (CO2) emissions that will avoid a seasonally ice-free Arctic Ocean is lower than previous estimates of 821 Gigatonnes of CO2. Our model also provides insights into the future of winter sea ice, examining a larger ensemble than previously possible.
Giovanni Seijo-Ellis, Donata Giglio, Gustavo Marques, and Frank Bryan
Geosci. Model Dev., 17, 8989–9021, https://doi.org/10.5194/gmd-17-8989-2024, https://doi.org/10.5194/gmd-17-8989-2024, 2024
Short summary
Short summary
A CESM–MOM6 regional configuration of the Caribbean Sea was developed in response to the rising need for high-resolution models for climate impact studies. The configuration is validated for the period 2000–2020 and improves significant errors in a low-resolution model. Oceanic properties are well represented. Patterns of freshwater associated with the Amazon River are well captured, and the mean flows of ocean waters across multiple passages in the Caribbean Sea agree with observations.
Yan Bo, Hao Liang, Tao Li, and Feng Zhou
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-212, https://doi.org/10.5194/gmd-2024-212, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This study proposed an advancing framework for modeling regional rice production, water use, and greenhouse gas emissions. The framework integrated a process-based soil-crop model with key physiological effects, a novel model upscaling method, and the NSGA-II multi-objective optimization algorithm at a parallel computing platform. The framework provides a valuable tool for irrigation optimization to deliver co-benefits of ensuring food production, reducing water use and greenhouse gas emissions.
Elizabeth J. Drenkard, Charles A. Stock, Andrew C. Ross, Yi-Cheng Teng, Theresa Morrison, Wei Cheng, Alistair Adcroft, Enrique Curchitser, Raphael Dussin, Robert Hallberg, Claudine Hauri, Katherine Hedstrom, Albert Hermann, Michael G. Jacox, Kelly A. Kearney, Remi Pages, Darren J. Pilcher, Mercedes Pozo Buil, Vivek Seelanki, and Niki Zadeh
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-195, https://doi.org/10.5194/gmd-2024-195, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We made a new regional ocean model to assist fisheries and ecosystem managers make decisions in the Northeast Pacific Ocean (NEP). We found that the model did well simulating past ocean conditions like temperature, and nutrient and oxygen levels, and can even reproduce metrics used by and important to ecosystem managers.
Deifilia To, Julian Quinting, Gholam Ali Hoshyaripour, Markus Götz, Achim Streit, and Charlotte Debus
Geosci. Model Dev., 17, 8873–8884, https://doi.org/10.5194/gmd-17-8873-2024, https://doi.org/10.5194/gmd-17-8873-2024, 2024
Short summary
Short summary
Pangu-Weather is a breakthrough machine learning model in medium-range weather forecasting that considers 3D atmospheric information. We show that using a simpler 2D framework improves robustness, speeds up training, and reduces computational needs by 20 %–30 %. We introduce a training procedure that varies the importance of atmospheric variables over time to speed up training convergence. Decreasing computational demand increases the accessibility of training and working with the model.
Cited articles
A, G., Wahr, J., and Zhong, S.: Computations of the viscoelastic response of
a 3-D compressible Earth to surface loading: an application to Glacial
Isostatic Adjustment in Antarctica and Canada, Geophys. J. Int., 192,
557–572,
https://doi.org/10.1093/gji/ggs030, 2013.
Adhikari, S., Ivins, E. R., Larour, E., Seroussi, H., Morlighem, M., and
Nowicki, S.: Future Antarctic bed topography and its implications for ice
sheet dynamics, Solid Earth, 5, 569–584, https://doi.org/10.5194/se-5-569-2014, 2014.
Bamber, J. L. and Aspinall, W. P.: An expert judgement assessment of future
sea level rise from the ice sheets, Nature Clim. Change, 3, 424–427, 2013.
Bettadpur, S.: GRACE 327-742, UTCSR Level-2 Processing Standards Document
for Level-2 Product Release 0005, Tech. rep., The University of Texas at
Austin, Texas, USA, 2012.
Blewitt, G.: Self-consistency in reference frames, geocenter definition, and
surface loading of the solid Earth, J. Geophys. Res., 108, B22103,
https://doi.org/10.1029/2002JB002082,
2003.
Bouman, J., Fuchs, M., Ivins, E. R., van der Wal, W., Schrama, E.,
Visser, P., and Horwath, M.: Antarctic outlet glacier mass change resolved at
basin scale from satellite gravity gradiometry, Geophys. Res. Lett., 41,
5919–5926, 2014.
Chambers, D. P. and Bonin, J. A.: Evaluation of Release-05 GRACE
time-variable gravity coefficients over the ocean, Ocean Sci., 8, 859–868,
https://doi.org/10.5194/os-8-859-2012, 2012.
Chen, J. L., Wilson, C. R., and Seo, K. W.: Optimized smoothing of Gravity Recovery and Climate
Experiment (GRACE) time-variable gravity observations, J. Geophys. Res., 111, B06408, https://doi.org/10.1029/2005JB004064, 2006.
Chen, J. L., Wilson, C. R., Ries, J. C., and Tapley, B. D.: Rapid ice melting drives Earth's pole to the east, Geophys. Res. Lett., 40, 2625–2630,
https://doi.org/10.1002/grl.50552, 2013.
Cheng, M., Ries, J. C., and Tapley, B. D.: Variations of the Earth's figure axis from satellite laser ranging and GRACE, J. Geophys. Res., 116, B01409,
https://doi.org/10.1029/2010JB000850, 2011.
Cheng, M. K., Tapley, B. D., and Ries, J. C.: Deceleration in the Earth's
oblateness, J. Geophys. Res., 118, 740–747,
https://doi.org/10.1002/jgrb.50058,
2013a.
Cheng, M. K., Tapley, B. D., and Ries, J. C.: Geocenter variations
from analysis of SLR data, in: Reference Frames for Applications in
Geosciences, International Association of Geodesy
Symposia, 4–8 October 2010, Marne-La-Vallee, France, vol. 138, 19–26, 2013b.
Clark, J. A.: Global sea level changes since the Last Glacial Maximum and sea
level constraints on the ice sheet disintegration history, PhD thesis,
University of Colorado, Colorado, USA, 1977.
Crossley, D., de Linage, C., Hinderer, J., Boy, J. P., and Famiglietti, J.:
A comparison of the gravity field over Central Europe from superconducting
gravimeters, GRACE and global hydrological models, using EOF analysis,
Geophys. J. Int., 189, 877–897,
https://doi.org/10.1111/j.1365-246X.2012.05404.x,
2012.
de Boer, B., Stocchi, P., and van de Wal, R. S. W.: A fully coupled 3-D
ice-sheet–sea-level model: algorithm and applications, Geosci. Model Dev.,
7, 2141–2156, https://doi.org/10.5194/gmd-7-2141-2014, 2014.
Dietrich, R., Ivins, E. R., Casassa, G., Lange, H., Wendt, J., and Fritsche,
M.: Rapid crustal uplift in Patagonia due to enhanced ice loss, Earth Planet.
Sc. Lett., 289, 22–29, 2010.
Douglas, B. C., Cheney, R. E., Miller, L., Carter, W. E., and
Robertson, D. S.: Greenland Ice Sheet: Is it growing or shrinking?,
Science, 248, p. 288, 1990.
Drygalski, E. V.: Die Geoid-Deformation der Kontinente zur Eiszeit,
PhD thesis, Zeitschrift der Gesellschaft für Erdkunde zu Berlin, Berlin,
Germany, 1887.
Ettema, J., van den Broeke, M. R., van Meijgaard, E., van de Berg, W. J.,
Bamber, J. E. and Bales, R. C.: Higher surface mass balance of the
Greenland Ice Sheet revealed by high-resolution climate modeling,
Geophys. Res. Lett., 36, 1–5, 2009.
Farrell, W. E. and Clark, J. A.: On postglacial sea level, Geophys. J. Roy.
Astr. S., 46, 647–667, 1976.
Gagliardini, O. and Zwinger, T.: The ISMIP-HOM benchmark experiments
performed using the Finite-Element code Elmer, The Cryosphere, 2, 67–76,
https://doi.org/10.5194/tc-2-67-2008, 2008.
Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A.,
Wahr, J., Berthier, E., Hock, R., Pfeffer, W. T., Kaser, G.,
Ligtenberg, S. R. M., Bolch, T., Sharp, M. J., Hagen, J. O., van den
Broeke, M. R., and Paul, F.: A reconciled estimate of glacier contributions
to sea level rise: 2003 to 2009, Science, 340, 852–857,
https://doi.org/10.1126/science.1234532,
2013.
Gasperini, P. and Sabadini, R.: Finite element modeling of lateral viscosity
heterogeneities and post-glacial rebound, Tectonophysics, 179, 141–149,
1990.
Geuzaine, C. and Remacle, J. F.: Gmsh: a three-dimensional finite element
mesh generator with built-in pre- and post-processing facilities, Int. J.
Numer. Meth. Eng., 79, 1309–1331, 2009.
Gomez, N., Pollard, D., and Mitrovica, J. X.: A 3-D coupled ice sheet –
sea level model applied to Antarctica through the last 40 ky, Earth
Planet. Sc. Lett., 384, 88–99, 2013.
Gross, R. S.: The excitation of the Chandler wobble, Geophys. Res. Lett.,
27, 2329–2332, 2000.
Hagedoorn, J. M., Wolf, D., and Martinec, Z.: An estimate of global mean
sea-level rise inferred from tide-gauge measurements using glacial-isostatic
models consistent with the relative sea-level record, Pure Appl. Geophys.,
164, 791–818, 2007.
Hay, C. C., Morrow, E., Kopp, R. E., and Mitrovica, J. X.: Probabilistic
reanalysis of twentieth-century sea-level rise, Nature, 517, 481–484,
https://doi.org/10.1038/nature14093, 2015.
Hecht, F.: BAMG: Bidimensional Anisotropic Mesh Generator, Tech. rep.,
FreeFem++, University Pierre et Marie Curie, France, 2006.
Heimbach, P: The MITgcm/ECCO adjoint modeling infrastructure, CLIVAR
Exchanges, 44, 13–17, 2008.
Ivins, E. R., James, T. S., Wahr, J., O. Schrama, E. J., Landerer, F. W., and
Simon, K. M.: Antarctic contribution to sea level rise observed by GRACE
with improved GIA correction, J. Geophys. Res., 118, 3126–3141,
https://doi.org/10.1002/jgrb.50208, 2013.
James, T. S. and Ivins, E. R.: Predictions of Antarctic crustal motions
driven by present-day ice sheet evolution and by isostatic memory of the
Last Glacial Maximum, J. Geophys. Res., 103, 4993–5017, 1998.
Jevrejeva, S., Grinsted, A., and Moore, J. C.: Upper limit for sea level
projections by 2100, Environ. Res. Lett., 9, 104008,
https://doi.org/10.1088/1748-9326/9/10/104008,
2014.
Johnston, P.: The effect of spatially non-uniform water loads on predictions
of sea level change, Geophys. J. Int., 114, 615–634, 1993.
Joughin, I., Medley, B. E., and Smith, B.: Marine ice sheet collapse
potentially under way for the Thwaites Glacier Basin, West
Antarctica, Science, 344, 735–738, 2014.
Kendall, R. A., Mitrovica, J. X., and Milne, G. A.: On post-glacial sea level
– II. Numerical formulation and comparative results on spherically
symmetric models, Geophys. J., 161, 679–706,
https://doi.org/10.1111/j.1365-246X.2005.02553.x,
2005.
King, M. A., Bingham, R. J., Moore, P., Whitehouse, P. L., Bentley, M. J.,
and Milne, G. A.: Lower satellite-gravimetry estimates of Antarctic
sea-level contribution, Nature, 491, 586–589,
https://doi.org/10.1038/nature11621, 2012.
Klemann, V., Martinec, Z., and Ivins, E. R.: Glacial-isostasy and plate
motion, J. Geodynamics, 46, 95–103, 2008.
Konrad, H., Sasgen, I., Pollard, D., and Klemann, V.: Potential of the
solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat
in a warming climate, Earth Planet. Sc. Lett., 432, 254–264, 2015.
Kuhlmann, J., Dobslaw, H., and Thomas, M.: Improved modeling of sea level
patterns by incorporating self-attraction and loading, J. Geophys. Res., 16,
C11036,
https://doi.org/10.1029/2011JC007399,
2011.
Lambeck, K.: The Earth's Variable Rotation: Geophysical Causes and
Consequnces, Cambridge Univ. Press, Cambridge, UK, 1980.
Lambeck, K. and Johnston, P.: The viscosity of the Earth's mantle: evidence
from analyses of glacial rebound phenomena, in: The Earth's Mantle, edited
by: Jackson, I., Cambridge Univ. Press, 461–502, 1998.
Larour, E., Seroussi, H., Morlighem, M., and Rignot, E.: Continental scale,
high order, high spatial resolution, ice sheet modeling using the Ice Sheet
System Model (ISSM), J. Geophys. Res., 117, F01022,
https://doi.org/10.1029/2011JF002140,
2012.
Longman, I. M.: A Green's function for determining the deformation of the
Earth under surface mass loads: 1. Theory, J. Geophys. Res., 67,
845–850,
https://doi.org/10.1029/JZ067i002p00845,
1962.
Love, A. E. H.: Some Problems of Geodynamics, Cambridge University Press,
Cambridge, 1911.
MacAyeal, D. R.: A tutorial on the use of control methods in ice-sheet modeling, J. Glaciol., 39, 91–98, 1993.
Martinec, Z.: Spectral-finite element approach to three-dimensional
viscoelastic relaxation in a spherical earth, Geophys. J. Int., 142,
117–141, 2000.
Martinec, Z. and Hagedoorn, J.: The rotational feedback on linear-momentum
balance in glacial isostatic adjustment, Pure Appl. Geophys., 199,
1823–1846, 2014.
Milne, G. A.: Refining models of the glacial isostatic adjustment process,
PhD thesis, University of Toronto, Toronto, Canada, 1998.
Mitrovica, J. X. and Milne, G. A.: On post-glacial sea level: I. General
theory, Geophys. J. Int., 154, 253–267,
https://doi.org/10.1046/j.1365-246X.2003.01942.x,
2003.
Mitrovica, J. X. and Peltier, W. R.: On post-glacial geoid subsidence over the equatorial ocean, J. Geophys. Res., 96, 20053–20071,
https://doi.org/10.1029/91JB01284, 1991.
Mitrovica, J. X., Wahr, J., Matsuyama, I., Paulson, A., and Tamisiea, M. E.:
Reanalysis of ancient eclipse, astronomic and geodetic data: a possible
route to resolving the enigma of global sea-level rise, Earth Planet. Sc.
Lett., 243, 390–399, 2006.
Mitrovica, J. X., Gomez, N., and Clark, P. U.: The sea-level fingerprint of
West Antarctic collapse, Science, 323, 753,
https://doi.org/10.1126/science.1166510,
2009.
Mitrovica, J. X., Gomez, N., Morrow, E., Hay, C., Latychev, K., and
Tamisiea, M. E.: On the robustness of predictions of sea level fingerprints,
Geophys. J. Int., 187, 729–742,
https://doi.org/10.1111/j.1365-246X.2011.05090.x,
2011.
Mitrovica, J. X., Hay, C. C., Morrow, E., Kopp, R. E., Dumberry, M., and Stanley, S.: Reconciling
past changes in Earth's rotation with 20th century global sea-level rise: Resolving Munk's
enigma, Science Advances, 1, e1500679, https://doi.org/10.1126/sciadv.1500679, 2015.
Morlighem, M., Rignot, R., Mouginot, J., Seroussi, H., and Larour, E.: Deeply
incised submarine glacial valleys beneath the Greenland ice sheet, Nat.
Geosci., 7, 418–422, 2014.
Mouginot, J., Rignot, R., Scheuchl, B.: Sustained increase in ice discharge
from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013, Geophys.
Res. Lett., 41, 1576–1584, 2014.
Munk, W. H. and MacDonald, G. J.: The Rotation of the Earth:
A Geophysical Discussion, Cambridge Univ. Press, Cambridge, UK, 1960.
Orszag, S. A.: Fourier series on spheres, Mon. Weather Rev., 102, 56–75, 1974.
Pattyn, F., Carter, S. P., and Thoma, M.: Advances in modelling subglacial
lakes and their interaction with the Antarctic ice sheet, Phil. Trans. R.
Soc. A, 374, 20140296, https://doi.org/10.1098/rsta.2014.0296, 2016.
Peltier, W. R.: The impulse response of a Maxwell Earth, Rev. Geophys., 12, 649–669, 1974.
Quinn, K. J., Ponte, R. M., and Tamisiea, M. E.: Impact of self-attraction
and loading on Earth rotation, J. Geophys. Res., 120, 4510–4521,
https://doi.org/10.1002/2015JB011980,
2015.
Ray, R. D. and Luthcke, S. B.: Tide model errors and GRACE gravimetry:
towards a more realistic assessment, Geophys. J. Int., 167, 1055–1059, 2006.
Ries, J. C.: Annual geocenter motion from space geodesy and models, in: 2013
Fall Meeting, AGU, San Francisco, Calif., 9–13 December 2013, Abstract
G12A-06, 2013.
Rignot, E., Mouginot, J., and Scheuchl, B.: Ice Flow of the Antarctic Ice
Sheet, Science, 333, 1427–1430, 2011.
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., and Scheuchl, B.:
Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and
Kohler glaciers, West Antarctica, from 1992 to 2011, Geophys. Res. Lett., 41,
3502–3509, 2014.
Riva, R., Bamber, J., Lavallée, D., and Wouters, B.: Sea-level
fingerprint of continental water and ice mass change from GRACE, Geophys.
Res. Lett., 37, 1–6,
https://doi.org/10.1029/2010GL044770,
2010.
Sabadini, R., Yuen, D. A., and Boschi, E.: Polar wander and the forced
responses of a rotating, multilayered, viscoelastic planet, J. Geophys. Res.,
87, 2885–2903, 1982.
Sasgen, I., Martinec, Z., and Fleming, K.: Wiener optimal filtering of
GRACEdata, Stud. Geophys. Geod., 50, 499–508, 2006.
Sasgen, I., Konrad, H., Ivins, E. R., Van den Broeke, M. R., Bamber, J. L.,
Martinec, Z., and Klemann, V.: Antarctic ice-mass balance 2003 to 2012:
regional reanalysis of GRACE satellite gravimetry measurements with improved
estimate of glacial-isostatic adjustment based on GPS uplift rates, The
Cryosphere, 7, 1499–1512, https://doi.org/10.5194/tc-7-1499-2013, 2013.
Schlegel, N.-J., Larour, E., Seroussi, H., Morlighem, M., and Box, J. E.: Ice
discharge uncertainties in Northeast Greenland from boundary conditions and
climate forcing of an ice flow model, J. Geophys. Res.-Earth, 120, 29–54,
2015.
Schrama, E. J. O: Three algorithms for the computation of tidal loading and
their numerical accuracy, J. Geodesy, 78, 707–714, 2005.
Seroussi, H.,
Morlighem, M., Rignot, E., Khazendar, A., Larour, E., and Mouginot, J.:
Dependence of century-scale projections of the Greenland ice sheet on its
thermal regime, J. Glaciol., 59, 1024–1034, 2013.
Shepherd, A., Ivins, E. R., A, G., Barletta, V. R., Bentley, M. J., Bettadpur, S., Briggs, K. H.,
Bromwich, D. H., Forsberg, R., Galin, N., Horwath, M., Jacobs, S., Joughin, I., King, M. A., Lenaerts, J. T. M.,
Li, J., Ligtenberg, S. R. M., Luckman, A., Luthcke, S. B., McMillan, M., Meister, R., Milne, G.,
Mouginot, J., Muir, A., Nicolas, J. P., Paden, J., Payne, A. J., Pritchard, H., Rignot, E., Rott, H.,
Sandberg Sørensen, L., Scambos, T. A., Scheuchl, B., Schrama, E. J. O., Smith, B., Sundal, A. V.,
van Angelen, J. H., van de Berg, W. J., van den Broeke, M. R., Vaughan, D. G., Velicogna, I.,
Wahr, J., Whitehouse, P. L., Wingham, D. J., Yi, D., Young, D., and Zwally, H. J.: A reconciled estimate of ice-sheet mass balance, Science, 338, 1183–1189,
https://doi.org/10.1126/science.1228102, 2012.
Spada, G. and Stocchi, P.: SELEN: A Fortran 90 program for solving the
“sea-level equation”, Comput. Geosci., 33, 538–562, 2007.
Spada, G., Ricard, Y., and Sabadini, R.: Excitation of true polar wander by
subduction, Nature, 360, 452–454, 1992.
Swenson, S. and Wahr, J.: Methods for inferring regional surface-mass
anomalies from gravity recovery and climate experiment (GRACE) measurements
of time-variable gravity, J. Geophys. Res., 107, 2193,
https://doi.org/10.1029/2001JB000576, 2002.
Swenson, S., Wahr, J., and Milly, P. C. D.: Estimated accuracies of regional
water storage variations interfered from the Gravity Recovery and
Climate Experiment (GRACE), Water Resour. Res., 39, 1223,
https://doi.org/10.1029/2002WR001808,
2003.
Takeuchi, H., Saito, M., and Kobayashi, N.: Statical deformations and free
oscillations of a model earth, J. Geophys. Res., 67, 1141–1154, 1962.
Tamisiea, M. E.: Ongoing glacial isostatic contributions to observations of
sea level change, Geophys. J. Int., 186, 1036–1044, 2011.
Tsai, V. C. and Stevenson, D. J.: Theoretical constraints on true polar
wander, J. Geophys. Res., 112, B05415,
https://doi.org/10.1029/2005JB003923,
2007.
Tushingham, A. M. and Peltier, W. R.: Ice-3G: A new global model of late
Pleistocene deglaciation based upon geophysical predictions of post-glacial
relative sea level change, J. Geophys. Res., 96, 4497–4523, 1991.
Velicogna, I. and Wahr, J.: Time-variable gravity observations of ice sheet
mass balance: precision and limitations of the GRACE satellite data,
Geophys. Res. Lett., 40, 3055–3063,
https://doi.org/10.1002/grl.50527, 2013.
Wahr, J., Molenaar, M., and Bryan, F.: Time-variability of the Earth's
gravity field: Hydrological and oceanic effects and their possible
detection using GRACE, J. Geophys. Res., 103, 30205–30230, 1998.
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. F., and Wobbe, F.:
Generic mapping tools: improved version released, EOS Trans. AGU, 94,
409–410, 2013.
Whitehouse, P., Allen, M. B., and Milne, G. A.: Glacial isostatic adjustment
as a control on coastal processes: An example from the Siberian
Arctic, Geology, 35, 747–750, 2007.
Woodward, R. S.: On the form and position of mean sea level, United States
Geol. Survey Bull., 48, 87–170, 1888.
Wouters, B., Bonin, J. A., Chambers, D. P., Riva, R. E. M., Sasgen, I., and
Wahr, J.: GRACE, time-varying gravity, Earth system dynamics and climate
change, Rep. Prog. Phys., 77, 116801,
https://doi.org/10.1088/0034-4885/77/11/116801,
2014.
Wu, P.: Using commercial finite element packages for the study of earth
deformations, sea levels and the state of stress, Geophys. J. Int., 158,
401–408, 2004.
Wu, P. and Peltier, W. R.: Glacial isostatic adjustment and the free-air
gravity anomaly as a constraint on deep mantle viscosity, Geophys. J. Roy.
Astr. S., 74, 377–449, 1983.
Wu, P. and van der Wal, W.: Postglacial sea-levels on a spherical,
self-gravitating viscoelastic earth: effects of lateral viscosity variations
in the upper mantle on the inference of viscosity contrasts in the lower
mantle, Earth Planet. Sc. Lett., 211, 57–68, 2003.
Wu, X., Heflin, M. B., Ivins, E. R., and Fukumori, I.: Seasonal and
interannual global surface mass variations from multisatellite geodetic
data, J. Geophys. Res., 111, B09401,
https://doi.org/10.1029/2005JB004100,
2006.
Short summary
We present a numerically accurate, computationally efficient, (km-scale) high-resolution model for gravitationally consistent relative sea level that, unlike contemporary state-of-the-art models, operates efficiently on an unstructured mesh. The model is useful for earth system modeling and space geodesy. A straightforward and computationally less burdensome coupling to a dynamical ice-sheet model, for example, allows a refined and realistic simulation of fast-flowing outlet glaciers.
We present a numerically accurate, computationally efficient, (km-scale) high-resolution model...