Articles | Volume 9, issue 3
https://doi.org/10.5194/gmd-9-1087-2016
https://doi.org/10.5194/gmd-9-1087-2016
Model description paper
 | 
18 Mar 2016
Model description paper |  | 18 Mar 2016

ISSM-SESAW v1.0: mesh-based computation of gravitationally consistent sea-level and geodetic signatures caused by cryosphere and climate driven mass change

Surendra Adhikari, Erik R. Ivins, and Eric Larour

Related authors

Love number computation within the Ice-sheet and Sea-level System Model (ISSM v4.24)
Lambert Caron, Erik Ivins, Eric Larour, Surendra Adhikari, and Laurent Metivier
EGUsphere, https://doi.org/10.5194/egusphere-2024-3414,https://doi.org/10.5194/egusphere-2024-3414, 2025
Short summary
Capturing Solid Earth and Ice Sheet Interactions: Insights from Reinforced Ridges in Thwaites Glacier
Luc Houriez, Eric Larour, Lambert Caron, Nicole-Jeanne Schlegel, Surendra Adhikari, Erik Ivins, Tyler Pelle, Hélène Seroussi, Eric Darve, and Martin Fischer
EGUsphere, https://doi.org/10.5194/egusphere-2024-4136,https://doi.org/10.5194/egusphere-2024-4136, 2025
Short summary
Surge dynamics of Shisper Glacier revealed by time-series correlation of optical satellite images and their utility to substantiate a generalized sliding law
Flavien Beaud, Saif Aati, Ian Delaney, Surendra Adhikari, and Jean-Philippe Avouac
The Cryosphere, 16, 3123–3148, https://doi.org/10.5194/tc-16-3123-2022,https://doi.org/10.5194/tc-16-3123-2022, 2022
Short summary
ISSM-SLPS: geodetically compliant Sea-Level Projection System for the Ice-sheet and Sea-level System Model v4.17
Eric Larour, Lambert Caron, Mathieu Morlighem, Surendra Adhikari, Thomas Frederikse, Nicole-Jeanne Schlegel, Erik Ivins, Benjamin Hamlington, Robert Kopp, and Sophie Nowicki
Geosci. Model Dev., 13, 4925–4941, https://doi.org/10.5194/gmd-13-4925-2020,https://doi.org/10.5194/gmd-13-4925-2020, 2020
Short summary
A kinematic formalism for tracking ice–ocean mass exchange on the Earth's surface and estimating sea-level change
Surendra Adhikari, Erik R. Ivins, Eric Larour, Lambert Caron, and Helene Seroussi
The Cryosphere, 14, 2819–2833, https://doi.org/10.5194/tc-14-2819-2020,https://doi.org/10.5194/tc-14-2819-2020, 2020
Short summary

Related subject area

Climate and Earth system modeling
Advanced climate model evaluation with ESMValTool v2.11.0 using parallel, out-of-core, and distributed computing
Manuel Schlund, Bouwe Andela, Jörg Benke, Ruth Comer, Birgit Hassler, Emma Hogan, Peter Kalverla, Axel Lauer, Bill Little, Saskia Loosveldt Tomas, Francesco Nattino, Patrick Peglar, Valeriu Predoi, Stef Smeets, Stephen Worsley, Martin Yeo, and Klaus Zimmermann
Geosci. Model Dev., 18, 4009–4021, https://doi.org/10.5194/gmd-18-4009-2025,https://doi.org/10.5194/gmd-18-4009-2025, 2025
Short summary
ICON-HAM-lite 1.0: simulating the Earth system with interactive aerosols at kilometer scales
Philipp Weiss, Ross Herbert, and Philip Stier
Geosci. Model Dev., 18, 3877–3894, https://doi.org/10.5194/gmd-18-3877-2025,https://doi.org/10.5194/gmd-18-3877-2025, 2025
Short summary
Process-based modeling framework for sustainable irrigation management at the regional scale: integrating rice production, water use, and greenhouse gas emissions
Yan Bo, Hao Liang, Tao Li, and Feng Zhou
Geosci. Model Dev., 18, 3799–3817, https://doi.org/10.5194/gmd-18-3799-2025,https://doi.org/10.5194/gmd-18-3799-2025, 2025
Short summary
Implementing deep soil and dynamic root uptake in Noah-MP (v4.5): impact on Amazon dry-season transpiration
Carolina A. Bieri, Francina Dominguez, Gonzalo Miguez-Macho, and Ying Fan
Geosci. Model Dev., 18, 3755–3779, https://doi.org/10.5194/gmd-18-3755-2025,https://doi.org/10.5194/gmd-18-3755-2025, 2025
Short summary
Reducing time and computing costs in EC-Earth: an automatic load-balancing approach for coupled Earth system models
Sergi Palomas, Mario C. Acosta, Gladys Utrera, and Etienne Tourigny
Geosci. Model Dev., 18, 3661–3679, https://doi.org/10.5194/gmd-18-3661-2025,https://doi.org/10.5194/gmd-18-3661-2025, 2025
Short summary

Cited articles

A, G., Wahr, J., and Zhong, S.: Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada, Geophys. J. Int., 192, 557–572, https://doi.org/10.1093/gji/ggs030, 2013.
Adhikari, S., Ivins, E. R., Larour, E., Seroussi, H., Morlighem, M., and Nowicki, S.: Future Antarctic bed topography and its implications for ice sheet dynamics, Solid Earth, 5, 569–584, https://doi.org/10.5194/se-5-569-2014, 2014.
Bamber, J. L. and Aspinall, W. P.: An expert judgement assessment of future sea level rise from the ice sheets, Nature Clim. Change, 3, 424–427, 2013.
Bettadpur, S.: GRACE 327-742, UTCSR Level-2 Processing Standards Document for Level-2 Product Release 0005, Tech. rep., The University of Texas at Austin, Texas, USA, 2012.
Blewitt, G.: Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth, J. Geophys. Res., 108, B22103, https://doi.org/10.1029/2002JB002082, 2003.
Download
Short summary
We present a numerically accurate, computationally efficient, (km-scale) high-resolution model for gravitationally consistent relative sea level that, unlike contemporary state-of-the-art models, operates efficiently on an unstructured mesh. The model is useful for earth system modeling and space geodesy. A straightforward and computationally less burdensome coupling to a dynamical ice-sheet model, for example, allows a refined and realistic simulation of fast-flowing outlet glaciers.
Share