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Abstract. A classical Green’s function approach for comput-

ing gravitationally consistent sea-level variations associated

with mass redistribution on the earth’s surface employed in

contemporary sea-level models naturally suits the spectral

methods for numerical evaluation. The capability of these

methods to resolve high wave number features such as small

glaciers is limited by the need for large numbers of pixels

and high-degree (associated Legendre) series truncation. In-

corporating a spectral model into (components of) earth sys-

tem models that generally operate on a mesh system also re-

quires repetitive forward and inverse transforms. In order to

overcome these limitations, we present a method that func-

tions efficiently on an unstructured mesh, thus capturing the

physics operating at kilometer scale yet capable of simu-

lating geophysical observables that are inherently of global

scale with minimal computational cost. The goal of the cur-

rent version of this model is to provide high-resolution solid-

earth, gravitational, sea-level and rotational responses for

earth system models operating in the domain of the earth’s

outer fluid envelope on timescales less than about 1 century

when viscous effects can largely be ignored over most of the

globe. The model has numerous important geophysical ap-

plications. For example, we compute time-varying computa-

tions of global geodetic and sea-level signatures associated

with recent ice-sheet changes that are derived from space

gravimetry observations. We also demonstrate the capabil-

ity of our model to simultaneously resolve kilometer-scale

sources of the earth’s time-varying surface mass transport,

derived from high-resolution modeling of polar ice sheets,

and predict the corresponding local and global geodetic sig-

natures.

1 Introduction

Earth system modeling of climate warming scenarios and

their impact on society requires ever greater capacity to in-

corporate appropriate coupling of models that traditionally

have operated in isolation from one another. One example

is the necessity to couple the redistribution of earth surface

mass and energy during secular and non-secular changes.

The coupling of the major ice sheets to the earth’s time-

varying geoid was a main subject of Erich von Drygalski’s

PhD thesis (Drygalski, 1887), wherein, along with contem-

porary work of Woodward (1888), the ability of continental

ice mass to attract ocean mass and alter sea level was first dis-

cussed and given theoretical treatment. However, the formal

modern theory was only expounded almost a century later

by Farrell and Clark (1976), who incorporated full account-

ing of elastic and viscous solid-earth deformation on a global

scale. This theory is now fully incorporated into the literature

for computing past and present-day sea-level variations (e.g.,

Wu and Peltier, 1983; Mitrovica and Peltier, 1991; Tushing-

ham and Peltier, 1991; Mitrovica and Milne, 2003; Hage-

doorn et al., 2007; Riva et al., 2010; Tamisiea, 2011) and for

which contemporary software is available (Spada and Stoc-

chi, 2007).

The importance of gravitational loading and self-attraction

on earth system modeling is now demonstrated, for example,

via coupling to ocean circulation (Kuhlmann et al., 2011) and

ice-sheet models (e.g., Gomez et al., 2013; de Boer et al.,

2014; Konrad et al., 2015) and analysis of the earth’s rota-

tional variability (Quinn et al., 2015). The recent focus of

ice-sheet modeling is to incorporate more complicated phys-

ical processes that are demanded by new data from both

Published by Copernicus Publications on behalf of the European Geosciences Union.



1088 S. Adhikari et al.: A method for solving the sea-level equation

space and terrestrial observations (e.g., Joughin et al., 2014;

Schlegel et al., 2015; Pattyn, 2016). Simulation of changes

in grounding line positions (e.g., Rignot et al., 2014) and ve-

locity fields (e.g., Mouginot et al., 2014) of outlet glaciers

requires kilometer-scale model resolution. Space gravimet-

ric and ground-based crustal deformation data are also rele-

vant to mass balance estimation over drainage basin to con-

tinental scales (e.g., Sasgen et al., 2013; Bouman et al.,

2014) and should be carefully accounted for. Incorporating

geopotential changes and solid-earth deformation into ice-

sheet simulations, for example, allows grounding line po-

sitions to be influenced by changes in ocean–land contact

position and the geometry of ice-shelf pinning points (e.g.,

Gomez et al., 2013; Adhikari et al., 2014; Konrad et al.,

2015). Such incorporation implies global-scale simulation,

and especially appropriate are solutions of the sea-level equa-

tion, as is often realized in global viscoelastic glacial iso-

static adjustment (GIA) models (e.g., Clark, 1977; Hage-

doorn et al., 2007). Our main goal here is to wed compu-

tations of global-scale solid-earth deformation and sea-level

variation that are driven by kilometer-scale (high-order) me-

chanics of ice sheets on timescales less than 1 century when

viscous effects can largely be ignored over most of the globe.

A major obstacle to efficiently coupling existing models

has been their fundamentally different computational frame-

works: 3-D ice-sheet models often operate on an unstruc-

tured mesh (e.g., Gagliardini and Zwinger, 2008; Larour

et al., 2012), whereas self-gravitating sea-level models are

mostly based on a pseudo-spectral method (e.g., Mitro-

vica and Peltier, 1991; Kendall et al., 2005) or a hybrid

spectral/finite-element method (e.g., Martinec, 2000; Hage-

doorn et al., 2007). While the spectral methods are now in

widespread use (e.g., Spada and Stocchi, 2007; Whitehouse

et al., 2007; Riva et al., 2010), the earliest developments for

numerical solution of the sea-level equation involved dis-

cretization (e.g., Clark, 1977; Wu and Peltier, 1983; Tush-

ingham and Peltier, 1991). However, the discrete methods

were never fully examined for their potential computational

advantages, nor were the generalizations to flexible adaptive

meshing on the sphere examined and exploited. Models for

ice-sheet coupling to ocean and solid earth require interfac-

ing to variable adaptive meshing schemes with a hierarchy

of scales. A systematic and efficient framework for capturing

the kilometer-scale continuum physics of the grounding line

interfaced to a globally resolved coastline and an open global

ocean has not previously been provided. Here we present the

new code, developed within the Jet Propulsion Laboratory’s

(JPL) massively parallelized and highly scalable Ice Sheet

System Model (ISSM; Larour et al., 2012), to treat the full

solid-earth deformation and sea-level coupling on a global

scale, and yet retain the high-resolution and high-order capa-

bilities of ice-flow models. This computational framework,

which is termed ISSM’s Solid Earth and Sea-level Adjust-

ment Workbench (ISSM-SESAW), allows a straightforward

and computationally less burdensome numerical approach to

be realized. The main limitation of the current version is that

the timescales must be on the order of a few decades for the

elastic approximation to be valid.

In Sect. 2, we briefly review the standard Green’s func-

tion approach for solving the perturbation theory of relative

sea level applied to an elastically compressible and density

layered self-gravitating, rotating earth. In Sect. 3, we pro-

vide our approach to evaluating key components of this the-

ory on an anisotropic mesh and demonstrate its superiority

(in terms of high-resolution capability, numerical accuracy,

and computational efficiency) over contemporary pseudo-

spectral methods. As example applications, in Sect. 4, we

produce computations of global geodetic and sea-level sig-

natures associated with the recent evolution of polar ice

sheets. The polar ice-sheet mass budget data are derived from

space gravimetry observations, and hence are of relatively

low resolution (on the order of 300 km). In order to demon-

strate the high-resolution capability of our model, we provide

in Sect. 5 sea-level fingerprints induced by high-resolution

mass change of both polar ice sheets, as modeled by ISSM’s

core ice-flow capability. Finally, in Sect. 6, we summarize

key conclusions of this research and briefly outline its scope

and limitations.

2 Theory of relative sea level

Redistribution of mass on the earth’s surface caused by

cryosphere and other climate driven phenomena, such as

wind stress, ocean currents, and land water storage, perturbs

the gravitational and rotational (centrifugal) potential of the

planet. Due to the fundamental properties of self-gravitation,

perturbation in these potentials induces sea-level change,

solid-earth deformation, and polar motion. If magnitudes (or

trends) of mass redistribution are known (e.g., from satel-

lite observations), such important geodetic signatures can be

computed using a simple model of relative sea-level varia-

tion. Following the seminal work of Farrell and Clark (1976),

the so-called self-gravitating postglacial sea-level model for

a viscoelastic, rotating earth has been discussed in several pa-

pers (e.g., Wu and Peltier, 1983; Mitrovica and Milne, 2003;

Kendall et al., 2005; Hagedoorn et al., 2007; Spada and Stoc-

chi, 2007; Martinec and Hagedoorn, 2014). Here, we briefly

summarize the important (and relevant) components of this

model.

For a viscoelastic earth, relative sea level at a given space

on the earth’s surface and time may be defined as the differ-

ence between the absolute sea level (i.e., sea surface with-

out any dynamic effect of tides and ocean currents) and the

solid-earth surface, assuming that these are measured rela-

tive to a common datum (Tamisiea, 2011). Small deviations

in these variables from the respective initial states, following

the mass conserving redistribution of the earth’s surface or

interior materials, may be written as follows:

S(θ,λ, t)=N(θ,λ, t)−U(θ,λ, t), (1)
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where S and N are respective changes in relative and ab-

solute sea level, U is the associated radial displacement of

the solid-earth surface, (θ,λ) are spatial coordinates (on the

surface of a spherical earth) that represent colatitude and lon-

gitude, and t is time. In a physical sense, Eq. (1) implies that

S is the exact variation of sea surface that would be observed

on a measuring stick attached to the solid-earth surface (Far-

rell and Clark, 1976; Spada and Stocchi, 2007).

In what follows, we assume that the redistribution of sur-

face mass is induced by transport of material into and out

of the cryosphere and that there is an associated viscoelas-

tic gravitational response of the solid earth. For the situa-

tion where it is mass transport between continental ice and

oceans, it is most convenient to define a loading function, L,

so that

L(θ,λ, t)= ρIH(θ,λ, t)+ ρOS(θ,λ, t)O(θ,λ), (2)

where H is the change in ice thickness, O is the so-called

ocean function, ρI is ice density, and ρO is ocean water den-

sity. By definition, O = 1 for oceans and O = 0 otherwise

(Munk and MacDonald, 1960). This function needs to be

introduced in Eq. (2) because S is defined over the whole

planet, including its continents. (Negative S in the continents,

i.e., U −N , may be interpreted as the change in surface ele-

vation.) Note that O is not an explicit function of time in our

development, but would have to be included in cases of sig-

nificant submergence, or emergence of coastal lands during

mass transport (e.g., Johnston, 1993; Milne, 1998).

The mathematical description of the gravity and loading

associated with mass transport requires perturbations in grav-

itational potential,8, and rotational potential,3, to enter the

absolute sea level as follows:

N(θ,λ, t)=
1

g
[8(θ,λ, t)+3(θ,λ, t)]+E(t)+C(t), (3)

where g is the acceleration due to gravity. Spatial constants

appearing above, E and C, are given by{
E(t)
C(t)

}
=−

R2

gρOAO

∫
S

{
gρIH(θ,λ, t)

ρOC(θ,λ, t)O(θ,λ)

}
dS, (4)

where R is the mean radius of the earth, AO is the surface

area of oceans, S is the surface domain of a unit sphere, andC

is a function of potentials and the associated deformation of

the solid-earth surface and is given byC =8+3−gU . Note

that eustatic terms E and C are essential to satisfy the mass

conservation constraint (Farrell and Clark, 1976). In a hy-

pothetical, non-gravitating (i.e., 8= 0), non-rotating (i.e.,

3= 0), rigid (i.e., U = 0) earth, E solely describes S, and

it is this metric that is often termed “sea-level equivalent” in

order to (alternatively) quantify mass change in glaciers and

ice sheets. Sometimes, E by itself is simply termed “eustatic

sea level”.

Similarly, the viscoelastic gravitational response of solid

earth following redistribution of surface mass (Eq. 2) may be

partitioned for convenience as follows:

U(θ,λ, t)= U8(θ,λ, t)+U3(θ,λ, t), (5)

where U8 and U3 are radial displacements of the solid-earth

surface associated with perturbations in gravitational and ro-

tational potentials, respectively.

In the following, we briefly present the fundamental con-

cepts and mathematical descriptions of gravitational and ro-

tational potentials, as well as the associated deformation of

the solid-earth surface, required to fully define S (Eq. 1).

Contemporary models are mostly based on the same theory.

2.1 Gravitational potential and solid-earth deformation

The general model description presented above may be ap-

plied to any earth model, ranging from a simple rigid earth

(e.g., Woodward, 1888) to a comprehensive 3-D viscoelas-

tic earth with lateral heterogeneity and nonlinear rheology

(e.g., Wu and van der Wal, 2003). Here, we consider the

earth as a radially stratified elastic sphere, whose short-term

responses are characterized by the so-called load Love num-

bers (Love, 1911; Longman, 1962) that are referred to the

Legendre transform spectral representation of the spherical

coordinates on the surface of a sphere.

In order to define 8 and U8, we employ Green’s function

approach to solving for interior earth responses at the sur-

face, essentially following the load Love number formalism

for a seismologically constrained elastic earth (e.g., Long-

man, 1962; Takeuchi et al., 1962). Let G8 and GU be the

non-dimensional Green’s functions for a radially stratified,

spherically symmetric elastic earth that are, respectively, as-

sociated with8 andU8. These functions may be represented

in the domain of the Legendre transform as follows:{
G8(α)

GU (α)

}
=

∞∑
l=0

{
1+ k′l
h′l

}
Pl(cosα), (6)

where Pl are Legendre polynomials of degree l (see Ap-

pendix A), k′l and h′l are the load Love numbers (Longman,

1962), and α is the arc length between the loading point and

the evaluation point on the earth’s surface. The load Love

numbers appearing above have a simple physical interpre-

tation: Pl is the perturbation in degree l representation of

non-dimensional gravitational potential in a Legendre trans-

form space induced by the applied mass itself, whereas k′lPl
and h′lPl are similar perturbations for non-dimensional grav-

itational potential and non-dimensional radial displacement

of the solid-earth surface, respectively, caused by the elastic

deformation of matter within the earth’s interior. Intuitively,

G8 =
∑
∞

l=0Pl and GU = 0 for a rigid earth model.

The terms 3gG8/
[
4πR2ρE

]
and 3GU/(4πR

2ρE) express

the influence of point load of unit mass on the gravitational

potential and radial displacement of the solid-earth surface,

respectively (Farrell and Clark, 1976), where ρE is the aver-

age density of the earth. Spatial convolution of these terms
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with the loading function (Eq. 2) gives 8 and U8, and we

may write{
8(θ,λ, t)
U8(θ,λ, t)

}
=

3

4πρE

∫
S

{
gG8(α)
GU (α)

}
L(θ ′,λ′, t)dS′, (7)

where (θ ′,λ′) are the variable coordinates. These variable

coordinates at which the loading function is defined are re-

lated to the fixed ones, (θ,λ), at which 8 and U8 are evalu-

ated via α according to the following cosine formula: cosα =

cosθ cosθ ′+ sinθ sinθ ′ cos(λ′− λ).

2.2 Rotational potential and solid-earth deformation

The surface mass redistribution and associated deforma-

tion of solid earth also induce changes in the earth’s ro-

tational vector (e.g., Munk and MacDonald, 1960; Lam-

beck, 1980; Sabadini et al., 1982). The corresponding change

in rotational potential deforms both the solid-earth surface

and the geoid, thus contributing to a relative sea-level sig-

nal. Although geological-timescale perturbations to the ro-

tational vector such as true polar wander are governed by

glacial isostatic adjustment (GIA) and mantle dynamics (e.g.,

Spada et al., 1992; Tsai and Stevenson, 2007; Martinec and

Hagedoorn, 2014), short-timescale perturbations of decadal

to centennial scale to polar motion are largely determined

by cryosphere and other climate driven mass change (e.g.,

Gross, 2000; Chen et al., 2013; Mitrovica et al., 2015). In

the context of mass exchange between continental ice and

oceans (Eq. 2), it is therefore important to account for rota-

tional feedbacks in the sea-level computation.

In analogy with the description of 8 and U8 based on

the load Love number theory presented in Sect. 2.1, we may

express 3 and U3 as follows (e.g., Lambeck, 1980; Milne,

1998):{
3(θ,λ, t)

U3(θ,λ, t)

}
=

2∑
m=0

2∑
n=1

{
1+ k2

h2/g

}
32mn(t)Y2mn(θ,λ), (8)

where Y2mn are degree 2 spherical harmonics (SHs; see Ap-

pendix A), 32mn are the corresponding SH coefficients, and

k2 and h2 are degree 2 tidal Love numbers (e.g., Peltier,

1974; Lambeck, 1980). These Love numbers parameterize

the elastic response of the solid earth to a potential forc-

ing that does not involve a direct loading on the earth’s sur-

face and have the following physical interpretation: k2Y2mn

is the perturbation in degree 2 orderm representation of non-

dimensional rotational potential in a SH transform domain

caused by the elastic deformation of matter within the earth’s

interior, and h2Y2mn is the same for non-dimensional ra-

dial displacement of the solid-earth surface. For a rigid earth

model, 3=
∑2
m=0

∑2
n=1Y2mn and U3 = 0.

In order to define the perturbation32mn, we consider body

fixed right-handed Cartesian coordinates, xi , with the origin

located at the center of mass (CM) of the initially equilibrium

earth. (x1 is aligned along the central meridian and x3 is pos-

itive toward the North Pole.) In such a coordinate frame, the

products of unperturbed inertia tensor vanish, i.e., I ij = 0

(for i 6= j = 1,2,3), and the moments of unperturbed iner-

tia tensor for a (assumed) rotationally symmetric earth are

given by I ii =A (for i = 1,2) and I 33 = C, where A is the

mean equatorial and C is the polar moment of inertia. Sim-

ilarly, the components of (initially equilibrium, and unper-

turbed) an angular velocity vectors are given by ωi = δi3�

(for i = 1,2,3), where δi3 are the Kronecker deltas and � is

the mean rotational velocity of the earth. Following the re-

distribution of mass (Eq. 2), both I and ω are perturbed from

their initial equilibrium states. Let I ij and �mi be respec-

tive perturbation terms, where mi are non-dimensional and

typically of order ≤ 10−6. Noting the normalization scheme

(see Appendix A), 32mn may be defined as follows (Munk

and MacDonald, 1960; Lambeck, 1980):

3201(t)=
1

6
√

5
�2R2

[
m2

1(t)+m
2
2(t)− 2m2

3(t)

−4m3(t)] ,{
3211(t)

3212(t)

}
=
−1
√

15
�2R2

{
m1(t)

m2(t)

}
[1+m3(t)] ,{

3221(t)

3222(t)

}
=
−1
√

60
�2R2

{
m2

1(t −m
2
2(t)

2m1(t)m2(t)

}
. (9)

When the rotational perturbations are small, mi(t) can be

determined from the linearized Liouville equations. These

then form the general equation of motion for an elastic ro-

tating earth:{
m1(t)

m2(t)

}
+

1

σ ∗r

d

dt

{
−m2(t)

m1(t)

}
=[

ks

ks − k2

]
[1+ k′2]

{
ψ1(t)

ψ2(t)

}
, (10)

{
1+

4

3

[C−A]

C

k2

ks

}
dm3(t)

dt
=
[
1+ k′2

] dψ3(t)

dt
, (11)

where σ ∗r = σr [1− k2/ks] is the Chandler wobble frequency

for an elastic earth, σr =�[C−A]/A is the same for a rigid

earth, ks = 3G[C−A]/[R5�2
] is the secular (fluid) Love

number, and G is the universal gravitational constant. The

Love number ks is a measure of the rotational deformation

of a density stratified inviscid earth (Munk and MacDonald,

1960). The variables ψi (for i = 1,2,3) appearing above are

the so-called excitation functions and are given by
ψ1(t)

ψ2(t)

ψ3(t)

= 1

C[C−A]


CI13(t)

CI23(t)

[A− C]I33(t)


+

1

� [C−A]
d

dt


I23(t)

−I13(t)

0

 . (12)
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Note that the first terms on the right-hand side are directly

induced by mass redistribution, and hence are often called

the “mass excitation functions” (Lambeck, 1980).

From the rotational theory presented above, it is clear that

32mn and hence 3 and U3 can be evaluated completely if

three perturbation parameters, namely I i3, are known. In the

present context of mass exchange between continental ice

and oceans (Eq. 2), we may write (Lambeck, 1980)
I13(t)

I23(t)

I33(t)

=−4πR4

√
15


L211(t)

L212(t)

2L201(t)/
√

3

 , (13)

where L2mn are degree 2 SH coefficients of the loading func-

tion.

3 Methods

There are certain elements in the relative sea-level theory

presented in Sect. 2 that would naturally favor the spectral

methods for their numerical evaluation; expansion of non-

dimensional Green’s functions in the form of an infinite sum

of Legendre polynomials (Eq. 6) is one such example. In-

deed, contemporary sea-level models are mostly based on

the so-called pseudo-spectral method (Mitrovica and Peltier,

1991) in which all variables appearing in the sea-level equa-

tion (SLE) are expanded in the form of SHs and individual

SH coefficients are evaluated by satisfying the SLE itself

(e.g., Milne, 1998; Mitrovica and Milne, 2003; Spada and

Stocchi, 2007). An alternative to the employed Green’s func-

tion approach to evaluating the (visco)elastic gravitational re-

sponse of the solid earth (Sect. 2.1) is to consider a compre-

hensive, 3-D finite-element (FE) modeling of the earth (e.g.,

Gasperini and Sabadini, 1990; Martinec, 2000; Wu, 2004).

While the solid-earth response may then account for the lat-

eral heterogeneity as imaged in seismology (e.g., Wu and van

der Wal, 2003), it is mathematically and numerically far more

cumbersome, a feature that does not diminish in the limit of

an elastically responding earth model that we are interested

in. We therefore find it convenient to validate or compare our

results against the more common pseudo-spectral methods,

for which contemporary software is also available (Spada and

Stocchi, 2007).

Despite the widespread application, one obvious disadvan-

tage of pseudo-spectral methods is that these require large

numbers of terms in the series expansion in order to ac-

curately parameterize a slowly converging function such as

GU (see Sect. 3.1). The associated basis functions (i.e., high-

degree SHs) have short wavelength signals, which demand

uniformly distributed high-resolution pixels over the whole

planet. Need for high-degree series truncation in conjunc-

tion with high-resolution pixels naturally requires a high

computational cost. The same statement applies for captur-

ing high-resolution features such as rapid ice melting from

an outlet glacier and adjacent sea-level changes: solutions

must be evaluated at a large numbers of pixels (as pseudo-

spectral methods require equal pixel size over the whole

planet) and high-resolution signals can only be resolved with

high-degree SHs (i.e., high-degree series truncation is essen-

tial).

Here we present a simple mesh-based computation of SLE

on a self-gravitating, elastically compressible, rotating earth

that exploits Green’s representation of perturbation in gravi-

tational potential and solid-earth deformation evaluated at the

surface of the earth (Eq. 6). We map the Green’s functions

on the mesh system with great accuracy, retaining kilometer-

scale resolution properties. The mesh architecture affords ro-

bust control on the number of elements and is thus compu-

tationally efficient. Figure 1 shows an example of the com-

putational FE mesh on the solid-earth surface. This mesh

is generated using Gmsh (Geuzaine and Remacle, 2009,

http://geuz.org/gmsh/), along with anisotropic mesh refine-

ment based on the Bidimensional Anisotropic Mesh Gen-

erator (BAMG) package developed by Hecht (2006). The

mesh consists of 16 553 vertices and 33 102 elements. El-

ement sizes are restricted to be in the range of about [60,

1000] km. The mesh refinement metric used in this particular

example is a function of the distance from the nearest coast-

line. Note that the method presented here is not a formal FE

computation of elasto-gravitational deformation of the solid

earth, but is an architectural design that allows for solving

of the SLE on an unstructured mesh with arbitrary elemental

shape or size. The relevant model and material parameters

are listed in Table 1.

3.1 Evaluation of 8 and U8

Crucial to evaluating 8 and U8 is to accurately sample

Green’s functions (Eq. 6) that are given in the form of an in-

finite sum of Legendre polynomials. Since −k′l decays expo-

nentially but h′l approaches very slowly (see Fig. 2a) toward

a constant value as l→∞, the following discussion focuses

on accurate parameterization of GU . This discussion, how-

ever, equally applies to G8 as well.

In contemporary models, GU is evaluated by simply trun-

cating the series at degree L, such that

GU (α)=

∞∑
l=0

h′lPl(cosα)≈

L∑
l=0

h′lPl(cosα). (14)

Typically, 60< L< 600. For L= 128, for example, the

approximation of GU is characterized by a systematic noise

(blue in Fig. 2b) about the exact solution (to be defined

later) with higher amplitudes near the loading point, and we

may anticipate numerical difficulty in computing changes

in bedrock slope or relative sea level near the position of a

rapidly changing outlet glacier. It is important to note here

that we consider the CM of the earth system reference frame

(Blewitt, 2003) in our computations, so that degree 1 Love

numbers are on the order h′1 =−1.29 and k′1 =−1.00. The
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Table 1. Constants and parameters used in this study. Solid-earth parameters are taken from Lambeck (1980).

Constant/parameter Symbol Value Unit

Mean rotational velocity of the earth � 7.2921× 10−5 s−1

Average density of the earth ρE 5512 kg m−3

Ice density ρI 910 kg m−3

Ocean water density ρO 1000 kg m−3

Chandler wobble frequency (rigid earth) σr 2.4405× 10−7 s−1

Chandler wobble frequency (elastic earth) σ∗r 1.6490× 10−7 s−1

Mean equatorial moment of inertia A 8.0077× 1037 kg m2

Polar moment of inertia C 8.0345× 1037 kg m2

Gravitational acceleration g 9.81 m s−2

Universal gravitational constant G 6.6738× 10−11 m3 kg−1 s−2

Degree 2 tidal (displacement) Love number h2 0.6149 –

Degree 2 tidal (potential) Love number k2 0.3055 –

Secular (fluid) Love number ks 0.942 –

Mean radius of the earth R 6.3710× 106 m

same frame is used, for example, for computing gravity fields

from the space geodetic satellites.

A much better approximation than Eq. (14) would be the

following: we may write (e.g., Schrama, 2005)

GU (α)=

∞∑
l=0

h′lPl(cosα)= h′∞

∞∑
l=0

Pl(cosα)

+

∞∑
l=0

[
h′l −h

′
∞

]
Pl(cosα), (15)

where h′∞ is a constant that is reached asymptotically as

l→∞. We now assume that h′l = h
′

L for all l ∈ [L,∞).
Since

∑
∞

l=0Pl(cosα)= 1/[2sin(α/2)], the above equation

becomes

GU (α)≈
h′L

2sin(α/2)
+

L∑
l=0

[
h′l −h

′

L
]
Pl(cosα). (16)

For L= 128, this approximation is free from noise (red in

Fig. 2b), and virtually the same as the exact solution at least

beyond ≈ 1◦ from the point of loading (Fig. 2c). The “exact

solution” is obtained by summing over L= 10 000 (retrieved

from http://www.srosat.com/iag-jsg/loveNb.php on 17 Au-

gust 2015); the first 1800 terms are shown in Fig. 2a.

Since GU →−∞ as α→ 0, Eq. (16) cannot be evaluated

at the point of loading, i.e., at α = 0. In order to avoid this

inherent singularity, we define the loading function (Eq. 2) at

the element centroids and evaluate Green’s functions at the

vertices so that α > 0 for nonzero element size. Let E and

V be the total number of elements and vertices in the mesh

(Fig. 1). For each vertex v ∈ [1,V], we computeG8 andGU
due to unit loads that are centered at the individual elements

e ∈ [1,E] as follows:{
Gve
8

Gve
U

}
≈

1

2sin(αe/2)

{
1+ k′L
h′L

}

Figure 1. Example of unstructured mesh at earth surface. Both

the (a) Northern and (b) Southern Hemisphere are shown, with

continents depicted in cyan. This mesh is generated using Gmsh

(Geuzaine and Remacle, 2009), with the BAMG mesh refinement

algorithm (Hecht, 2006). The mesh refinement metric employed

here is a function of the distance from the nearest coastline.

+

L∑
l=0

[{
k′l − k

′

L
h′l −h

′

L

}
Pl(cosαe)

]
, (17)

where variables with superscripts ve are matrices of size

V × E , and those with e are vectors of size E × 1. Figure 2c

illustrates how accurately our model samples the exact solu-

tion of GU (i.e., for L= 10 000) for an example vertex due

to the nearby elemental unit loads.

Once Gve
8 and Gve

U are computed and Le(t) are given (to

be discussed in Sect. 3.3), we may perform the convolution

integral (Eq. 7) simply as follows:

{
8v(t)
Uv8(t)

}
≈

3

ρE

1[∑E
e=1A

e
] E∑
e=1

[{
gGve8
Gve
U

}
Le(t)Ae

]
, (18)

whereAe are elemental areas. Note that variables with super-

scripts v are vectors of size V × 1.
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3.2 Evaluation of 3 and U3

It is essential to compute L2mn (Eq. 13) andmi (Eqs. 10–11)

prior to evaluating 3 and U3. Degree 2 SH coefficients of a

loading function can be approximated, according to Eq. (A6),

as follows:

L2mn(t)≈
1[∑E
e=1A

e
] E∑
e=1

[
Le(t)Y e2mnA

e
]
, (19)

where Y e2mn are degree 2 SHs evaluated at elemental cen-

troids (θe,λe) of the mesh. Here, it is important to note that

SH-based computations on an unstructured mesh are valid

for low SH degrees, such as l = 2, which have very large sig-

nal wavelengths.

The system of non-homogeneous ordinary differential

equations appearing in Eq. (10) can be solved for two un-

knowns, m1 and m2. The solutions are given by{
m1(t)

m2(t)

}
=

[
cosσ ∗r t −sinσ ∗r t

sinσ ∗r t cosσ ∗r t

]{
c1

c2

}
+ (20)

−
σr

�(C−A){
I13(t)−

[
�+ σ ∗r

][
n1(t)cosσ ∗r t + n2(t)sinσ ∗r t

]
I23(t)−

[
�+ σ ∗r

][
n1(t)sinσ ∗r t − n2(t)cosσ ∗r t

]} ,
where c1 and c2 are constants to be determined from initial

conditions, and{
n1(t)
n2(t)

}
=

∫ {
I23(t)cosσ ∗r t −I13(t)sinσ ∗r t
I13(t)cosσ ∗r t +I23(t)sinσ ∗r t

}
dt. (21)

We assume that time-dependent variables may be ex-

pressed as the sum of their incremental step changes. For

instance, I i3(t)=
∑K
k=1[δI i3]kH(t − tk), where [δI i3]k is

the incremental step change in moment of inertia over time

tk ≤ t < tk+1 induced by the corresponding incremental step

change in applied ice loads and associated sea-level varia-

tions (Eq. 13), andH(t−tk) is a Heaviside step function with

magnitude of unity for t ≥ tk and zero otherwise.

If incremental step changes in parameters are known a pri-

ori (or computed) up to and including the Kth time, it is

convenient to reset the time so that τ = t − tK . We may

then write, for example, I i3(τ )= I i3H(τ ), where I i3 =∑K
k=1[δI i3]k . (For each time interval, we are essentially

treating variables as if these can be expressed using a sin-

gle Heaviside step function.) Substituting t by τ in Eqs. (20)

and (21), a simplification of the latter equation follows{
n1(τ )

n2(τ )

}
=

1

σ ∗r

{
I13

[
cosσ ∗r τ − 1

]
+I23 sinσ ∗r τ

I13 sinσ ∗r τ −I23

[
cosσ ∗r τ − 1

]}H(τ ). (22)

Similarly, the following can be derived from Eq. (11) for

m3:

m3(τ )=

c3−
[1+ k′2]

C

{
1+

4

3

[C−A]

C
k2

ks

}−1

I33 H(τ ), (23)

where c3 is yet another constant to be determined from initial

conditions.

Ifmi at τ = 0− (i.e., at time t = tK , but just before impos-

ing the Kth incremental change) are known, from Eqs. (20)

and (23) we may set ci =mi(0
−). Then mi can be evaluated

for any time τ ≥ 0. Setting τ = tK+1− tK , we can compute

mi(0
−) and hence ci for the subsequent, i.e., (K+1)th, incre-

mental change. For the first incremental change, we impose

mi(0
−)= 0 as initial conditions, assuming the initial equi-

librium state of unperturbed ω.

Oncemi are computed at a given time t ,32mn can be eas-

ily obtained from Eq. (9), and the evaluation of 3 and U3
becomes fairly straightforward as follows:{
3v(t)

Uv3(t)

}
=

2∑
m=0

2∑
n=1

{
1+ k2

h2/g

}
32mn(t)Y

v
2mn, (24)

where Y v2mn are degree 2 SHs evaluated at vertices (θv,λv)

of the mesh. Recall that these two quantities are key to com-

puting the rotational feedback. In this formulation we retain

the time dependency as the mass changes directly enter the

moment of inertia tensor, which, in turn, drive the solutions

of mi (Eq. 20).

3.3 Evaluation of other variables

As noted earlier, we define L at the elemental centroids, al-

lowing evaluation of the entire set of variables, including S,

at the vertices. Since L depends on S itself (Eq. 2), it is nec-

essary to map Sv onto the elemental centroids of the mesh,

and we do this by simply averaging the corresponding Sv for

individual elements. We may now write

Le(t)= ρIH
e(t)+

ρO

3

[
3∑
v=1

Sv(t)

]e
Oe, (25)

where v = 1,2,3 are the vertices of the eth (triangular) ele-

ment. In order to evaluate the above equation, H e(t) and Oe
must be provided. We define Oe using the Generic Mapping

Tools (Wessel et al., 2013) for a set of coordinates (θe,λe)

that define the elemental centroids of the mesh.

Similarly, the eustatic terms appearing in Eq. (4) can be

evaluated as follows:{
E(t)

C(t)

}
=−

R2

gρO

[∑E
e=1A

eOe
] 4π

3
[∑E

e=1A
e
]

E∑
e=1




3gρIH
e(t)

ρO

[
3∑
v=1

C
v
(t)

]e
Oe

Ae
 , (26)

whereC
v
=8v+3v−g

[
Uv8+U

v
3

]
and, as indicated by [∗]e

inside braces, it is also mapped onto the elemental centroids

of the mesh.
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Figure 2. Parameterization of (elastic) solid-earth deformation

caused by surface loading. (a) Load Love numbers, h′
l
, up to 1800

Legendre degree. As l→∞, h′
l

converges slowly toward a constant

value. (b) Non-dimensional Green’s function, GU , computed by

truncating the series at L= 128. The conventional approximation

(Eq. 14) produces noise, with greater amplitudes near the loading

point. The problem is avoided by using the approximation given by

Eq. (16). (c) Demonstration of model ability to accurately parame-

terizeGU . Solutions obtained by truncating the series (according to

Eq. 16) at L= 128 are virtually the same as exact solutions (at least

beyond ≈ 1◦ from the load), and these are accurately sampled by

our model at an example vertex due to unit loads applied at the el-

emental centroids of the mesh (circles in the figure). (See Sect. 3.1

for the explanation of the exact solution.) For comparison, solu-

tions associated with Eq. (14) illustrate the ability of contemporary

pseudo-spectral models to parameterize GU .

Numerical discretization of all components of SLE is

now complete, and these can be easily assembled to eval-

uate radial displacement of the solid-earth surface (Eq. 5)

as Uv(t)= Uv8(t)+U
v
3(t), change in absolute sea level

(Eq. 3) as Nv(t)= [8v(t)+3v(t)]/g+E(t)+C(t), and fi-

nally change in relative sea level (Eq. 1) as Sv(t)=Nv(t)−

Uv(t).

3.4 Solution algorithm and model performance

The computational algorithm used in our mesh-based model

is similar to that of pseudo-spectral models (Mitrovica and

Peltier, 1991) and is as follows: since Sv(t) must be known

while computing Le(t) and Sv(t) itself, we employ a recur-

sive scheme with an initial solution of Sv(t) obtained by

setting Le(t)= ρIH
e(t) (see Eq. 25). It is then feasible to

iteratively compute Le(t) according to Eq. (25) with Sv(t)

obtained from the solution of a previous iteration. We iter-

ate the simulation until a metric that quantifies the change in

two successive solutions is minimal. It takes only a few itera-

tions (typically, five to seven) to converge the solution so that

the difference in successive solutions is to within the accept-

able accuracy (typically, 5 orders of magnitude smaller than

the solution itself). This is the standard algorithm for solving

the SLE (e.g., Farrell and Clark, 1976; Mitrovica and Peltier,

1991; Spada and Stocchi, 2007), and does not require further

explanation.

Once gravitationally consistent solutions for change in rel-

ative sea level, S, are obtained, several useful geodetic ob-

servables may be retrieved easily. Of particular interest, we

may compute radial displacement of the solid-earth surface,

U , from Eq. (5) and change in absolute sea level, N , from

Eq. (1). Similarly, we can evaluate the following parameters

related to the polar motion of the earth: mass excitation func-

tions, χi (for i = 1,2), may be computed using the relation-

ship χi = I i3/ [C−A]; positions of the North Pole, (p1,p2),

in the right-handed Cartesian coordinates may be approxi-

mated as (p1,p2)≈ (m1,m2); and change in the length of

a day, 1D, is given by 1D =−m3D, where D ≈ 86 400 s

is the length of a solar day. From some of these solutions,

we may also infer other useful geodetic observables, such

as changes in absolute gravity and geocentric motion of the

earth. These will be further discussed in Sects. 4.2 and 4.3.

Most of our computations are done at the vertices of the

mesh. Therefore, we have to mainly deal with vectors of size

V×1. Evaluation of Green’s functions, however, requires that

matrices of size V×E be considered (Eq. 17), and it naturally

demands more computer resources. Fortunately, we can com-

pute Green’s functions only once at the beginning as a part

of the model initialization because these do not evolve as we

simulate the model for an assumed elastic earth. For the mesh

considered in this study (Fig. 1), which has V = 16 533 and

E = 33 102, our Matlab® code takes about 5 min for a serial

run in a MacBook Pro (OS X 10.9.5) to compute Green’s

functions, and less than a minute to evaluate changes in sea

level and associated geodetic parameters caused by instan-

taneous melting of a synthetic ice sheet. The employed un-

structured mesh has elements of varying size in the range of

about [60, 1000] km. We may vary this range, for instance, to

capture high-resolution features in particular locations, say

around the Amundsen Sea Sector (ASS), yet the computa-

tional cost is minimal as noted above as long as the new un-

structured mesh consists of similar V and E . The lower limit

of element size that our model can handle essentially depends

on the degree at which series expansion of Green’s functions

(Eq. 17) is truncated. We use L= 10 000 for all of our com-

putations. Assuming P ≈ πR/L (Orszag, 1974), where P
denotes the characteristic element size, it implies that our

model can capture features of size as small as ≈ 2 km.

To our knowledge, there are no standard benchmark or

model intercomparison experiments available in order to test

and validate new relative sea-level models that operate on
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an elastic rotating earth. However, for a suitable set of ex-

periments, we validate key components of our model by re-

producing relevant published results as summarized in Ap-

pendix B. We now provide a brief comparison of our mesh

model with contemporary pseudo-spectral models in terms of

computational efficiency. In the latter models, as noted ear-

lier, the SLE is discretized in the SH domain and individual

SH coefficients are evaluated. For a chosen spatial resolution,

P , the SH series expansion may be truncated at L≈ πR/P ,

yielding about (πR/P+1)2 SH coefficients to be computed.

In order to sample the SH signals uniformly over the whole

planet, the pseudo-spectral approach also requires that pix-

els of equal size be considered. This implies that we must

deal with matrices of size≈ 4πR2/P2
×(πR/P+1)2 while

evaluating the SLE using pseudo-spectral models. If we are

to compute the solutions in spectral formulation, for exam-

ple, at 60 km resolution along the coastlines as considered

in our mesh-based computation, we must deal with matri-

ces of size about 141 685× 111 947 (compared to vectors of

size 16 533×1 required for our model) that certainly demand

huge computer resources. In order to compare the model

performance systematically, we consider a pseudo-spectral

model that is essentially a Matlab® version of SELEN (Spada

and Stocchi, 2007) except the following: (1) the earth’s sur-

face is pixelized using MEALPix Toolbox that is a Matlab®

version of HEALPix (http://healpix.jpl.nasa.gov/); (2) the

solid earth is treated as an elastic sphere; and (3) the SLE

includes rotational feedback. This Matlab® version of the

model, coded by the authors (unpublished), is tested and val-

idated against the original SELEN model for suitable ex-

periments. In Table 2, we compare mesh-based and pseudo-

spectral models in terms of numerical architecture and com-

putational cost. The latter model already demands a large

computer resource to capture even a moderate 51 km res-

olution. It becomes more cumbersome if we seek to deal

with higher wave number features like smaller (kilometer-

scale) ice caps and ice fields using pseudo-spectral models,

yet there is little degradation in computational efficiency us-

ing our mesh-based approach because we can refine the mesh

(down to ≈ 2 km) wherever needed while maintaining the

similar numbers of vertices in the mesh.

4 Some geodetic signatures of ice sheets

Of several climate driven phenomena of mass redistribution

on the earth’s surface, those related to the cryosphere may be

of particular interest. Space-based observations have shown

that ice sheets and glaciers expel a large volume of meltwater

in an ongoing climate warming (e.g., Shepherd et al., 2012;

Gardner et al., 2013), thus directly contributing to the sea-

level rise (e.g., Hay et al., 2015). Such trends are likely to per-

sist, if not amplify, throughout this century and beyond as in-

creased atmospheric and oceanic temperatures are generally

predicted for future climate change scenarios (e.g., Bamber

and Aspinall, 2013; Jevrejeva et al., 2014). Here, as an ex-

ample model application, we produce computations of some

important geodetic signatures associated with the recent evo-

lution of contemporary ice sheets. Observed from space or

in terrestrial arrays, these signatures provide diagnostic in-

formation about strong shifts in climate (e.g., Chen et al.,

2013).

4.1 The GRACE data

The twin Gravity Recovery and Climate Experiment

(GRACE) satellites are now a way of monitoring and assess-

ing earth’s time-varying gravity field caused by the climate

driven surface mass redistribution and transportation of ma-

terials within the earth’s interior (e.g., Wouters et al., 2014).

The GRACE data that are now available at an unprecedented

resolution of a few hundreds of kilometers have revolution-

ized our approach to evaluating, for example, glaciers and

ice-sheet mass balance (e.g., King et al., 2012; Ivins et al.,

2013; Velicogna and Wahr, 2013; Sasgen et al., 2013) and

terrestrial hydrological budget (e.g., Wahr et al., 1998; Swen-

son et al., 2003).

The GRACE data are distributed in the form of Stokes co-

efficients (Bettadpur, 2012) and, upon standard processing

of these SH coefficients, with removal of the mantle GIA

signal, we can express the relevant geophysical signals in

terms of water height equivalent (WHE). In this analysis,

we use GRACE Release-05 Level-2 GSM data products pro-

vided by the Center of Space Research, University of Texas

at Austin (http://www.csr.utexas.edu/grace/RL05.html). The

monthly time series of these data are available up to SH de-

gree and order 60, and cover a period from April 2002 to

March 2015 (hereafter referred to as the “GRACE period”).

There are only partial or no data available for a few months.

We fill these data gaps through a simple linear scaling or

interpolation between adjacent monthly data as appropriate.

We replace degree 1 and degree 2 Stokes coefficients by the

values obtained from the analysis of satellite laser ranging

(SLR) observations of five passive geodetic satellites (Cheng

et al., 2011, 2013a, b). This is particularly important as our

computations predict a degree 1 field related to earth’s geo-

centric motion and a degree 2 field related to polar motion.

We compute Stokes coefficient anomalies for further pro-

cessing by subtracting the corresponding mean values (over

the GRACE period) from individual Stokes coefficients.

There may be several techniques of varying complexities

to process these data (e.g., Swenson and Wahr, 2002; Chen

et al., 2006; Sasgen et al., 2006; Chambers and Bonin, 2012),

but all of these involve filtering the unphysical north–south

striping patterns that are inherently due to the orbital geome-

try of the satellites (e.g., Ray and Luthcke, 2006), and reduc-

ing the so-called leakage effects that mainly operate between

the adjacent sources of signal (e.g., Chen et al., 2006). Here,

we generally follow the recipe of Ivins et al. (2013) for recov-

ering WHE from these Stokes coefficient anomalies, except
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Table 2. Comparison of pseudo-spectral and mesh-based computations of the SLE. We denote element (or pixel) size by P , number of

elements (or pixels) by E , number of vertices by V , and the degree at which (associated) Legendre series is truncated by L. (V is not relevant

for the pseudo-spectral approach.)

Model E V P (km) L Initial timea SLE timeb Processorc

Mesh-based 33 102 16 553 60–1000d 10 000 5 min < 1 min Serial

12 288 – 204 98 < 1 min < 1 min Serial

Spectral 49 152 – 102 196 20 min 10 min Serial

196 608 – 51 392 2 h 4 h Parallel

a It is the model initialization time. For pseudo-spectral models, most of this time is required to compute SHs that would be of size

E × (L+ 1)2. Our model mainly utilizes this time to compute Green’s functions, which are of size V ×E .
b It is the CPU time required to solve the SLE following instantaneous melting of a hypothetical ice sheet. Pseudo-spectral models

once again deal with matrices of size E × (L+ 1)2. Our model mostly deals with vectors of size V × 1.
c Both pseudo-spectral and mesh-based models are coded in Matlab® and simulated in a MacBook Pro (OS X 10.9.5). We employ

the Parallel Computing Toolbox™ of Matlab® with four local workers in parallel runs. Serial runs use a single worker.
d Our model has variable element size. For L= 10 000, in principle, it can capture features of size as small as ≈ 2 km at minimal

computational cost as listed above (provided that the new unstructured mesh consists of similar V and E).

that we employ a GIA computed by A et al. (2013) and select

a rescaling such that the linear trends in ice mass loss from

the Antarctic Ice Sheet (AIS) and Greenland Ice Sheet (GrIS)

during the GRACE period are −90 and −240 Gtyr−1, re-

spectively. Throughout, we apply a Gaussian smoothing with

a 300 km radius. This smoothing radius may be large enough

to filter the short-wavelength noise, yet small enough to re-

tain the actual geophysical signals, and is in the range of typ-

ical values recommended for variety of applications (Wahr

et al., 1998; Swenson et al., 2003).

The temporal and spatial trends in the final products of the

AIS and GrIS mass balance are shown in Fig. 3. The am-

plitudes of temporal variability are higher for the AIS, im-

plying the large seasonal mass turnover there, but it could

also be due to large signal amplitudes of the GIA model

used (A et al., 2013). A kink is apparent in the AIS data

(Fig. 3a); the ice sheet has lost more mass (−111 Gtyr−1)

since 2007 than during the early period (−40 Gtyr−1). On

the other hand, the GrIS was losing the mass more steadily

with a little seasonal turnover, but at a much greater pace

(−240 Gtyr−1). Spatial distributions of the (linear) mass bal-

ance trend are shown in Fig. 3b. The figure suggests that the

AIS was mostly losing the mass from the ASS at a large rate

(dH/dt ≤−10 cm yr−1), and also from the Peninsula and

Wilkes Land at a more modest rate. Note that the AIS has

also gained mass in a few locations; there are clear signals of

mass gain (at a rate of about 2 cmyr−1) in the northern East

Antarctic Ice Sheet (EAIS). The GrIS lost mass at a much

greater pace of about −20 cmyr−1, mainly from the south-

eastern sector during the first half of the GRACE period, but

losses also expanded toward the west later on. Figure 3b also

suggests small mass changes in the north and interior of the

GrIS during the GRACE period. All these features are gen-

erally consistent with other published solutions, for both AIS

and GrIS (e.g., Velicogna and Wahr, 2013). However, it is im-

portant to note that our primary goal here is to demonstrate

the predictive capabilities of our mesh-based model rather

than computing precise mass budget solutions for the polar

ice sheets. In Sect. 5 we describe some application of the

methods to high-resolution ice-sheet models.

4.2 Sea level and other variables

The monthly time series of H(θ,λ, t) for both ice sheets are

obtained from the GRACE data as discussed above. We force

loading of the model by these mass balance solutions for the

two major ice sheets. Our model computes monthly solu-

tions for relative sea level, S, radial displacement of solid-

earth surface, U , and perturbation in absolute sea level, N .

Figure 4 summarizes these solutions for a combined forc-

ing of ice sheets, where we show the linear trends in vari-

ables obtained by fitting the corresponding monthly solu-

tions in a least-square sense. Figure 4a depicts the trend

in S with the following key features: a large rate of sea-

level drop (dS/dt ≤−3.0 mmyr−1) with large wavelengths

around the GrIS; the same, but with relatively smaller wave-

lengths around the ASS; and a moderate rate of sea-level

rise (1.5 mmyr−1) in the northern EAIS. The blue contours

represent the global mean rate (GMR) of relative sea-level

rise with a magnitude of about 0.91 mmyr−1. The corre-

sponding values for the AIS and GrIS are about 0.25 and

0.66 mmyr−1, respectively. In the regions enclosed by these

contours, sea level either falls or remains unchanged or rises

more slowly than the GMR. In the exterior regions, on the

other hand, sea level rises at a higher pace than the GMR.

From an ice-sheet modeling point of view, U and N are

perhaps more important variables than S itself because these

provide direct constraints to two of the important bound-

ary conditions, namely the bedrock elevation and the sea

surface height. Figure 4b shows the spatial distribution of

the linear trend in U , with the same general features as ob-

served for S (Fig. 4a) but of opposite sign. The solid-earth
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Figure 3. Summary of the GRACE data used in this study. (a) Ice mass change in the AIS and GrIS from April 2002 to March 2015.

(b) Spatial distribution of rate of change in ice thickness, averaged over the GRACE period. See Sect. 4.1 for a detailed discussion of the

GRACE data processing.

Table 3. Location of selected tide gauge stations, with Global Sea

Level Observing System (GLOSS) ID.

ID∗ GLOSS ID Location Latitude Longitude

N1 28 Male, Maldives 4.17◦ N 73.5◦ E

N2 86 Mera, Japan 34.55◦ N 139.49◦ E

N3 108 Honolulu, HI 21.30◦ N 157.87◦W

N4 158 San Francisco, CA 37.80◦ N 122.47◦W

N5 332 Virginia Keys, FL 25.73◦ N 80.16◦W

N6 229 Reykjavik, Iceland 64.15◦ N 21.93◦W

N7 241 Newlyn, UK 50.10◦ N 5.55◦W

S1 13 Durban, South Africa 29.88◦ S 31.03◦ E

S2 129 Bluff, New Zealand 46.60◦ S 168.35◦ E

S3 195 Rio de Janeiro, Brazil 22.90◦ S 43.17◦W

S4 95 Syowa, Antarctica 69.00◦ S 39.60◦ E

S5 278 Casey, Antarctica 66.28◦ S 110.53◦ E

S6 – Pine Is Glacier, Antarctica 75.17◦ S 100.00◦W

S7 188 Rothera, Antarctica 67.57◦ S 68.13◦W

∗ ID has the following format: X0, where X =N or S (for the Northern and Southern Hemisphere)

and 0= 1, . . .,7 (see Fig. 4a for their position on the global map).

surface uplift is predicted to occur at a relatively large rate

(dU/dt ≥ 2.5 mmyr−1) around the ASS and GrIS, and sub-

sides at a rather moderate rate of −0.5 mmyr−1 around the

northern EAIS. The trend in N shows much greater variabil-

ity in space (Fig. 4c). Here the computation is performed

in the CM reference frame and the corresponding Green’s

function does not change monotonically (unlike those for S

and U ) as a function of great-circle distance from the load-

ing point. Note in Fig. 2b how GU , for example, increases

monotonically as the evaluation point moves away from the

load. The predicted change in absolute sea level drops at

a rate of dN/dt ≤−1.0 mmyr−1 around the ASS and GrIS,

while a rise is predicted at a similar rate in the northern EAIS

and the northern Pacific. Generally speaking, the relative sea

level, sea surface height and solid-earth deformation are lin-

early related to each other (Eq. 1). Therefore, sea-level drop

is generally accompanied by the earth surface uplift and sea

surface fall, and sea-level rise is by the earth surface subsi-

dence and sea surface rise.

It may be useful to evaluate the corresponding changes in

absolute gravity (gravity anomaly or disturbance), because

this geodetic variable may be measured directly using abso-

lute gravimeters (e.g., James and Ivins, 1998; Crossley et al.,

2012) and space geodetic satellites. It may be possible to

compute this variable on the same computational mesh as

we use for solving the SLE, but it is more readily estimated

from the solutions of N in the SH domain. Here we evaluate

gravity anomaly,1g, that could be measured by a gravimeter

on the earth’s surface as follows (Lambeck, 1980):

1g(θ,λ, t)=
4π

3
GρE

∞∑
l=0

l∑
m=0

2∑
n=1

(l− 1)Nlmn(t)Ylmn(θ,λ), (27)

where Nlmn are the SH coefficients of N . The linear trend

in 1g is shown in Fig. 4d. As expected, large negative

trends are visible around the GrIS and ASS (d1g/dt ≤

−1.0 µgalyr−1), where mass was being lost rapidly during

the GRACE period (Fig. 3b). Similarly, in the regions with

mass accumulation such as the northern EAIS (Fig. 3b), ris-

ing trends in gravity anomaly are predicted, but at a rather

moderate rate of 0.5 µgalyr−1. (A Gaussian filter of 100 km

smoothing radius is employed for these plots.)
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Figure 4. Some important geodetic signatures of ice sheets dur-

ing the GRACE period. Rates of change in (a) relative sea level,

(b) solid-earth deformation, (c) absolute sea level, and (d) abso-

lute gravity. (Notice the different scale and color order in the color

bars.) These results are obtained by linearly fitting the correspond-

ing monthly solutions in a least-square sense. The blue contours in

(a) represent the trend in the global mean value, with magnitude

dS/dt = 0.91 mmyr−1. Annotations are supplied for 14 locations

in (a) (see Table 3 for their description).

An interesting exercise is to compare the relative contri-

bution of individual ice sheets to the total sea-level change.

(Total sea-level change, in the context here, is due to the

combined mass evolution of both AIS and GrIS.) For such

analysis, we select 14 representative tide gauge stations, half

of which are located in the Northern Hemisphere. The de-

scriptions of these sites are given in Table 3 and their co-

ordinates on the global map are shown in Fig. 4a. For two

representative sites (one for each hemisphere), Fig. 5a shows

the explicit evolution of sea-level change and the relative

contribution of AIS and GrIS. In Honolulu, the total sea

level rises faster (black line in the figure) than the GMR

(red line) throughout the GRACE period. The GrIS contribu-

tion at this site is higher (light blue fill) than its contribution

to the global mean value (blue line). The AIS influence at

this site is similar. This is summarized in the figure inset, in

which we compare the average trends in sea-level variation:

the local contributions of GrIS (dS/dt = 0.82 mmyr−1) and

AIS (0.33 mmyr−1) are both greater than the corresponding

GMRs (i.e., 0.66 and 0.25 mmyr−1, respectively), thus re-

sulting in a much greater pace of local sea-level rise in Hon-

olulu (1.15 mmyr−1) than the GMR (0.91 mmyr−1). By con-

trast, the total sea level falls at a rapid pace in the Pine Island

Glacier (−2.88 mmyr−1) despite the positive and larger than

global mean contribution of GrIS (0.82 mmyr−1), and it is

mainly due to the local gravitational loss (Fig. 4d) associated

with a strong loss in ice mass from the ASS (Fig. 3b).

Figure 5b summarizes a similar comparison for dS/dt at

other tide gauge stations (see Table 3 and Fig. 4a). Although

the figure is self-explanatory, we make brief remarks on some

interesting features. On both the western coast (San Fran-

cisco; N4) and the eastern coast (Virginia Keys; N5) of the

continental United States, contributions of AIS are greater

and those of GrIS are smaller than the corresponding GMRs.

Their combined effects, however, are somewhat contrasting:

the pace of local sea-level rise (0.93 mmyr−1) is slightly

higher than the GMR at San Francisco, and the opposite is

true for Virginia Keys, where sea level rises at a rather mod-

est rate of 0.82 mmyr−1. Greatly contrasting rates are pre-

dicted at two closely located places, namely Reykjavik (N6)

and Newlyn (N7). Since the AIS contributions are similar at

both sites, differing signatures in total sea-level change are

due to the GrIS: the ice sheet has a strong negative contribu-

tion at Reykjavik, causing the total sea level to drop at the

great rate of −1.07 mmyr−1. Its contribution at Newlyn, on

the other hand, is minimal, and therefore the total sea level

there rises much more slowly than the GMR (0.34 mmyr−1).

Note that there are other interesting comparisons such as be-

tween the eastern (Casey; S5) and western (Rothera; S7) lim-

its of the AIS. At Casey in the EAIS, the AIS contribution is

minimal and the total sea-level rise (0.67 mmyr−1) is mainly

due to the GrIS. However, at Rothera, both ice sheets have

similar contributions but opposite signs, thus resulting in a

virtually stagnant sea level (0.05 mmyr−1). In the end, it is

also worthwhile reporting the overwhelmingly great pace of

sea-level rise (1.54 mmyr−1) at Syowa in the northern EAIS

(S4). The AIS contribution is large there, mainly due to the

enhanced gravitational pulling (Fig. 4d) associated with the

local mass gain (Fig. 3b).

What we have highlighted thus far are the global predic-

tive features that can be efficiently extracted from our flex-
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Figure 5. Magnitudes and trends of sea-level change at 14 selected

locations. (See Table 3 for their description and Fig. 4a to locate

their position on the global map.) (a) Change in relative sea level

over time at two representative sites. Average rates of relative sea-

level change are also shown in the insets. (b) Rate of change in

relative sea level, averaged over the GRACE period, at 12 other

locations. Cyan and blue colors (both fill and line) represent the

contribution from the AIS and GrIS, respectively. The combined

contributions of ice sheets are shown in red. Black lines in Fig. 5a

represent the local values and all others denote the global mean val-

ues.

ible FE mesh system. In the section that follows we apply

those model predictive features to two important geodynam-

ical observables associated with space geodesy: polar motion

and geocentric motion of the earth.

4.3 Polar motion and geocentric motion

The redistribution of mass on the earth’s surface (Eq. 2) ex-

cites changes in the position of the rotational spin axis with

respect to fixed positions in the crust. This is also known as

changes in “earth orientation”, or is commonly known as po-

lar motion (Lambeck, 1980), and has important observational

ties to the mass imbalance of the earth’s two great ice sheets

(Douglas et al., 1990). The GMR of sea-level rise caused by

ice sheets is roughly 1 mmyr−1 since about 2005 (Shepherd

et al., 2012). If rates increase during the next 80–100 years,

sufficient to reach the upper end of the estimate of Jevrejeva

et al. (2014) for 2100 (≈ 180 cm), then it will be important

to have the state-of-the-art data assimilating ice-sheet mod-

els, such as ISSM, incorporate such a profoundly fundamen-

tal observable. Here we compute some important attributes

of polar motion induced by contemporary ice sheets and as-

sociated sea-level changes during the GRACE period.

Figure 6a and b shows 3-D plots for the monthly posi-

tion of the North Pole. Complex interactions between the

near-annual forcing and Chandler (433-day period) wobble

results in a net polar wobble with varying amplitude. This

can be seen in the figures for both ice sheets. While wob-

bling around the mean rotational axis, the pole also drifts

away from its initial position, as indicated by trend lines in

the figures. A kink in the drift direction is apparent for the

AIS in about 2007, which may be linked to a similar feature

observed in mass evolution of the ice sheet (see Fig. 3a).

In order to predict polar drift from our mesh-based

computational framework, we evaluate classic mass exci-

tation functions, χ1 and χ2, associated with individual ice

sheets (Fig. 6c) and the corresponding annual pole positions

(Fig. 6d). The North Pole in Fig. 6d represents that of year

2002. The mass loss in the GrIS yields positive χ1 and neg-

ative χ2 in the employed right-handed Cartesian system, im-

plying that the general drift direction is toward the fourth

quadrant defined by x1 > 0 and x2 < 0 (see Fig. 6d). Since χ1

and χ2 are on a similar order of magnitudes, the GrIS induced

drift is directed toward the ice sheet itself along≈ 40◦W lon-

gitude. On the other hand, the combination of rapid mass loss

in the ASS and mass gain in the northern EAIS yields posi-

tive excitation functions, thus causing the North Pole wander

vector to be directed toward a Eurasian ≈ 60◦E longitude.

Since the AIS and GrIS operate in-phase for χ1 and out-

of-phase for χ2, their combined effects would amplify the

former excitation function and shrink the latter one. Conse-

quently, the pole would be drifting along ≈ 15◦W longitude

during the GRACE period as shown in Fig. 6d.

These predictions are generally consistent with the re-

port by Chen et al. (2013): glaciers and ice sheets explain

a large fraction of observed χ1 during 2005–2011, but their

contributions to χ2 are minimal. We find dχ1/dt = 2.87±

0.15 masyr−1 for the same period, which is approximately

half the trend attributed by Chen et al. (2013) to glaciers and

ice sheets. Large rates of mass loss from other glaciated re-

gions such as the high-altitude Himalayas (Gardner et al.,

2013) may explain the discrepancy, although more rigorous

effort is needed to justify this. Despite the minimal collective

contributions of glaciers and ice sheets to the observed trend

in χ2, it is important to highlight the significant role that the

AIS is playing to counter the GrIS induced negative χ2 (see

Fig. 6c). Rapid mass loss from the ASS, aided by the mass

gain in the northern EAIS, is responsible for drifting the pole

along ≈ 15◦W longitude, which would otherwise be head-

ing the GrIS. Observations of further eastward motion of the

pole (along ≈ 15◦ E longitude; Fig. 6d) may be explained by

mass transport and other excitations unrelated to ice sheets.

From gravitationally consistent surface mass redistribu-

tion, the mesh model may also estimate the geocentric mo-
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Figure 6. Polar motion during the GRACE period. Monthly pole positions (with respect to April 2002), (p1,p2), excited by (a) AIS and

(b) GrIS mass loss in the right-handed coordinate system (x1,x2) (see d). Red lines show the average drift directions. A kink is apparent

for the AIS. (c) Mass excitation functions, χ1 and χ2, associated with individual ice sheets. (d) Annual pole positions, after removing

Chandler wobbles, with respect to the 2002 position. For comparison, the observed long-term (green arrow; Mitrovica et al., 2006) and

recent (2005–2011; blue arrow; Chen et al., 2013) drift directions are also shown. Note that 1 mas ≈ 3.09 cm.

tion of the earth. While observationally more elusive than

polar motion, this is a fundamental parameter important to

global reference frames. The geocentric motion is caused by

the shift in relative position between the CM of the earth sys-

tem and the center of figure (CF) of the solid-earth surface,

and this information is essential to reconcile the geodetic

data that are tracked from the ground stations using abso-

lute gravimeters and also from the passive geodetic satellites

using SLR. Let the CM-CF shift be denoted by the position

vector Xi (for i = 1,2,3) in the right-handed Cartesian sys-

tem. The components of this vector can be computed from

the degree 1 SH coefficients of a gravitationally consistent

loading function (Eq. 2) as follows (e.g., Wu et al., 2006):

Xi(t)=

√
3

ρE

[
1−

h′1+ 2l′1

3

]
[L111(t)δ1i +L112(t)δ2i

+L101(t)δ3i] , (28)

where δ1i , δ2i , and δ3i are the Kronecker deltas, and l′1 is the

degree 1 load Love number, just like h′1 and k′1, and in the

employed CM reference frame is on the order l′1 =−0.89

(Blewitt, 2003).

The ice-sheet induced components of X during the

GRACE period are plotted in Fig. 7. Since both ice sheets

are located near the poles (i.e., with small |xi | for i = 1,2

and large |x3|), their individual contributions to the CM-CF

shift are naturally larger for X3, which is associated with a

degree 1 zonal harmonic. However, the ice sheets have sec-

ular trends in this component of geocentric motion that op-

pose one another. This opposition mutes their combined sig-

nal (Fig. 7c), predicting a gradual shift toward the South Pole

at a rate of −0.44±0.03 mmyr−1. Both seasonal amplitudes

and secular trends in horizontal components of the geocentric

motion, i.e., X1 and X2, are quite minimal, compared with

the corresponding solutions inferred from the SLR observa-

tions (Cheng et al., 2013b), despite the in-phase functioning

of ice sheets for the latter component. Incorporation of de-

gree 1 predictions into ice-sheet models such as ISSM will

be important for considering geodetic reference frame stabil-

ity, but it is unlikely to be relegated to the status of a data as-

similation parameter due to problems with inferring decadal

timescale CM-CF drift (Ries, 2013), especially when com-

pared to other global space geodetic observables.

5 Sea-level fingerprints of high-resolution ice-sheet

forcing

In Sect. 4 we have demonstrated the wide range of appli-

cations of ISSM-SESAW. Our loading functions (Eq. 2) in

these experiments are based on the GRACE inferred mass

budget of polar ice sheets, which are inherently of low reso-
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Figure 7. Geocentric motion during the GRACE period. The CM-

CF shift, with respect to the April 2002 position, along the (a) x1,

(b) x2, and (c) x3 directions in a right-handed Cartesian system.

(See Fig. 6d for a positive sense of horizontal axes; the vertical axis,

x3, is positive out of the North Pole.) Note that different scales are

used (in the right y axis) for the SLR-based estimates (Cheng et al.,

2013b).

lution (on the order of 250–350 km), allowing us to consider

a relatively coarse mesh (with smallest elements on the order

of 60 km). However, one of the major goals of ISSM-SESAW

is to be able to resolve the kilometer-scale source of earth’s

time-varying surface mass transport (e.g., fast-flowing outlet

glaciers, and rapid changes in grounding line position) and

project it globally. In order to demonstrate this, we provide

an example computation of sea-level fingerprint associated

with high-resolution modeling of polar ice sheets.

We model the dynamics of polar ice sheets over high-

resolution mass conserving beds (Morlighem et al., 2014,

and personal communication). We mesh the ice sheets

anisotropically from 50 km (AIS) and 15 km (GrIS) at the

ice divide to 3 and 1 km in fast-flowing regions, respectively,

with respective ice shelves meshed at 9 and 1 km. These

meshes comprise a total of 102 308 (AIS) and 93 039 el-

ements (GrIS). For both ice sheets, we perform a 200-

year control run using a 2-D shelfy-stream approximation

(MacAyeal, 1993) for ice-flow mechanics. The models are

initialized from steady state using basal friction inversion

(Larour et al., 2012; Schlegel et al., 2015) and present-day

InSAR surface velocities (Rignot et al., 2011). The models

are initially relaxed to thermal steady state as well (Seroussi

et al., 2013). The model forcings include a surface climatol-

ogy provided by Regional Climate Model RACMO2.3 (Et-

tema et al., 2009) averaged during 1979–2010, and melt rates

under Antarctic ice shelves obtained from mean annual sim-

ulation of ECCO (Estimating the Circulation and Climate of

the Ocean) over 1992–2012 (Heimbach, 2008). The global

sea-level model comprises the actual high-resolution meshes

of both ice sheets, and is anisotropically adapted from 1 km

in the highest-velocity areas of GrIS to 2000 km in the middle

of the Pacific Ocean, for a total of 292 262 elements. Coast-

lines are resolved with the Generic Mapping Tool (Wessel

et al., 2013), and the mesh itself is generated using Gmsh

(Geuzaine and Remacle, 2009). We compute relative sea

level on this global mesh by forcing ISSM-SESAW with

high-resolution ice thickness change over a 200-year control

run on both polar ice sheets. Solutions are shown in Fig. 8.

Large negative changes in sea level are evident around both

ice sheets, symptomatic of the overall loss of mass from both

AIS and GrIS during the control runs.

These solutions are obtained by running ISSM-SESAW

on NASA’s Pleaides supercomputer. Due to the intensive na-

ture of the convolution operation (i.e., a load defined at every

elemental centroid contributes to sea level evaluated at ev-

ery vertex of the mesh), a low-latency bandwidth network

is required to distribute solutions across the network in a

dense pattern. Pleaides has an InfiniBand® interconnect, with

all nodes connected in a partial hypercube topology, which

makes this operation possible. Scaling is highly dependent

upon the convolution loop, which needs to be carried out

in a fragmented way, to space out the distribution of values

across the cluster. This operation is CPU dependent, but is

also highly limited by the interconnect speed. Without the

discretization of SLE that operates on a flexible unstructured

mesh system (presented in this paper) and use of a massively

parallelized and fully scalable capability of ISSM-SESAW,

such a high-resolution computation of relative sea level and

associated global geodetic observables would have been vir-

tually impossible.

While this experiment demonstrates the overall capability

of our model development, we acknowledge that the earth

has non-negligible creep deformation over the timescales of

200 years (e.g., Dietrich et al., 2010; Klemann et al., 2008),

which the current version of ISSM-SESAW cannot account

for. Note, however, that the dominant vertical displacement

and potential field changes at wavelengths comparable to

the ocean basins respond with much longer timescales than

200 years due to the stiffness of the mantle below ≈ 420 km

(e.g., Lambeck and Johnston, 1998). The current version of

the model also does not provide systematic solid-earth/sea-

level feedbacks to the ice-flow mechanics, although we have

fully embedded high-resolution ice-sheet models within the

global mesh. We are currently working toward this two-way

model coupling, and this may be presented in a future publi-

cation.
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Figure 8. Sea-level fingerprints of high-resolution ice-sheet forcing. The upper frame shows relative sea level computed by ISSM-SEASAW

at the end of a 200-year control run of both polar ice sheets. The corresponding ice forcings (e.g., Schlegel et al., 2015) are shown in the

lower frame. Close-ups on Greenland (frames a and c) and Antarctica (b, d) are provided for convenience. We do not account for rotational

feedback in this particular set of computations.

6 Conclusions

The motivation for this study is in concert with the rapid de-

velopments in ice-sheet modeling that have occurred over the

past 5–10 years, wherein processes that occur at a kilometer

scale must be captured along with local sea-level variabil-

ity. Toward developing a coherent set of ice-sheet and solid-

earth/sea-level models that operates on a common compu-

tational architecture provided by JPL’s ISSM (https://issm.

jpl.nasa.gov/), we present a mesh-based approach to evalu-

ating gravitationally consistent relative sea-level and associ-

ated geodetic variables. Unlike contemporary sea-level mod-

els that are mostly based on SH formulation, the model can

function efficiently on an anisotropic unstructured mesh, thus

capturing the physics operating at kilometer scale yet capa-

ble of simulating geophysical quantities that are inherently

of global scale with minimal computational cost.

In order to explain the global model, we compute the evo-

lution of sea-level fingerprints and other observables, such as

sea surface height, gravity anomaly and solid-earth deforma-

tion, associated with GRACE inferred monthly mass balance

of ice sheets for a period from April 2002 to March 2015 in

a manner that is broadly familiar to the space geodesy and

altimetry communities (e.g., Farrell and Clark, 1976; Riva

et al., 2010; Mitrovica et al., 2011). We also evaluate the

corresponding polar and geocentric motion of the earth and

find that both ice sheets play a significant role in explain-

ing the observed eastward drift of the North Pole since about

2005 (Chen et al., 2013), whereas the predicted influences

on earth’s geocentric motion are minimal compared with the

SLR inferred estimates (Cheng et al., 2013b). One of the

greatest strengths of our model is to resolve kilometer-scale

sources of earth’s surface mass transport and predict the cor-

responding local and global geodetic signatures. We demon-

strate this by providing an example computation of sea-level

fingerprint associated with high-resolution modeling of polar

ice sheets.

Global geodetic and sea-level signatures that can be com-

puted using the mesh model may have important implications

for earth system modeling. Coupling a global sea-level model

to a local mesh of a 3-D ice-sheet model, for example, en-

hances the realistic simulation of outlet glaciers, such as Pine

Island Glacier, as it provides a direct constraint to two of the

important boundary conditions, namely the bedrock eleva-

tion and the sea surface height, that would be consistent with

global-scale climate driven mass redistribution. There may

yet be several other applications that involve continental-

scale gravitational and loading interaction. However, the cur-

rent model development is strictly applied to an elastically

compressible and density layered self-gravitating earth and,
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hence, suitable for short-timescale (monthly to decadal) eval-

uation of variables. For relatively long-timescale (centennial

or longer) computations, the model should also account for

viscoelastic response of the solid earth. It may be achieved

through appropriate parameterization of long-term GIA re-

sponse via time-dependent viscoelastic Love numbers.

Code availability

In the Supplement, we provide the source code and the nec-

essary data set to run the model within JPL’s ISSM (https:

//issm.jpl.nasa.gov/) and reproduce some of the results (par-

ticularly those related to the AIS).
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Appendix A: SHs and Legendre polynomials

Any square-integrable function, f (θ,λ, t), can be expanded

as the infinite sum of SHs, i.e.,

f (θ,λ, t)=

∞∑
l=0

l∑
m=0

2∑
n=1

flmn(t)Ylmn(θ,λ), (A1)

where flmn are SH coefficients and Ylmn are (real) 4π -

normalized SHs of degree l and order m. These SHs may

be expressed in terms of associated Legendre polynomials,

Plm, as follows:

Ylmn(θ,λ)=

√
[2− δ0m] [2l+ 1]

[l−m] !

[l+m] !

Plm(cosθ) [δ1n cosmλ+ δ2n sinmλ] , (A2)

where δ0m, δ1n, and δ2n are the Kronecker deltas. For x ∈

[−1,1], polynomials Plm(x) are given by

Plm(x)= (1− x
2)m/2

dmPl(x)

dxm
, (A3)

where

Pl(x)=
1

2l l!

dl(x2
− 1)l

dxl
(A4)

are the Legendre polynomials. This definition of SHs and

their normalization are consistent with those employed for

GRACE data generation (Bettadpur, 2012). If we define a

function so that Rf (θ,λ, t)=N(θ,λ, t), the corresponding

SH coefficients flmn are essentially the so-called “Stokes co-

efficients” and are often denoted by Clm(≡ flm1) and Slm(≡

flm2).

For the chosen 4π normalization scheme, SHs obey the

following orthogonality relationship:∫
S

Ylmn(θ,λ)Yl′m′n′(θ,λ) dS= 4πδll′δmm′δnn′ , (A5)

where δll′ , δmm′ , and δnn′ are once again the Kronecker deltas.

If f (θ,λ, t) is known a priori, its SH coefficients can be com-

puted using Eq. (A5) as follows:

flmn(t)=
1

4π

∫
S

f (θ,λ, t)Ylmn(θ,λ)dS. (A6)

We employ this property while evaluating, for example,

L2mn (see Eq. 19).

Appendix B: Model validation

We validate our model against the existing results/models

through the following three experiments: (1) sea-level

change neglecting ice loads on an elastic non-rotating earth;

Figure B1. Change in relative sea level neglecting ice loads on

an elastic non-rotating earth. Normalized sea level with respect to

global mean value (see Eq. B1), (a) computed by ISSM-SESAW

and (b) provided by Farrell and Clark (1976) in their Fig. 1c.

(2) sea-level change following instantaneous collapse of a

synthetic ice sheet on an elastic non-rotating earth; and

(3) rotational feedback to sea-level distribution. These exper-

iments should be sufficient to demonstrate the ability of our

model to provide accurate solutions for relative sea level on a

self-gravitating, elastically compressible, rotating earth. All

results are expressed (and compared) in terms of normalized

relative sea level as follows:

Z(θ,λ, t)= 100×
S(θ,λ, t)

E(t)
%. (B1)

Z = 100 % implies that sea level changes at the global mean

rate.

The first experiment considers the change in sea level

caused by a change in total mass of the ocean, assuming that

the mass is added from outside the earth rather than having an

ice melt origin. This experiment is motivated by the computa-

tion documented in Farrell and Clark (1976). Figure B1 com-

pares our solution to Fig. 1c of Farrell and Clark (1976). The

solution patterns are strikingly similar; notice for example

the large rise in sea level in the middle of the Pacific Ocean.

Minor differences exist, however (e.g., the Z = 102 % con-

tour does not appear in the South Atlantic Ocean in our solu-

tion), and these can be attributed to, amongst others, different

computational algorithms, domains (e.g., number of compu-

tational nodes), choice of L (we use L= 10 000), coastline

resolution (we use ≈ 60 km), and load Love numbers corre-

sponding to differing interior earth models.
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Figure B2. Change in relative sea level induced by deglaciation on an elastic non-rotating earth. Normalized sea level with respect to global

mean value (see Eq. B1), computed by (a) our mesh model and (b) a pseudo-spectral model for similar computational settings. Z = 100 %

contours are plotted (in blue) to facilitate comparison. (c) Difference between the two model solutions. Some (random) discrepancies appear-

ing particularly around the deglaciated region may be considered as numerical artifacts due to differing model algorithms. (d) Difference

between two mesh models with L= 128 and L= 10 000 (Eq. 14). Large discrepancies appear around the deglaciated region, implying the

systematic errors associated with low-degree SH representation of solid-earth response.

Figure B3. Rotational feedback to relative sea level. (a) Normal-

ized sea level computed by ISSM-SESAW as in Fig. B2a, but with

rotational feedback included. Notice the shape of Z = 100 % (blue

contours) with respect to the one drawn in Fig. B2a. (b) Difference

between (a) and Fig. B2a, illustrating the (SH degree 2 order 1)

signature of rotation induced sea-level variation.

In the second experiment, we compute change in relative

sea level caused by instantaneous melting of a synthetic ice

sheet and compare it with the corresponding solution ob-

tained from a Matlab® version of SELEN (Spada and Stoc-

chi, 2007). We assume that a disc-shaped ice sheet, which has

an 18◦ radius and is centered at 60◦ north latitude and 85◦

west longitude, melts uniformly. The pseudo-spectral model

consists of 12 288 pixels and the SH expansion is truncated

at L= 128. In order to match these settings as closely as

possible, our mesh model also consists of structured (trian-

gular) elements with 12 514 vertices (and 25 024 elements)

and considers the traditional approximation of Green’s func-

tions (as in Eq. 14 rather than Eq. 16) with L= 128. Solu-

tions, shown in Fig. B2, show remarkable resemblance con-

sidering the differences in model setup. Notice, for exam-

ple, the location of Z = 100 % contours. There are, how-

ever, minor (somewhat random) differences between the so-

lutions (Fig. B2c), particularly around the deglaciated region,

which may be considered as artifacts due to differing numer-

ical approaches. In order to highlight the importance of high

wave number signatures, we also obtain a solution by hav-

ing L= 10 000 in our mesh model. Since all other compu-

tational settings are exactly the same, the difference in so-

lutions shown in Fig. B2d illustrates the systematic errors

associated with severity of the low-degree SH truncation at

128.
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The third experiment assesses the ability of our mesh

model to provide rotational feedback to relative sea level, sur-

face displacement and gravitational potential. We consider

the exact same model setup as for the second experiment,

but include the perturbation in rotational potential caused

by polar motion and associated solid-earth deformation in

SLE. Solutions are plotted in Fig. B3. Since the rotation in-

duced sea level varies spatially over time in our formulation

(see Sect. 3.2), this solution is retrieved by filtering out a

dominant signal of 433-day Chandler wobbles. As the ice

sheet loses mass, the earth’s spin axis drifts toward a posi-

tion aligned with the axis of the new principal moments of

inertia, thus causing the sea level to drop locally with a char-

acteristic SH degree 2 order 1 signature. While this is not a

benchmark, per se, it is conceptually and quantitatively con-

sistent with the rotational feedback reported in the numerical

experiments (e.g., Mitrovica et al., 2009, Fig. 1c).

Geosci. Model Dev., 9, 1087–1109, 2016 www.geosci-model-dev.net/9/1087/2016/
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The Supplement related to this article is available online

at doi:10.5194/gmd-9-1087-2016-supplement.
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