Articles | Volume 8, issue 12
https://doi.org/10.5194/gmd-8-4045-2015
https://doi.org/10.5194/gmd-8-4045-2015
Model description paper
 | 
21 Dec 2015
Model description paper |  | 21 Dec 2015

Coupling global models for hydrology and nutrient loading to simulate nitrogen and phosphorus retention in surface water – description of IMAGE–GNM and analysis of performance

A. H. W. Beusen, L. P. H. Van Beek, A. F. Bouwman, J. M. Mogollón, and J. J. Middelburg

Related authors

CARBON-DISC 1.0 – A coupled, process-based model of global in-stream carbon biogeochemistry
Wim Joost van Hoek, Lauriane Vilmin, Arthur H. W. Beusen, José M. Mogollón, Xiaochen Liu, Joep J. Langeveld, Alexander F. Bouwman, and Jack J. Middelburg
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-205,https://doi.org/10.5194/gmd-2019-205, 2019
Revised manuscript not accepted
Short summary
Global database and model on dissolved carbon in soil solution
Joep Langeveld, Alexander F. Bouwman, Wim Joost van Hoek, Lauriane Vilmin, Arthur H. W. Beusen, José M. Mogollón, and Jack J. Middelburg
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-238,https://doi.org/10.5194/bg-2019-238, 2019
Preprint withdrawn
Short summary
Nitrogen leaching from natural ecosystems under global change: a modelling study
Maarten C. Braakhekke, Karin T. Rebel, Stefan C. Dekker, Benjamin Smith, Arthur H. W. Beusen, and Martin J. Wassen
Earth Syst. Dynam., 8, 1121–1139, https://doi.org/10.5194/esd-8-1121-2017,https://doi.org/10.5194/esd-8-1121-2017, 2017
Short summary
Anthropogenic land use estimates for the Holocene – HYDE 3.2
Kees Klein Goldewijk, Arthur Beusen, Jonathan Doelman, and Elke Stehfest
Earth Syst. Sci. Data, 9, 927–953, https://doi.org/10.5194/essd-9-927-2017,https://doi.org/10.5194/essd-9-927-2017, 2017
Short summary
Spatiotemporal dynamics of soil phosphorus and crop uptake in global cropland during the 20th century
Jie Zhang, Arthur H. W. Beusen, Dirk F. Van Apeldoorn, José M. Mogollón, Chaoqing Yu, and Alexander F. Bouwman
Biogeosciences, 14, 2055–2068, https://doi.org/10.5194/bg-14-2055-2017,https://doi.org/10.5194/bg-14-2055-2017, 2017
Short summary

Related subject area

Biogeosciences
FESOM2.1-REcoM3-MEDUSA2: an ocean–sea ice–biogeochemistry model coupled to a sediment model
Ying Ye, Guy Munhoven, Peter Köhler, Martin Butzin, Judith Hauck, Özgür Gürses, and Christoph Völker
Geosci. Model Dev., 18, 977–1000, https://doi.org/10.5194/gmd-18-977-2025,https://doi.org/10.5194/gmd-18-977-2025, 2025
Short summary
Satellite-based modeling of wetland methane emissions on a global scale (SatWetCH4 1.0)
Juliette Bernard, Elodie Salmon, Marielle Saunois, Shushi Peng, Penélope Serrano-Ortiz, Antoine Berchet, Palingamoorthy Gnanamoorthy, Joachim Jansen, and Philippe Ciais
Geosci. Model Dev., 18, 863–883, https://doi.org/10.5194/gmd-18-863-2025,https://doi.org/10.5194/gmd-18-863-2025, 2025
Short summary
Systematic underestimation of type-specific ecosystem process variability in the Community Land Model v5 over Europe
Christian Poppe Terán, Bibi S. Naz, Harry Vereecken, Roland Baatz, Rosie A. Fisher, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 18, 287–317, https://doi.org/10.5194/gmd-18-287-2025,https://doi.org/10.5194/gmd-18-287-2025, 2025
Short summary
Lambda-PFLOTRAN 1.0: a workflow for incorporating organic matter chemistry informed by ultra high resolution mass spectrometry into biogeochemical modeling
Katherine A. Muller, Peishi Jiang, Glenn Hammond, Tasneem Ahmadullah, Hyun-Seob Song, Ravi Kukkadapu, Nicholas Ward, Madison Bowe, Rosalie K. Chu, Qian Zhao, Vanessa A. Garayburu-Caruso, Alan Roebuck, and Xingyuan Chen
Geosci. Model Dev., 17, 8955–8968, https://doi.org/10.5194/gmd-17-8955-2024,https://doi.org/10.5194/gmd-17-8955-2024, 2024
Short summary
An improved model for air–sea exchange of elemental mercury in MITgcm-ECCOv4-Hg: the role of surfactants and waves
Ling Li, Peipei Wu, Peng Zhang, Shaojian Huang, and Yanxu Zhang
Geosci. Model Dev., 17, 8683–8695, https://doi.org/10.5194/gmd-17-8683-2024,https://doi.org/10.5194/gmd-17-8683-2024, 2024
Short summary

Cited articles

Adam, J. C. and Lettenmaier, D. P.: Application of new precipitation and reconstructed streamflow products to streamflow trend attribution in Northern Eurasia, J. Climate, 21, 1807–1828, 2008.
Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T., and Siebert, S.: Development and testing the WaterGap 2 model of water use and availability, Hydrolog. Sci. J., 48, 317–337, 2003.
Alexander, R. B., Smith, R. A., Schwarz, G. E., Boyer, E. W., Nolan, J. V., and Brakebill, J. W.: Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River Basin, Environ. Sci. Technol., 42, 822–830, 2008.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for compunting crop water requirements, Food and Agriculture Organization of the United Nations, Rome, Italy. FAO Irrigation and Drainage Paper 56, available at: www.fao.org/docrep/X0490E/X0490E00.htm (last access: 18 December 2015), 1998.
Angel, S., Sheppard, S., and Civco, D.: The dynamics of global urban expansion, The World Bank, Transport and Urban Development Department, Washington, D.C., available at: http://siteresources.worldbank.org/INTURBANDEVELOPMENT/Resources/dynamics_urban_expansion.pdf (last access: 18 December 2015), 2005.
Short summary
The IMAGE-Global Nutrient Model (GNM) is used to study the impact of multiple environmental changes on N and P delivery to surface water and transport and in-stream retention in rivers, lakes, wetlands and reservoirs over prolonged time periods. N and P are delivered to water bodies via diffuse sources (agriculture and natural ecosystems) and wastewater. N and P retention in a water body is calculated on the basis of the residence time of the water and nutrient uptake velocity.
Share