Articles | Volume 8, issue 12
https://doi.org/10.5194/gmd-8-4045-2015
https://doi.org/10.5194/gmd-8-4045-2015
Model description paper
 | 
21 Dec 2015
Model description paper |  | 21 Dec 2015

Coupling global models for hydrology and nutrient loading to simulate nitrogen and phosphorus retention in surface water – description of IMAGE–GNM and analysis of performance

A. H. W. Beusen, L. P. H. Van Beek, A. F. Bouwman, J. M. Mogollón, and J. J. Middelburg

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Lex Bouwman on behalf of the Authors (18 Nov 2015)  Author's response 
ED: Publish as is (01 Dec 2015) by Sandra Arndt
AR by Lex Bouwman on behalf of the Authors (03 Dec 2015)
Short summary
The IMAGE-Global Nutrient Model (GNM) is used to study the impact of multiple environmental changes on N and P delivery to surface water and transport and in-stream retention in rivers, lakes, wetlands and reservoirs over prolonged time periods. N and P are delivered to water bodies via diffuse sources (agriculture and natural ecosystems) and wastewater. N and P retention in a water body is calculated on the basis of the residence time of the water and nutrient uptake velocity.