Articles | Volume 8, issue 12
https://doi.org/10.5194/gmd-8-4045-2015
https://doi.org/10.5194/gmd-8-4045-2015
Model description paper
 | 
21 Dec 2015
Model description paper |  | 21 Dec 2015

Coupling global models for hydrology and nutrient loading to simulate nitrogen and phosphorus retention in surface water – description of IMAGE–GNM and analysis of performance

A. H. W. Beusen, L. P. H. Van Beek, A. F. Bouwman, J. M. Mogollón, and J. J. Middelburg

Viewed

Total article views: 7,956 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
4,754 2,963 239 7,956 799 164 197
  • HTML: 4,754
  • PDF: 2,963
  • XML: 239
  • Total: 7,956
  • Supplement: 799
  • BibTeX: 164
  • EndNote: 197
Views and downloads (calculated since 03 Sep 2015)
Cumulative views and downloads (calculated since 03 Sep 2015)

Cited

Saved (final revised paper)

Saved (preprint)

Latest update: 06 Dec 2023
Short summary
The IMAGE-Global Nutrient Model (GNM) is used to study the impact of multiple environmental changes on N and P delivery to surface water and transport and in-stream retention in rivers, lakes, wetlands and reservoirs over prolonged time periods. N and P are delivered to water bodies via diffuse sources (agriculture and natural ecosystems) and wastewater. N and P retention in a water body is calculated on the basis of the residence time of the water and nutrient uptake velocity.