Articles | Volume 8, issue 11
Geosci. Model Dev., 8, 3593–3619, 2015
https://doi.org/10.5194/gmd-8-3593-2015
Geosci. Model Dev., 8, 3593–3619, 2015
https://doi.org/10.5194/gmd-8-3593-2015

Development and technical paper 06 Nov 2015

Development and technical paper | 06 Nov 2015

Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED)

R. A. Fisher et al.

Related authors

Assessing impacts of selective logging on water, energy, and carbon budgets and ecosystem dynamics in Amazon forests using the Functionally Assembled Terrestrial Ecosystem Simulator
Maoyi Huang, Yi Xu, Marcos Longo, Michael Keller, Ryan G. Knox, Charles D. Koven, and Rosie A. Fisher
Biogeosciences, 17, 4999–5023, https://doi.org/10.5194/bg-17-4999-2020,https://doi.org/10.5194/bg-17-4999-2020, 2020
Short summary
Observation-based implementation of ecophysiological processes for a rubber plant functional type in the community land model (CLM4.5-rubber_v1)
Ashehad A. Ali, Yuanchao Fan, Marife D. Corre, Martyna M. Kotowska, Evelyn Hassler, Fernando E. Moyano, Christian Stiegler, Alexander Röll, Ana Meijide, Andre Ringeler, Christoph Leuschner, Tania June, Suria Tarigan, Holger Kreft, Dirk Hölscher, Chonggang Xu, Charles D. Koven, Rosie Fisher, Edzo Veldkamp, and Alexander Knohl
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-236,https://doi.org/10.5194/gmd-2018-236, 2018
Revised manuscript not accepted
Short summary
Representing nighttime and minimum conductance in CLM4.5: global hydrology and carbon sensitivity analysis using observational constraints
Danica L. Lombardozzi, Melanie J. B. Zeppel, Rosie A. Fisher, and Ahmed Tawfik
Geosci. Model Dev., 10, 321–331, https://doi.org/10.5194/gmd-10-321-2017,https://doi.org/10.5194/gmd-10-321-2017, 2017
Short summary
Environmental drivers of drought deciduous phenology in the Community Land Model
K. M. Dahlin, R. A. Fisher, and P. J. Lawrence
Biogeosciences, 12, 5061–5074, https://doi.org/10.5194/bg-12-5061-2015,https://doi.org/10.5194/bg-12-5061-2015, 2015
Short summary
Predicting the response of the Amazon rainforest to persistent drought conditions under current and future climates: a major challenge for global land surface models
E. Joetzjer, C. Delire, H. Douville, P. Ciais, B. Decharme, R. Fisher, B. Christoffersen, J. C. Calvet, A. C. L. da Costa, L. V. Ferreira, and P. Meir
Geosci. Model Dev., 7, 2933–2950, https://doi.org/10.5194/gmd-7-2933-2014,https://doi.org/10.5194/gmd-7-2933-2014, 2014

Related subject area

Biogeosciences
Accounting for forest management in the estimation of forest carbon balance using the dynamic vegetation model LPJ-GUESS (v4.0, r9710): implementation and evaluation of simulations for Europe
Mats Lindeskog, Benjamin Smith, Fredrik Lagergren, Ekaterina Sycheva, Andrej Ficko, Hans Pretzsch, and Anja Rammig
Geosci. Model Dev., 14, 6071–6112, https://doi.org/10.5194/gmd-14-6071-2021,https://doi.org/10.5194/gmd-14-6071-2021, 2021
Short summary
FABM-NflexPD 1.0: assessing an instantaneous acclimation approach for modeling phytoplankton growth
Onur Kerimoglu, Prima Anugerahanti, and Sherwood Lan Smith
Geosci. Model Dev., 14, 6025–6047, https://doi.org/10.5194/gmd-14-6025-2021,https://doi.org/10.5194/gmd-14-6025-2021, 2021
Short summary
A model for marine sedimentary carbonate diagenesis and paleoclimate proxy signal tracking: IMP v1.0
Yoshiki Kanzaki, Dominik Hülse, Sandra Kirtland Turner, and Andy Ridgwell
Geosci. Model Dev., 14, 5999–6023, https://doi.org/10.5194/gmd-14-5999-2021,https://doi.org/10.5194/gmd-14-5999-2021, 2021
Short summary
Using the International Tree-Ring Data Bank (ITRDB) records as century-long benchmarks for global land-surface models
Jina Jeong, Jonathan Barichivich, Philippe Peylin, Vanessa Haverd, Matthew Joseph McGrath, Nicolas Vuichard, Michael Neil Evans, Flurin Babst, and Sebastiaan Luyssaert
Geosci. Model Dev., 14, 5891–5913, https://doi.org/10.5194/gmd-14-5891-2021,https://doi.org/10.5194/gmd-14-5891-2021, 2021
Short summary
A model-independent data assimilation (MIDA) module and its applications in ecology
Xin Huang, Dan Lu, Daniel M. Ricciuto, Paul J. Hanson, Andrew D. Richardson, Xuehe Lu, Ensheng Weng, Sheng Nie, Lifen Jiang, Enqing Hou, Igor F. Steinmacher, and Yiqi Luo
Geosci. Model Dev., 14, 5217–5238, https://doi.org/10.5194/gmd-14-5217-2021,https://doi.org/10.5194/gmd-14-5217-2021, 2021
Short summary

Cited articles

Abramowitz, G.: Towards a public, standardized, diagnostic benchmarking system for land surface models, Geosci. Model Dev., 5, 819–827, https://doi.org/10.5194/gmd-5-819-2012, 2012.
Abramowitz, G., Leuning, R., Clark, M., and Pitman, A.: Evaluating the performance of land surface models, J. Climate, 21, 5468–5481, 2008.
Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P., Jones, C., Jung, M., Myneni, R., and Zhu, Z.: Evaluating the land and ocean components of the global carbon cycle in the CMIP5 Earth System Models, J. Climate, 26, 6801–6843, 2013.
Anten, N. P. and During, H. J.: Is analysing the nitrogen use at the plant canopy level a matter of choosing the right optimization criterion?, Oecologia, 167, 293–303, 2011.
Arora, V. K. and Boer, G. J.: Simulating competition and coexistence between plant functional types in a dynamic vegetation model, Earth Interact., 10, 1–30, 2006.
Download
Short summary
Predicting the distribution of vegetation under novel climates is important, both to understand how climate change will impact ecosystem services, but also to understand how vegetation changes might affect the carbon, energy and water cycles. Historically, predictions have been heavily dependent upon observations of existing vegetation boundaries. In this paper, we attempt to predict ecosystem boundaries from the ``bottom up'', and illustrate the complexities and promise of this approach.