Articles | Volume 8, issue 10
https://doi.org/10.5194/gmd-8-3119-2015
https://doi.org/10.5194/gmd-8-3119-2015
Development and technical paper
 | 
06 Oct 2015
Development and technical paper |  | 06 Oct 2015

Increasing vertical mixing to reduce Southern Ocean deep convection in NEMO3.4

C. Heuzé, J. K. Ridley, D. Calvert, D. P. Stevens, and K. J. Heywood

Related authors

Automatic detection of Arctic polynyas using hybrid supervised-unsupervised deep learning
Céline Heuzé and Carmen Hau Man Wong
EGUsphere, https://doi.org/10.5194/egusphere-2025-2747,https://doi.org/10.5194/egusphere-2025-2747, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
The distribution and abundance of planktonic foraminifera under summer sea ice in the Arctic Ocean
Flor Vermassen, Clare Bird, Tirza M. Weitkamp, Kate F. Darling, Hanna Farnelid, Céline Heuzé, Allison Y. Hsiang, Salar Karam, Christian Stranne, Marcus Sundbom, and Helen K. Coxall
Biogeosciences, 22, 2261–2286, https://doi.org/10.5194/bg-22-2261-2025,https://doi.org/10.5194/bg-22-2261-2025, 2025
Short summary
Drivers of high frequency extreme sea level around Northern Europe – Synergies between recurrent neural networks and Random Forest
Céline Heuzé, Linn Carlstedt, Lea Poropat, and Heather Reese
EGUsphere, https://doi.org/10.5194/egusphere-2025-700,https://doi.org/10.5194/egusphere-2025-700, 2025
Short summary
Continued warming of deep waters in the Fram Strait
Salar Karam, Céline Heuzé, Mario Hoppmann, and Laura de Steur
Ocean Sci., 20, 917–930, https://doi.org/10.5194/os-20-917-2024,https://doi.org/10.5194/os-20-917-2024, 2024
Short summary
Unsupervised classification of the northwestern European seas based on satellite altimetry data
Lea Poropat, Dani Jones, Simon D. A. Thomas, and Céline Heuzé
Ocean Sci., 20, 201–215, https://doi.org/10.5194/os-20-201-2024,https://doi.org/10.5194/os-20-201-2024, 2024
Short summary

Related subject area

Oceanography
GREAT v1.0: Global Real-time Early Assessment of Tsunamis
Usama Kadri, Ali Abdolali, and Maxim Filimonov
Geosci. Model Dev., 18, 3487–3507, https://doi.org/10.5194/gmd-18-3487-2025,https://doi.org/10.5194/gmd-18-3487-2025, 2025
Short summary
Using automatic calibration to improve the physics behind complex numerical models: an example from a 3D lake model using Delft3D (v6.02.10) and DYNO-PODS (v1.0)
Marina Amadori, Abolfazl Irani Rahaghi, Damien Bouffard, and Marco Toffolon
Geosci. Model Dev., 18, 3473–3486, https://doi.org/10.5194/gmd-18-3473-2025,https://doi.org/10.5194/gmd-18-3473-2025, 2025
Short summary
Improvements to the Met Office's global ocean–sea ice forecasting system including model and data assimilation changes
Davi Mignac, Jennifer Waters, Daniel J. Lea, Matthew J. Martin, James While, Anthony T. Weaver, Arthur Vidard, Catherine Guiavarc'h, Dave Storkey, David Ford, Edward W. Blockley, Jonathan Baker, Keith Haines, Martin R. Price, Michael J. Bell, and Richard Renshaw
Geosci. Model Dev., 18, 3405–3425, https://doi.org/10.5194/gmd-18-3405-2025,https://doi.org/10.5194/gmd-18-3405-2025, 2025
Short summary
Resolution dependence of interlinked Southern Ocean biases in global coupled HadGEM3 models
David Storkey, Pierre Mathiot, Michael J. Bell, Dan Copsey, Catherine Guiavarc'h, Helene T. Hewitt, Jeff Ridley, and Malcolm J. Roberts
Geosci. Model Dev., 18, 2725–2745, https://doi.org/10.5194/gmd-18-2725-2025,https://doi.org/10.5194/gmd-18-2725-2025, 2025
Short summary
A new global high-resolution wave model for the tropical ocean using WAVEWATCH III version 7.14
Axelle Gaffet, Xavier Bertin, Damien Sous, Héloïse Michaud, Aron Roland, and Emmanuel Cordier
Geosci. Model Dev., 18, 1929–1946, https://doi.org/10.5194/gmd-18-1929-2025,https://doi.org/10.5194/gmd-18-1929-2025, 2025
Short summary

Cited articles

Adcroft, A.: Representation of topography by porous barriers and objective interpolation of topographic data, Ocean Model., 67, 13–27, https://doi.org/10.1016/j.ocemod.2013.03.002, 2013.
Axell, L. B.: Wind-driven internal waves and Langmuir circulations in a numerical ocean model of the southern Baltic Sea, J. Geophys. Res., 107, 3204, https://doi.org/10.1029/2001JC000922, 2002.
Azaneu, M., Kerr, R., and Mata, M. M.: Assessment of the representation of Antarctic Bottom Water properties in the ECCO2 reanalysis, Ocean Sci., 10, 923–946, https://doi.org/10.5194/os-10-923-2014, 2014.
Bates, M. L., Griffies, S. M., and England, M. H.: A dynamic, embedded Lagrangian model for ocean climate models. Part I: Theory and implementation, Ocean Model., 59, 51–59, https://doi.org/10.5194/os-10-923-2014, 2012.
Briegleb, B. P., Danabasoglu, G., and Large, W.: An overflow parameterization for the ocean component of the community climate system model, Tech. rep, National Center for Atmospheric Research, Boulder, Colorado, 2010.
Download
Short summary
Most ocean models, including NEMO, have unrealistic Southern Ocean deep convection. That is, through extensive areas of the Southern Ocean, they exhibit convection from the surface of the ocean to the sea floor. We find this convection to be an issue as it impacts the whole ocean circulation, notably strengthening the Antarctic Circumpolar Current. Using sensitivity experiments, we show that counter-intuitively the vertical mixing needs to be enhanced to reduce this spurious convection.
Share