Articles | Volume 8, issue 10
https://doi.org/10.5194/gmd-8-3119-2015
https://doi.org/10.5194/gmd-8-3119-2015
Development and technical paper
 | 
06 Oct 2015
Development and technical paper |  | 06 Oct 2015

Increasing vertical mixing to reduce Southern Ocean deep convection in NEMO3.4

C. Heuzé, J. K. Ridley, D. Calvert, D. P. Stevens, and K. J. Heywood

Related authors

Drivers of high frequency extreme sea level around Northern Europe – Synergies between recurrent neural networks and Random Forest
Céline Heuzé, Linn Carlstedt, Lea Poropat, and Heather Reese
EGUsphere, https://doi.org/10.5194/egusphere-2025-700,https://doi.org/10.5194/egusphere-2025-700, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Continued warming of deep waters in the Fram Strait
Salar Karam, Céline Heuzé, Mario Hoppmann, and Laura de Steur
Ocean Sci., 20, 917–930, https://doi.org/10.5194/os-20-917-2024,https://doi.org/10.5194/os-20-917-2024, 2024
Short summary
The distribution and abundance of planktonic foraminifera under summer sea-ice in the Arctic Ocean
Flor Vermassen, Clare Bird, Tirza M. Weitkamp, Kate F. Darling, Hanna Farnelid, Céline Heuzé, Allison Y. Hsiang, Salar Karam, Christian Stranne, Marcus Sundbom, and Helen K. Coxall
EGUsphere, https://doi.org/10.5194/egusphere-2024-1091,https://doi.org/10.5194/egusphere-2024-1091, 2024
Short summary
Unsupervised classification of the northwestern European seas based on satellite altimetry data
Lea Poropat, Dani Jones, Simon D. A. Thomas, and Céline Heuzé
Ocean Sci., 20, 201–215, https://doi.org/10.5194/os-20-201-2024,https://doi.org/10.5194/os-20-201-2024, 2024
Short summary
A year of transient tracers (chlorofluorocarbon 12 and sulfur hexafluoride), noble gases (helium and neon), and tritium in the Arctic Ocean from the MOSAiC expedition (2019–2020)
Céline Heuzé, Oliver Huhn, Maren Walter, Natalia Sukhikh, Salar Karam, Wiebke Körtke, Myriel Vredenborg, Klaus Bulsiewicz, Jürgen Sültenfuß, Ying-Chih Fang, Christian Mertens, Benjamin Rabe, Sandra Tippenhauer, Jacob Allerholt, Hailun He, David Kuhlmey, Ivan Kuznetsov, and Maria Mallet
Earth Syst. Sci. Data, 15, 5517–5534, https://doi.org/10.5194/essd-15-5517-2023,https://doi.org/10.5194/essd-15-5517-2023, 2023
Short summary

Related subject area

Oceanography
HIDRA3: a deep-learning model for multipoint ensemble sea level forecasting in the presence of tide gauge sensor failures
Marko Rus, Hrvoje Mihanović, Matjaž Ličer, and Matej Kristan
Geosci. Model Dev., 18, 605–620, https://doi.org/10.5194/gmd-18-605-2025,https://doi.org/10.5194/gmd-18-605-2025, 2025
Short summary
A wave-resolving two-dimensional vertical Lagrangian approach to model microplastic transport in nearshore waters based on TrackMPD 3.0
Isabel Jalón-Rojas, Damien Sous, and Vincent Marieu
Geosci. Model Dev., 18, 319–336, https://doi.org/10.5194/gmd-18-319-2025,https://doi.org/10.5194/gmd-18-319-2025, 2025
Short summary
HOTSSea v1: a NEMO-based physical Hindcast of the Salish Sea (1980–2018) supporting ecosystem model development
Greig Oldford, Tereza Jarníková, Villy Christensen, and Michael Dunphy
Geosci. Model Dev., 18, 211–237, https://doi.org/10.5194/gmd-18-211-2025,https://doi.org/10.5194/gmd-18-211-2025, 2025
Short summary
DalROMS-NWA12 v1.0, a coupled circulation–ice–biogeochemistry modelling system for the northwest Atlantic Ocean: development and validation
Kyoko Ohashi, Arnaud Laurent, Christoph Renkl, Jinyu Sheng, Katja Fennel, and Eric Oliver
Geosci. Model Dev., 17, 8697–8733, https://doi.org/10.5194/gmd-17-8697-2024,https://doi.org/10.5194/gmd-17-8697-2024, 2024
Short summary
A revised ocean mixed layer model for better simulating the diurnal variation in ocean skin temperature
Eui-Jong Kang, Byung-Ju Sohn, Sang-Woo Kim, Wonho Kim, Young-Cheol Kwon, Seung-Bum Kim, Hyoung-Wook Chun, and Chao Liu
Geosci. Model Dev., 17, 8553–8568, https://doi.org/10.5194/gmd-17-8553-2024,https://doi.org/10.5194/gmd-17-8553-2024, 2024
Short summary

Cited articles

Adcroft, A.: Representation of topography by porous barriers and objective interpolation of topographic data, Ocean Model., 67, 13–27, https://doi.org/10.1016/j.ocemod.2013.03.002, 2013.
Axell, L. B.: Wind-driven internal waves and Langmuir circulations in a numerical ocean model of the southern Baltic Sea, J. Geophys. Res., 107, 3204, https://doi.org/10.1029/2001JC000922, 2002.
Azaneu, M., Kerr, R., and Mata, M. M.: Assessment of the representation of Antarctic Bottom Water properties in the ECCO2 reanalysis, Ocean Sci., 10, 923–946, https://doi.org/10.5194/os-10-923-2014, 2014.
Bates, M. L., Griffies, S. M., and England, M. H.: A dynamic, embedded Lagrangian model for ocean climate models. Part I: Theory and implementation, Ocean Model., 59, 51–59, https://doi.org/10.5194/os-10-923-2014, 2012.
Briegleb, B. P., Danabasoglu, G., and Large, W.: An overflow parameterization for the ocean component of the community climate system model, Tech. rep, National Center for Atmospheric Research, Boulder, Colorado, 2010.
Download
Short summary
Most ocean models, including NEMO, have unrealistic Southern Ocean deep convection. That is, through extensive areas of the Southern Ocean, they exhibit convection from the surface of the ocean to the sea floor. We find this convection to be an issue as it impacts the whole ocean circulation, notably strengthening the Antarctic Circumpolar Current. Using sensitivity experiments, we show that counter-intuitively the vertical mixing needs to be enhanced to reduce this spurious convection.
Share