Articles | Volume 8, issue 9
https://doi.org/10.5194/gmd-8-2815-2015
https://doi.org/10.5194/gmd-8-2815-2015
Development and technical paper
 | Highlight paper
 | 
09 Sep 2015
Development and technical paper | Highlight paper |  | 09 Sep 2015

POM.gpu-v1.0: a GPU-based Princeton Ocean Model

S. Xu, X. Huang, L.-Y. Oey, F. Xu, H. Fu, Y. Zhang, and G. Yang

Related authors

Optimizing output operations in high-resolution climate models through dynamic scheduling
Dong Wang and Xiaomeng Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3533,https://doi.org/10.5194/egusphere-2024-3533, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
LB-SCAM: a learning-based method for efficient large-scale sensitivity analysis and tuning of the Single Column Atmosphere Model (SCAM)
Jiaxu Guo, Juepeng Zheng, Yidan Xu, Haohuan Fu, Wei Xue, Lanning Wang, Lin Gan, Ping Gao, Wubing Wan, Xianwei Wu, Zhitao Zhang, Liang Hu, Gaochao Xu, and Xilong Che
Geosci. Model Dev., 17, 3975–3992, https://doi.org/10.5194/gmd-17-3975-2024,https://doi.org/10.5194/gmd-17-3975-2024, 2024
Short summary
A Deep Learning-Based Consistency Test Approach for Earth System Models on Heterogeneous Many-Core Systems
Yangyang Yu, Shaoqing Zhang, Haohuan Fu, Dexun Chen, Yang Gao, Xiaopei Lin, Zhao Liu, and Xiaojing Lv
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-10,https://doi.org/10.5194/gmd-2024-10, 2024
Preprint withdrawn
Short summary
Effect of tides on river water behavior over the eastern shelf seas of China
Lei Lin, Hao Liu, Xiaomeng Huang, Qingjun Fu, and Xinyu Guo
Hydrol. Earth Syst. Sci., 26, 5207–5225, https://doi.org/10.5194/hess-26-5207-2022,https://doi.org/10.5194/hess-26-5207-2022, 2022
Short summary
Characterizing uncertainties of Earth system modeling with heterogeneous many-core architecture computing
Yangyang Yu, Shaoqing Zhang, Haohuan Fu, Lixin Wu, Dexun Chen, Yang Gao, Zhiqiang Wei, Dongning Jia, and Xiaopei Lin
Geosci. Model Dev., 15, 6695–6708, https://doi.org/10.5194/gmd-15-6695-2022,https://doi.org/10.5194/gmd-15-6695-2022, 2022
Short summary

Related subject area

Climate and Earth system modeling
Virtual Integration of Satellite and In-situ Observation Networks (VISION) v1.0: In-Situ Observations Simulator (ISO_simulator)
Maria R. Russo, Sadie L. Bartholomew, David Hassell, Alex M. Mason, Erica Neininger, A. James Perman, David A. J. Sproson, Duncan Watson-Parris, and Nathan Luke Abraham
Geosci. Model Dev., 18, 181–191, https://doi.org/10.5194/gmd-18-181-2025,https://doi.org/10.5194/gmd-18-181-2025, 2025
Short summary
Climate model downscaling in central Asia: a dynamical and a neural network approach
Bijan Fallah, Masoud Rostami, Emmanuele Russo, Paula Harder, Christoph Menz, Peter Hoffmann, Iulii Didovets, and Fred F. Hattermann
Geosci. Model Dev., 18, 161–180, https://doi.org/10.5194/gmd-18-161-2025,https://doi.org/10.5194/gmd-18-161-2025, 2025
Short summary
Multi-year simulations at kilometre scale with the Integrated Forecasting System coupled to FESOM2.5 and NEMOv3.4
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025,https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary
Subsurface hydrological controls on the short-term effects of hurricanes on nitrate–nitrogen runoff loading: a case study of Hurricane Ida using the Energy Exascale Earth System Model (E3SM) Land Model (v2.1)
Yilin Fang, Hoang Viet Tran, and L. Ruby Leung
Geosci. Model Dev., 18, 19–32, https://doi.org/10.5194/gmd-18-19-2025,https://doi.org/10.5194/gmd-18-19-2025, 2025
Short summary
CARIB12: a regional Community Earth System Model/Modular Ocean Model 6 configuration of the Caribbean Sea
Giovanni Seijo-Ellis, Donata Giglio, Gustavo Marques, and Frank Bryan
Geosci. Model Dev., 17, 8989–9021, https://doi.org/10.5194/gmd-17-8989-2024,https://doi.org/10.5194/gmd-17-8989-2024, 2024
Short summary

Cited articles

Allen, J. S. and Newberger, P. A.: Downwelling Circulation on the Oregon Continental Shelf. Part I: Response to Idealized Forcing, J. Phys. Oceanogr., 26, 2011–2035, https://doi.org/10.1175/1520-0485(1996)026<2011:DCOTOC>2.0.CO;2, 1996.
Berntsen, J. and Oey, L.-Y.: Estimation of the internal pressure gradient in σ-coordinate ocean models: comparison of second-, fourth-, and sixth-order schemes, Ocean Dynam., 60, 317–330, 2010.
Blumberg, A. F. and Mellor, G. L.: Diagnostic and prognostic numerical circulation studies of the South Atlantic Bight, J. Geophys. Res.-Oceans, (1978–2012), 88, 4579–4592, 1983.
Blumberg, A. F. and Mellor, G. L.: A description of a three-dimensional coastal ocean circulation model, Coast. Est. Sci., 4, 1–16, 1987.
Browne, S., Dongarra, J., Garner, N., Ho, G., and Mucci, P.: A portable programming interface for performance evaluation on modern processors, Int. J. High Perf. Comp. Appl., 14, 189–204, 2000.
Download
Short summary
In this paper, we redesign the mpiPOM with GPUs. Specifically, we first convert the model from its original Fortran form to a new CUDA-C version, POM.gpu-v1.0. Then we optimize the code on each of the GPUs, the communications between the GPUs, and the I/O between the GPUs and the CPUs. We show that the performance of the new model on a workstation containing 4 GPUs is comparable to that on a powerful cluster with 408 standard CPU cores, and it reduces the energy consumption by a factor of 6.8.