
Geosci. Model Dev., 8, 2815–2827, 2015

www.geosci-model-dev.net/8/2815/2015/

doi:10.5194/gmd-8-2815-2015

© Author(s) 2015. CC Attribution 3.0 License.

POM.gpu-v1.0: a GPU-based Princeton Ocean Model

S. Xu1, X. Huang1, L.-Y. Oey2,3, F. Xu1, H. Fu1, Y. Zhang1, and G. Yang1

1Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science, Tsinghua University,

100084, and Joint Center for Global Change Studies, Beijing, 100875, China
2Institute of Hydrological & Oceanic Sciences, National Central University, Jhongli, Taiwan
3Program in Atmospheric & Oceanic Sciences, Princeton University, Princeton, New Jersey, USA

Correspondence to: X. Huang (hxm@tsinghua.edu.cn)

Received: 13 October 2014 – Published in Geosci. Model Dev. Discuss.: 17 November 2014

Revised: 10 August 2015 – Accepted: 19 August 2015 – Published: 9 September 2015

Abstract. Graphics processing units (GPUs) are an attrac-

tive solution in many scientific applications due to their

high performance. However, most existing GPU conversions

of climate models use GPUs for only a few computation-

ally intensive regions. In the present study, we redesign the

mpiPOM (a parallel version of the Princeton Ocean Model)

with GPUs. Specifically, we first convert the model from its

original Fortran form to a new Compute Unified Device Ar-

chitecture C (CUDA-C) code, then we optimize the code on

each of the GPUs, the communications between the GPUs,

and the I /O between the GPUs and the central process-

ing units (CPUs). We show that the performance of the new

model on a workstation containing four GPUs is comparable

to that on a powerful cluster with 408 standard CPU cores,

and it reduces the energy consumption by a factor of 6.8.

1 Introduction

High-resolution atmospheric, oceanic and climate mod-

ellings remain significant scientific and engineering chal-

lenges because of the enormous computing, communication,

and storage requirements involved. Due to the rapid develop-

ment of computer architecture, in particular the development

of multi-core and many-core hardware, the computing power

that can be applied to scientific problems has increased ex-

ponentially in recent decades. Parallel computing methods,

such as the Message Passing Interface (MPI, Gropp et al.,

1999) and Open Multi-Processing (OpenMP, Chapman et al.,

2008), have been widely used to support the parallelization of

climate models. However, supercomputers are becoming in-

creasingly heterogeneous, involving devices such as the GPU

and the Intel Many Integrated Core (Intel MIC), and new ap-

proaches are required to effectively utilize the new hardware.

In recent years, a number of scientific codes have been

ported to the GPU as shown in Table 1. Most existing GPU

acceleration codes for climate models are only operating

on certain hot spots of the program, leaving a significant

portion of the program still running on CPUs. The speed

of some subroutines reported in the Weather Research and

Forecast (WRF) (Michalakes and Vachharajani, 2008) and

WRF-Chem (Linford et al., 2009) is improved by a factor

of approximately 8, whereas the whole model achieves lim-

ited speedup because of partial porting. The speed of POP

(Zhenya et al., 2010) is improved by a factor of only 2.2 be-

cause the model only accelerated a number of loop structures

using the OpenACC Application Programming Interface

(OpenACC API). The speed of COSMO (Leutwyler et al.,

2014), NIM (Govett et al., 2010) and ASUCA (Shimokawabe

et al., 2010) are greatly improved by multiple GPUs. We be-

lieve that the elaborate optimization of the memory access of

each GPU and the communication between GPUs can further

accelerate these models.

The objective of our study was to shorten the computation

time of the Princeton Ocean Model (POM) by parallelizing

its existing model structures using the GPU. Taking the par-

allel version of the Princeton Ocean Model (mpiPOM), we

demonstrate how to code an ocean model so that it runs ef-

ficiently on GPU architecture. We first convert the mpiPOM

from its original Fortran version into a new Compute Uni-

fied Device Architecture C (CUDA-C) version, POM.gpu-

v1.0. CUDA-C is the dominant programming language for

GPUs. We then optimize the code on each of the GPUs, the

communications between the GPUs, and the I /O between

Published by Copernicus Publications on behalf of the European Geosciences Union.

2816 X. Huang et al.: POM.gpu-v1.0

Table 1. Existing GPU porting work in climate fields. The speedups are normalized to one CPU core.

Model name Model description Porting modules to GPU Speedup

WRF Weather Research and Forecasting WSM5 microphysics 8

WRF-Chem WRF chemical Chemical kinetics kernel 8.5

POP Parallel Ocean Program Loop structures 2.2

COSMO Consortium for Small-scale Modeling Dynamical core 22.7

NIM Nonhydrostatic Icosahedral Model Dynamical core 34

ASUCA Nonhydrostatic weather model Dynamical core and physical 80

GPUs and the CPUs to further improve the performance of

POM.gpu.

To understand the accuracy, performance and scalability of

the POM.gpu code, we customized a workstation with four

Nvidia K20X GPUs. The results show that the performance

of POM.gpu running on this workstation is comparable to

that on a powerful cluster with 408 standard CPU cores.

This paper is organized as follows. In Sect. 2, we review

the mpiPOM model. In Sect. 3, we briefly introduce the GPU

computing model. In Sect. 4, we present the detailed opti-

mization techniques. In Sect. 5, we report on the correctness,

performance and scalability of the model. We present the

code availability in Sect. 6 and conclude our work in Sect. 7.

2 The mpiPOM

The mpiPOM is a parallel version of the POM. It retains most

of the physics of the original POM (Blumberg and Mellor,

1983, 1987; Oey et al., 1985a, b, c; Oey and Chen, 1992a, b)

and includes satellite and drifter assimilation schemes from

the Princeton Regional Ocean Forecast System (Oey, 2005;

Lin et al., 2006; Yin and Oey, 2007), stokes drift and wave-

enhanced mixing (Oey et al., 2013; Xu et al., 2013; Xu and

Oey, 2014). The POM code was reorganized and the parallel

MPI version was implemented by Jordi and Wang (2012) us-

ing a two-dimensional data decomposition of the horizontal

domain. The MPI is a standard library for message passing

and is widely used to develop parallel programs. The POM is

a powerful ocean model that has been used in a wide range of

applications: circulation and mixing processes in rivers, estu-

aries, shelves, slopes, lakes, semi-enclosed seas and open and

global oceans. It is also at the core of various real-time ocean

and hurricane forecasting systems, e.g. the Japanese coastal

ocean and Kuroshio current (Miyazawa et al., 2009; Isobe

et al., 2012; Varlamov et al., 2015), the Adriatic Sea Fore-

casting System (Zavatarelli and Pinardi, 2003), the Mediter-

ranean Sea forecasting system (Korres et al., 2007), the

GFDL Hurricane Prediction System (Kurihara et al., 1995,

1998), the US Hurricane Forecasting System (Gopalakrish-

nan et al., 2010, 2011), and the Advanced Taiwan Ocean

Prediction (ATOP) system (Oey et al., 2013). Additionally,

the model has been used to study various geophysical fluid

dynamical processes (e.g. Allen and Newberger, 1996; New-

berger and Allen, 2007a, b; Kagimoto and Yamagata, 1997;

Guo et al., 2006; Oey et al., 2003; Zavatarelli and Mellor,

1995; Ezer and Mellor, 1992; Oey, 2005; Xu and Oey, 2011,

2014, 2015; Chang and Oey, 2014; Huang and Oey, 2015;

Sun et al., 2014, 2015). For a more complete list, please visit

the POM website (http://www.ccpo.odu.edu/POMWEB).

The mpiPOM experiment used in this paper is one of two

that were designed and tested by Professor Oey and students;

the codes and results are freely available at the FTP site (ftp://

profs.princeton.edu/leo/mpipom/atop/tests/). The reader can

refer to Chapter 3 of the lecture notes (Oey, 2014) for more

detail. The test case is a dam-break problem in which warm

and cold waters are initially separated in the middle of a

zonally periodic channel (200 km× 50 km× 50 m) on an f-

plane, with walls at the northern and southern boundaries.

Geostrophic adjustment then ensues and baroclinic instabil-

ity waves amplify and develop into finite-amplitude eddies

in 10∼20 days. The horizontal grid sizes are 1 km and there

are 50 vertical sigma levels. Although the problem is a test

case, the code is the full mpiPOM version used in the ATOP

forecasting system.

The model solves the primitive equation under hydro-

static and Boussinesq approximations. In the horizontal, spa-

tial derivatives are computed either using centered-space

differencing or Smolarkiewicz’s positive definite advection

transport algorithm (Smolarkiewicz, 1984) on a staggered

Arakawa C-grid; both schemes have been tested, but the

latter is reported here. In the vertical, the mpiPOM sup-

ports terrain-following sigma coordinates and a fourth-order

scheme option to reduce the internal pressure-gradient er-

rors (Berntsen and Oey, 2010). The mpiPOM uses the time-

splitting technique to separate the vertically integrated equa-

tions (external mode) from the vertical structure equations

(internal mode). The external mode calculation is responsi-

ble for updating the surface elevation and vertically aver-

aged velocities. The internal mode calculation updates the

velocity, temperature and salinity, as well as the turbulence

quantities. The three-dimensional internal mode and the two-

dimensional external mode are both integrated explicitly us-

ing a second-order leapfrog scheme. These two modules are

the most computationally intensive kernels of the mpiPOM

model.

Geosci. Model Dev., 8, 2815–2827, 2015 www.geosci-model-dev.net/8/2815/2015/

http://www.ccpo.odu.edu/POMWEB
ftp://profs.princeton.edu/leo/mpipom/atop/tests/
ftp://profs.princeton.edu/leo/mpipom/atop/tests/

X. Huang et al.: POM.gpu-v1.0 2817

The main computational problem of the mpiPOM is mem-

ory bandwidth limited. To confirm this issue, we use the run-

time performance API tool to estimate the floating point op-

eration count and the memory access instruction count, as in

Browne et al. (2000). The results reveal that the computa-

tional intensity, defined as floating point operations per byte

transferred to or from memory, of the mpiPOM is approxi-

mately 1 : 3.3, whereas the computational intensity provided

by a modern high-performance CPU (an Intel SandyBridge

E5-2670) is 7.5 : 1. Many large arrays are mostly pulled

from the main memory and there is poor data reuse in the

mpiPOM. In addition, there are no obvious hot spot func-

tions in the mpiPOM, and even the most time-consuming

subroutine occupies only 20 % of the total execution time.

Therefore, porting a handful of subroutines to the GPU is not

helpful in improving the model efficiency. This explains why

we must port the entire program from the CPU to the GPU.

3 GPU computing model overview

Modern GPUs employ a stream-processing model with par-

allelism. Each GPU contains a number of stream multipro-

cessors (SMs). In this work, we carried out the conversion

using four Nvidia K20X GPUs. Each K20X GPU contains

14 SMs and each SM has 192 single-precision processors

and 64 additional processors for double precision. Although

the computational capability of each processor is low, one

GPU with thousands of processors can greatly boost the

performance compared to the CPU. In computing, FLOPS

(FLoating-point Operations Per Second) is a measure of

computer performance. The theoretical peak performance of

each K20X GPU is 3.93 teraFLOPS (TFLOPS, one trillion

floating-point operations per second) for the single-precision

floating-point calculations. In contrast, a single Intel Sandy-

Bridge E5-2670 CPU is only capable of 0.384 TFLOPS.

Each pair of GPUs shares 6 Gigabytes (GB) of mem-

ory, with the interface having a potential bandwidth of

250 GB s−1. Figure 3 illustrates the memory hierarchy of the

K20X GPU. Each SM possesses some types of fast on-chip

memory such as register, L1 cache, shared memory and read-

only data cache. In GPUs, the register is the fastest memory,

of which the size is 256 Kilobytes (KB) for each SM. The

shared memory and the L1 cache use the common 64 KB

space, which can be partitioned as 16/48 KB, 32/32 KB or

48/16 KB. The 48 KB read-only data cache is useful for hold-

ing frequently used values that remain unchanged during

each stage of the processing.

There are three widely used methods for porting a program

to GPUs. The first method uses drop-in libraries provided by

CUDA to replace the existing code, as in Siewertsen et al.

(2013). The second method uses the OpenACC directive as

hints in the original CPU code as in Zhenya et al. (2010). The

last method is the most complex but also the most effective; it

kernel 1 kernel 3

kernel 0 kernel 2

Time

stream 0

stream 1

...

...

...

...

...

...

...

...

...

...

...

...

...
...

thread

kernel

GPU

block(0,0) block(1,0) block(2,0)

block(0,1) block(1,1) block(2,1)

warp

block

warp

Figure 1. The hierarchy of stream, kernel, block, warp and thread.

involves rewriting the entire program using low-level CUDA

subroutines.

In CUDA terminology, a kernel is a single section of code

or subroutine running on the GPU. The underlying code in

a kernel is split into a series of threads, each of which deals

with different data. These threads are grouped into equal-size

thread blocks that can be executed independently. A thread

block is further divided into warps as basic scheduled units.

A warp consists of 32 consecutive threads that execute the

same instruction simultaneously. Each kernel and data trans-

fer command in CUDA has an optional parameter, “stream

ID”. If the stream ID is set in code, commands belonging to

different streams can be executed concurrently. A stream in

CUDA is a sequence of commands executed in order. Differ-

ent streams can execute concurrently with different priorities.

Figure 1 illustrates the hierarchy of these terms.

At present, CUDA compilers are available for C and For-

tran. Although CUDA-Fortran has been available since 2009

and would involve less modification of the mpiPOM code,

we chose CUDA-C to convert the POM.gpu-v1.0 because

of the following reasons: (1) CUDA-C is free of charge;

(2) previous work (Henderson et al., 2011) has shown that

the CUDA-Fortran compiler did not perform as well as the

CUDA-C version for some of the kernels during the port-

ing of NIM; (3) the read-only data cache is not supported by

CUDA-Fortran, which is the key optimization of Sect. 4.1.2;

and (4) we have many previous optimization experiences

with CUDA-C.

www.geosci-model-dev.net/8/2815/2015/ Geosci. Model Dev., 8, 2815–2827, 2015

2818 X. Huang et al.: POM.gpu-v1.0

4 Full GPU acceleration of the mpiPOM

Figure 2 is a flowchart illustrating the structure of the

POM.gpu. The main difference between the mpiPOM and

the POM.gpu is that the CPU in the POM.gpu is only respon-

sible for the initializing and the output work. The POM.gpu

begins by initializing the relevant arrays on the CPU and then

copies data from the CPU to the GPU. The GPU then per-

forms all of the model computations. Outputs such as veloc-

ity and sea-surface height (SSH) are copied back to the CPU

and are then written to the disk at a user-specified time inter-

val.

In the following sections, we introduce the optimizations

of the POM.gpu by computation, communication and I /O

aspects individually.

For the individual GPUs, we concentrate on memory ac-

cess optimization by making better use of caches in the GPU

memory hierarchy. This involves using read-only data cache,

local memory blocking, loop fusion and function fusion,

and disabling error-correcting code memory. The test results

demonstrate that a single GPU can run the model almost 100

times faster than a single CPU core.

In terms of communication, we overlapped the sending of

boundary data between the GPUs with the main computation.

Data are also sent directly between the GPUs, bypassing the

CPU.

In terms of I /O, we launched extra MPI processes on the

main CPU to output the data. These MPI processes are di-

vided into two categories, the computation processes and the

I /O processes. The computation processes are responsible

for launching kernels into GPUs and the I /O processes are

responsible for copying data back from the GPUs and for

writing to disks. The computation processes and the I /O

processes can execute simultaneously to save output time.

4.1 Computational optimizations in a single GPU

Managing the significant performance difference between

global memory and on-chip fast memory is the primary con-

cern for GPU computing. The ratio of bandwidth between

global memory and shared memory is approximately 1 : 10.

Therefore, data reuse in an on-chip cache always needs to be

seriously considered. As shown on the right side of Fig. 3,

we propose two classes of optimization, including the stan-

dard optimization of fusion and the special optimization of

the GPU, to better utilize the fast registers and caches.

4.1.1 Standard optimizations of fusion

Fusion optimization in the POM.gpu code includes loop fu-

sion and function fusion. The loop fusion merges several

loops into one loop and the function fusion merges several

subroutines into one subroutine.

Loop fusion is an effective method to store scalar variables

in registers for data reuse. As shown in Fig. 4, if the variable

 Initialization

 Output

Advection and

Horizontal diffusion of

U, V

Baroclinic term of

U, V

Sea Surface Height

Vertical integrated

moment equations

UT, VT for

Internal Mode

+Boundary operation

Update U, V

Continuity equation

+Boundary operation

Turbulence equation

+Boundary operation

Tracer transport

Equation(T,S)

+Boundary operation

Momentum equation

+Boundary operation

E
x

tern
al M

o
d

e
In

tern
al M

o
d

e

CPU GPU

MemcpyDeviceToHost

MemcpyHostToDevice

Figure 2. POM.gpu flowchart.

drhox(k, j, i) is read several times in multiple loops, we can

fuse these loops into one. Therefore, drhox(k, j, i) will first

be read from the global memory and then repeatedly read

from a register. For instance, for the profq kernel optimized

with loop fusion, the device memory transactions decrease

by 57 %, and the running speed of this kernel is improved by

28.6 %. The loop fusion optimization can also be applied in

a number of mpiPOM subroutines.

Similar to loop fusion, we can also merge functions in

which the same arrays are accessed. For example, the advv

and advu functions in the mpiPOM code are used to calculate

Geosci. Model Dev., 8, 2815–2827, 2015 www.geosci-model-dev.net/8/2815/2015/

X. Huang et al.: POM.gpu-v1.0 2819

Thread

L1 Cache
Shared

Memory

Read-only

data cache

L2 Cache

Global memory

L1 CacheL1 Cache
L1

Cache

Register
Loop Fusion &

Function Fusion

Read-only data

cache utilization

 Local memory

Blocking

ECC-off & Boost

K20X Memory Hierarchy Optimizations

Figure 3. The memory hierarchy of the K20X GPU and the rela-

tionships with each optimization.

the advection terms in horizontal directions, respectively. Af-

ter merging them into one subroutine, the redundant memory

access is avoided. The function fusion can also be applied in

which one function is called several times to calculate differ-

ent tracers. The proft function in the mpiPOM code is called

twice – one for temperature and one for salinity. Their com-

puting formulas are similar and some common arrays are ac-

cessed. After function fusion, the running speed of the proft

kernel is improved by 28.8 %.

4.1.2 Special optimizations of the GPU

Our special optimizations mainly focus on the improved uti-

lization of the read-only data cache and the L1 cache on the

GPU. It is useful to alleviate the bottleneck of memory band-

width that is limited by using these fast on-chip caches.

There is a 48 KB read-only data cache in the K20X GPU.

We can automatically use this as long as the read-only con-

dition is met. In the POM.gpu, we simply add const __re-

strict__ qualifiers into the parameter pointers to explicitly di-

rect the compiler to implement the optimization. As an exam-

ple, consider the calculations of advection and the horizontal

diffusion terms. Because mpiPOM adopts the Arakawa C-

grid, in the horizontal plane, updating the temperature (T)

requires the velocity of longitude (u), the velocity of lati-

tude (v) and the horizontal kinematic viscosity (aam) on the

neighbouring grid points. In one kernel, the u and v arrays

are accessed twice, and the aam array is accessed four times.

After using the read-only data cache to improve the data lo-

cality, the running speed of this kernel is improved by 18.8 %.

To reuse the data in each thread, we use local memory

blocking to pull the data from global memory to the L1

cache. In this method, a small subset of a data set is loaded

into the fast on-chip memory and then the small data block

is repeatedly accessed by the program. This method is help-

ful in reducing the need to access the off-chip with high la-

tency memory. In the subroutines of the vertical diffusion

and source/sink terms, the chasing method is used to solve

a tridiagonal matrix along the vertical direction for each grid

point individually. Each thread only accesses its own tiles

of row transformation coefficients. As shown in Fig. 5, the

arrays are accessed twice within one thread, one from the

surface (k = 0) to the bottom (k = nz− 1) and another from

the bottom (k = nz−1) to the surface (k = 0). After blocking

the vertical direction arrays in local memory, the L1 cache is

fully utilized, and the running speed of these subroutines is

improved by 35.3 %.

In the current implementation, as in the original mpiPOM

code, the three-dimensional arrays of variables are stored se-

quentially as east–west (x), north–south (y), and vertical (z),

i.e. i,j,k ordering. Two-dimensional arrays are stored in i,j

ordering. The vertical diffusion is solved using a tridiagonal

solver that is calculated sequentially in the z direction. For

simplicity, in our kernel functions the grid is divided along

x and y. Each GPU thread then specifies an (x,y) point in

the horizontal direction and performs all of the calculations

from the surface to the bottom. The thread blocks are divided

as 32× 4 subdomains in the x–y plane. In the x direction,

the block number must be a multiple of 32 threads to per-

form consecutive and aligned memory access within a warp

(NVIDIA, 2015). In the y direction, we tested many thread

numbers, such as 4 and 8, and obtained similar performances.

We ultimately choose 4 because this value produced more

blocks and allowed us to distribute the workload more uni-

formly amongst the SMs. In addition, 128 (= 32×4) threads

are enough to maintain the full occupancy, which is the num-

ber of active threads in each multiprocessor.

In GPU computing, one is free to choose which arrays

will be stored in an on-chip cache. Our experience involves

putting the data along the horizontal direction into the read-

only cache to reuse among threads, and putting the data along

with vertical direction into the local memory for reuse within

one thread.

Furthermore, we improve the global memory bandwidth

by disabling the Error Checking and memory Correcting

(ECC-off), as well as enhancing the clock on the GPU

(GPU boost). This method improves the performance of the

POM.gpu by 13.8 %.

4.1.3 Results of the computational optimizations

We divide all of the POM.gpu subroutines into three cat-

egories based on their different computational patterns. As

shown in Table 2, in the POM.gpu, we deploy different opti-

www.geosci-model-dev.net/8/2815/2015/ Geosci. Model Dev., 8, 2815–2827, 2015

2820 X. Huang et al.: POM.gpu-v1.0

/*************************

 *There exist two loops.

 *drhox is visited twice in these loops.

 *************************/

for (k = 1; k < nz-1; k++){

 drhox[k][j][i] = drhox[k-1][j][i] + A[k][j][i];

}

for (k = 0; k< nz-1; k++){

 drhox[k][j][i] = drhox[k][j][i] * B[k][j][i];

}

/*************************

 *These loops can be fused into one

 *to reduce global memory access.

 *************************/

for (k = 1; k < nz-1; k++){

 drhox[k][j][i] = drhox[k-1][j][i] + A[k][j][i];

 drhox[k-1][j][i] = drhox[k-1][j][i] * B[k-1][j][i];

}

drhox[k-1][j][i] = drhox[k-1][j][i] * B[k-1][j][i];

(a)Original CUDA-C code (b)Optimized CUDA-C code

Figure 4. A simple example of loop fusion.

/*************************

 *3D arrays ee and gg represent row transformation

 *coefficients of the chasing method.

 *************************/

for (k = 1; k < nz-2; k++){

 ee[k][j][i] = ee[k-1][j][i]*A[k][j][i];

 gg[k][j][i] = ee[k-1][j][i]*gg[k-1][j][i] - B[k][j][i];

}

for (k = nz-3; k>= 0; k++){

 uf[k][j][i] = (ee[k][j][i]*uf[k+1][j][i]+gg[k]) * C[k][j][i];

}

/*************************

 *Each thread pulls its own tile of ee,gg to

 *1D new arrays ee_new, gg_new(local memory).

 *There two new arrays can be cached in L1 for reuse.

 *************************/

for (k = 1; k < nz-2; k++){

 ee_new[k] = ee_new[k-1]*A[k][j][i];

 gg_new[k] = ee_new[k-1]*gg[k-1] - B[k][j][i];

}

for (k = nz-3; k>= 0; k++){

 uf[k][j][i] = (ee_new[k]*uf[k+1]+gg_new[k])*C[k][j][i];

}

(a)Original CUDA-C code (b)Optimized CUDA-C code

Figure 5. A simple example of local memory blocking.

mizations in these categories to improve the performance of

POM.gpu; these categories are described as follows.

1. Category 1: advection and horizontal diffusion (adv)

This category has six subroutines, and calculates the ad-

vection, horizontal diffusion and the pressure gradient

and Coriolis terms in the case of velocity. Here, it is

possible to reuse data among adjacent threads, and the

subroutines therefore benefit from using the read-only

data cache. At the same time, the variables are calcu-

lated in different loops or in different functions such

that the loop fusion and function fusion optimizations

are applied to this part as well.

2. Category 2: vertical diffusion (ver)

This category has four subroutines and calculates the

vertical diffusion. In this part, the chasing method is

used in the tridiagonal solver in the k direction. The

main feature is that the data are accessed twice within

one thread, once from the surface to the bottom and

again from the bottom to the surface. The subroutines

are significantly sped up after grouping the k-direction

variable in the local memories.

3. Category 3: vorticity (vort), baroclinicity (baro), conti-

nuity equation (cont) and equation of state (state)

This category is less time-consuming than the two cate-

gories described above, but it also benefits from our op-

timizations. Because data reuse exists among threads,

the use of a read-only data cache improves data local-

ity. For the vort subroutine, there is data reuse within

one thread, and thus the loop fusion improves the data

locality.

4.2 Communication optimizations among multiple

GPUs

In this section, we present the optimizing strategies for mul-

tiple GPUs. In the mpiPOM, the entire domain is split along

the horizontal directions and each MPI process is responsi-

ble for the model’s computation of one subdomain, following

Jordi and Wang (2012). In the POM.gpu, we attach one MPI

process to one GPU and move the complete computation to

the GPU. The MPI process is in charge of the computation

within each subdomain and of the data transfer between the

GPU and the main memory. The data transfer between sub-

domains is handled by the GPUs directly. Shimokawabe et al.

Geosci. Model Dev., 8, 2815–2827, 2015 www.geosci-model-dev.net/8/2815/2015/

X. Huang et al.: POM.gpu-v1.0 2821

Table 2. Different subroutines adopt different optimizations in the POM.gpu.

Subroutines Loop Function Read-only Local memory ECC-off and Speedup

fusion fusion data cache blocking GPU boost

Adv. and hor. diff.
√ √ √ √

2.05X

Ver. diff.
√ √ √ √

2.82X

Baroclinicity
√ √ √

2.08X

Continuity equation
√ √

1.39X

Vorticity
√ √ √

3.19X

State equation
√ √

1.35X

Inner Region
(stream 1)

North Region

(stream 2)

South Region

(stream 2)

W
est R

eg
io

n

(stream
 2

)

E
ast R

eg
io

n

(stream
 2

)

W
est H

alo (stream
 2

)

E
ast H

alo
 (stream

 2
)

North Halo(stream 3)

South Halo(stream 3)

32

Figure 6. Data decomposition in the POM.gpu.

(2010) and Yang et al. (2013) proposed fine-grained overlap-

ping methods of GPU computation and CPU communication

to improve the computing performance. An important issue

in their work is that the communications between multiple

GPUs explicitly require the participation of the CPU. In our

current work, we simply bypass the CPU in implementing the

communication to fully exploit the capability of the GPUs.

At present, two MPI libraries, OpenMPI and MVAPICH2,

provide support for the direct communication from the GPU

to the main memory. This capability is referred to as CUDA-

aware MPI. We attempted to use MVAPICH2 to imple-

ment direct communication among multiple GPUs. However,

we found that inter-domain communication occupied nearly

18 % of the total runtime.

Instead, to fully overlap the boundary operations and MPI

communications with computation, we adopt the data de-

composition method shown in Fig. 6. The data region is de-

composed into three regions: the inner region, the outer re-

gion, and a halo region which exchanges data with its neigh-

bours. In our design, the inner region, which is the most time-

consuming, is allocated to stream 1. The East/West outer re-

gion is allocated to stream 2 and the North/South outer region

is allocated to stream 3. In the East/West outer region, the

width is set to 32 to ensure consecutive and aligned memory

access in a warp. All of the halo regions are also allocated to

stream 2.

The workflow of multiple streams on the GPU is shown

in Fig. 7. The East, West, North and South regions are com-

mon kernel functions that can run in parallel with the inner

region through different streams. The communication opera-

tions between domains are implemented by an asynchronous

CUDA memory copy. The corresponding synchronization

operations between the CPU and the GPU or between the

MPI processes are implemented by a synchronization CUDA

function and a MPI barrier function. To overlap the subse-

quent communication with the inner region, stream 2 and

stream 3 for the outer region have higher priority in pre-

empting the computing resource from stream 1 at any time.

Based on this workflow, the inter-domain communication is

overlapped with the computation. The experimental results

show that our design can remove the communication over-

head taken by MVAPICH2.

4.3 I / O optimizations between the GPUs and the

CPUs

The time consumed for I /O in the mpiPOM is not signifi-

cant. However, after we fully accelerate the model by GPU,

it accounts for approximately 30 % of the total runtime. The

computing phase and the I /O phase are serial, which means

that the GPU will remain idle until the CPU finishes the I /O

operations. Motivated by previous work on I /O overlapping

(Huang et al., 2014), we designed a similar method follow-

ing computations on a GPU and I /O operations on a CPU to

run in parallel.

In the POM.gpu, we chose to launch more MPI processes.

The MPI processes are divided into computing processes and

I /O processes with different MPI communicators. The com-

puting processes are responsible for launching kernel func-

tions as usual, and the I /O processes are responsible for out-

put. One I /O process attaches to one computing process and

these two processes set their contexts on the same GPU.

www.geosci-model-dev.net/8/2815/2015/ Geosci. Model Dev., 8, 2815–2827, 2015

2822 X. Huang et al.: POM.gpu-v1.0

Rank0: GPU0

stream1

stream2

stream3

cudaStreamSynchronize Operation

Inner region

East/West region

North/South region

Halo Comm. Halo Comm.

Figure 7. The workflow of multiple streams on the GPU. The Inner/East/West/North/South regions and Halo refer to the computation and

update of the corresponding region. Comm. refers to the communication between processes, which implies synchronization.

Because the I /O processes must fetch data from the GPU,

communication is necessary between them. The I /O pro-

cesses obtain the device buffer pointers from the computing

processes during the initialization phase. When writing his-

tory files, the computing processes are blocked and remain

idle for a short time, waiting for I /O processes to fetch data.

Then, the computing processes continue their computation,

and the I /O processes complete their output in the back-

ground, as illustrated in Fig. 8. This method can be further

optimized by placing the archive data in a set-aside buffer

and carrying on the main calculation. However, the method

requires more memory, which is not abundant in current

K20X GPUs.

The advantage of this method is that it overlaps the I /O

on the CPU with the model calculation on the GPU. In serial

I /O, the GPU computing processes are blocked while data

are sent to the CPU and written to disk. In overlapping I /O,

the computing processes only wait for the data to be sent to

the host. The bandwidth of data brought to the host is ap-

proximately 6 GB s−1, but the output bandwidth to the disk

is approximately 100 MB s−1, as determined by the speed of

the disk. Therefore, the overlapping method significantly ac-

celerates the entire application.

5 Experiments

In this section, we first describe the specification of our plat-

form and comparison methodology to validate the correct-

ness of the POM.gpu. Furthermore, we present the perfor-

mance and scalability of the POM.gpu compared with the

mpiPOM.

5.1 Platform setup

The POM.gpu runs in a workstation consisting of two CPUs

and four GPUs. The CPUs are 2.6 GHz 8-core Intel Sandy-

Bridge E5-2670. The GPUs are Nvidia Tesla K20X. The op-

erating system is RedHat Enterprise Linux 6.3× 86_64. All

programs are complied with Intel compiler v14.0.1, CUDA

5.5 Toolkit, Intel MPI Library v4.1.3 and MVAPICH2 v1.9.

For comparison, the mpiPOM runs on the T ansuo100

cluster at Tsinghua University consisting of 740 nodes. Each

node is equipped with two 2.93 GHz 6-core Intel Xeon

X5670 CPUs and 32 GB of memory. The nodes are con-

nected through an InfiniBand network. The operating system

is RedHat Enterprise Linux 5.5× 86_64. Programs on this

platform are compiled with Intel compiler v11.1 and Intel

MPI v4.0.2. The mpiPOM code is compiled with its original

compiler flags, i.e. “-O3 -fp-model precise”.

5.2 The test case and the verification of accuracy

The “dam-break” simulation (Oey, 2014) is conducted to ver-

ify the correctness and test the performance and scalability of

the POM.gpu. It is a baroclinic instability problem that sim-

ulates flows produced by horizontal temperature gradients.

The model domain is configured as a straight channel with

a uniform depth of 50 m. Periodic boundary conditions are

used in the east–west direction, and the channel is closed in

the north and south. Its horizontal resolution is 1 km× 1 km.

The domain size of this test case is 962× 722 horizontal grid

points and 51 vertical sigma levels, which is limited by the

capacity of one’s GPU memory. Initially, the temperature in

the southern half of the channel is 15 and 25 ◦C in the north-

ern half. The salinity is fixed at 35 psu. The fluid is then

allowed to adjust. In the first 3–5 days, geostrophic adjust-

ments occur. Then, an unstable wave develops due to baro-

clinic instability. Eventually, eddies are generated. Figure 9

shows the sea-surface height, sea-surface temperature (SST),

and currents after 39 days. The scales of the frontal wave and

eddies are determined by the Rossby radius of deformation.

This dam-break case uses a single-precision format.

To verify the accuracy, we check the binary output files of

the mpiPOM and the POM.gpu, as in Mak et al. (2011). The

test results demonstrate that the variables velocity, tempera-

ture, salinity and sea-surface height are all identical.

5.3 Model performance

To understand the advantages of the optimizations in Sect. 4,

we conducted different tests. The metrics of seconds per sim-

ulation day are measured to compare the model performance.

Geosci. Model Dev., 8, 2815–2827, 2015 www.geosci-model-dev.net/8/2815/2015/

X. Huang et al.: POM.gpu-v1.0 2823

One GPU

Compute

process

I/O

process

MPI_Barrier operation

data

copy
I/O

computation computation

data

copy
I/O

computation

Time

Figure 8. One computing process and one I /O process both set their contexts on the same GPU. During the data copy phase, the computing

process remains idle and the I /O process will copy data from the GPU to the CPU through the cudaMemcpy function.

Figure 9. The model results after 39 days of simulation. For the top

figure, the colour shading is the sea-surface height (SSH), and vec-

tors are ocean currents. For the bottom figure, the colour shading

is the sea-surface temperature (SST). Several warm and cold eddies

are generated in the middle of the domain where the SST gradient

is largest; their scales are determined by the Rossby radius of defor-

mation.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 20 30 40 50 60 70 80 90 100 110

S
ec

o
n
d
s

p
er

 s
im

u
la

ti
o
n
 d

ay

CPU cores

One K20X GPU
Intel X5670(6cores)

Intel E5-2670(8 cores)

Figure 10. Performance comparison with different hardware plat-

forms.

5.3.1 Single GPU performance

In our first test, we compare the performance of the mpiPOM

using two different CPUs, the Intel X5670 CPU (six cores)

and the Intel E5-2670 CPU (eight cores), with that obtained

from the POM.gpu using one single GPU. Figure 10 shows

that one K20X GPU can compete with approximately 55 E5-

2670 CPU cores to 95 X5670 CPU cores in the simulation.

From the parameters of the Intel E5-2670 CPU and Nvidia

K20X GPU, we find that the ratio of memory bandwidth and

the ratio of floating points performance are approximately

1 : 5 and 1 : 10, respectively. This means, if an application

is strictly memory bandwidth limited, one GPU can compete

with 5 CPUs; if an application is strictly computation limited,

it can compete with 10 CPUs. Since the mpiPOM is memory

bandwidth limited, the POM.gpu should provide an equiva-

lent performance to the mpiPOM running on up to 5×8= 40

CPU cores. Our procedure attempts to optimize memory ac-

cess and we can further increase this number to 55.

www.geosci-model-dev.net/8/2815/2015/ Geosci. Model Dev., 8, 2815–2827, 2015

2824 X. Huang et al.: POM.gpu-v1.0

 0

 20

 40

 60

 80

 100

 120

 140

1-GPU 2-GPUs 4-GPUs

S
ec

o
n
d
s

p
er

 s
im

u
la

ti
o
n
 d

ay

Number of GPUs

Our design
CUDA-aware MPI

Figure 11. The weak scaling test between our communication over-

lapping method and the MVAPICH2 subroutines.

Table 3. The strong scaling result of POM.gpu.

Number of GPUs 1-GPU 2-GPUs 4-GPUs

Time (s) 97.2 48.7 26.3

Efficiency 100 % 99 % 92 %

5.3.2 Multiple GPU performance

In the second test, we compare our communication overlap-

ping method with the MVAPICH2 library. Figure 11 presents

the weak scaling performance on multiple GPUs, where the

grid size for each GPU is kept at 962× 722× 51. When four

GPUs are used with MVAPICH2, approximately 18 % of the

total runtime is consumed by inter-domain communication

and boundary operations. This overhead can be greatly re-

duced by our communication overlapping method.

In the third test, we fix the global grid size at 962× 722×

51, and measure the strong scaling performance of POM.gpu.

Table 3 shows that the strong scaling efficiency is 99 % on

two GPUs and 92 % on four GPUs. When more GPUs are

used, the size of each subdomain becomes smaller. This de-

creases the performance of POM.gpu in two aspects. First,

the communication overhead may exceed the computation

time of the inner region as the size of each subdomain de-

creases. As a result, the overlapping methods in Sect. 4.2 are

not effective. Second, there are many “small” kernels in the

POM.gpu code, in which the calculation is simple and less

time-consuming. With fewer inner region computations, the

overhead of kernel launching and implicit synchronization

with kernel execution must be counted.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1-GPU 2-GPUs 4-GPUs

S
ec

o
n

d
s

o
f

2
0

-d
ay

s
si

m
u

la
ti

o
n

Number of GPUs

PnetCDF
I/O-overlapping

NO-I/O

Figure 12. I /O test for the POM.gpu.

5.3.3 I / O performance

In the fourth test, we compare our I /O overlapping method

with the parallel NetCDF (PnetCDF) method and NO-I /O.

NO-I /O means that all I /O operations are disabled in the

program and that the time measured is the pure computing

time. This simulation is run for 20 days, and the history files

are output daily. The final history files in NetCDF format are

approximately 12 GB. Figure 12 shows that the I /O overlap-

ping method outperforms the PnetCDF method. For one and

two GPUs, the overall runtime decreases from 1694/1142 to

1239/688 s, which is close to the NO-I /O. The extra over-

head of our method compared with NO-I /O involves the

computing processes that need to be blocked until the I /O

processes obtain data from the GPUs. When running with

four GPUs, the output time exceeds the computation time.

Then, the I /O phase cannot be fully overlapped with the

model computation phase. The overall runtime equals the

sum of the computation time and the non-overlapped I /O

time.

5.3.4 Comparison with a cluster

In the last test, we compare the performance of POM.gpu

on a workstation containing four GPUs with that on the

T ansuo100 cluster. Three different high-resolution grids

(Grid-1: 962× 722× 51; Grid-2: 1922× 722× 51; Grid-3:

1922× 1442× 51) are used. Figure 13 shows that our work-

station with four GPUs is comparable to 408 standard CPU

cores (= 34 nodes× 12 cores/node) in the simulation. Be-

cause the thermal design power of one X5670 CPU is 95 W

and that of one K20X GPU is 235 W, we reduce the energy

consumption by a factor of 6.8. Theoretically, as the subdo-

Geosci. Model Dev., 8, 2815–2827, 2015 www.geosci-model-dev.net/8/2815/2015/

X. Huang et al.: POM.gpu-v1.0 2825

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 300 350 400 450 500

S
ec

o
n

d
s

p
er

 s
im

u
la

ti
o

n
 d

ay

CPU cores

Grid-1 Tansuo100
Grid-1 GPU workstation

Grid-2 Tansuo100
Grid-2 GPU workstation

Grid-3 Tansuo100
Grid-3 GPU workstation

Figure 13. Performance test of four GPUs compared with the Tan-

suo100 cluster.

main of each MPI process becomes smaller, the cache hit

ratio of the mpiPOM code will increase. This will greatly al-

leviate the memory bandwidth-limited problem. However, in

the simulation on 408 standard CPU cores, the MPI commu-

nication may occupy more than 40 % of the total execution

time. When scaling to over 450 cores, the mpiPOM simula-

tion may instead become slower, as shown in Fig. 13. There-

fore, for high-resolution ocean modelling, our POM.gpu has

a clear advantage compared to the original mpiPOM.

6 Code availability

The POM.gpu version 1.0 is available at https://github.com/

hxmhuang/POM.gpu. To reproduce the test case in Sect. 5,

the run_exp002.sh script is provided to compile and execute

the POM.gpu code.

7 Conclusions and future work

In this paper, we develop POM.gpu, a full GPU solution

based on the mpiPOM. Unlike previous GPU porting, the

POM.gpu code distributes the model computations on the

GPU. Our main contributions include optimizing the code

on each of the GPUs, the communications between GPUs,

and the I /O process between the GPUs and the CPUs. Us-

ing a workstation with four GPUs, we achieve the perfor-

mance of a powerful CPU cluster with 408 standard CPU

cores. Our model also reduces the energy consumption by a

factor of 6.8. It is a cost-effective and energy-efficient strat-

egy for high-resolution ocean modelling. We have described

the method and tests in detail and, with the availability of the

POM.gpu code, our experiences may hopefully be useful to

developers and designers of other general circulation models.

In our current POM.gpu, we design a large number of ker-

nel functions because we port the entire mpiPOM one sub-

routine at a time. This was done to simplify the debugging

of POM.gpu and to check that the results are consistent with

the mpiPOM. In our future work, we will adjust the code

structure of POM.gpu and adopt aggressive function fusion

to further improve the performance.

Previous studies proposed to take advantage of data lo-

cality between time steps by time skewing (McCalpin and

Wonnacott, 1999; Wonnacott, 2000), thus transforming the

problem of memory bandwidth into the problem of compu-

tation. However, the real-world ocean models, including the

mpiPOM, often involve hundreds of thousands lines of code,

and analysing the data dependency and applying time skew-

ing in such a context are challenging and difficult. We leave

that to the next-generation POM.gpu.

The Supplement related to this article is available online

at doi:10.5194/gmd-8-2815-2015-supplement.

Acknowledgements. The author would like to thank David Webb,

Robert Marsh and the anonymous reviewer for their valuable

comments and improvements regarding the presentation of this

manuscript. This study was supported by funding from the

National Natural Science Foundation of China (41375102), the

National Grand Fundamental Research 973 Program of China

(no. 2014CB347800), and the National High Technology Develop-

ment Program of China (2011AA01A203).

Edited by: R. Marsh

References

Allen, J. S. and Newberger, P. A.: Downwelling Circulation on

the Oregon Continental Shelf. Part I: Response to Idealized

Forcing, J. Phys. Oceanogr., 26, 2011–2035, doi:10.1175/1520-

0485(1996)026<2011:DCOTOC>2.0.CO;2, 1996.

Berntsen, J. and Oey, L.-Y.: Estimation of the internal pressure

gradient in σ -coordinate ocean models: comparison of second-

, fourth-, and sixth-order schemes, Ocean Dynam., 60, 317–330,

2010.

Blumberg, A. F. and Mellor, G. L.: Diagnostic and prognostic nu-

merical circulation studies of the South Atlantic Bight, J. Geo-

phys. Res.-Oceans, (1978–2012), 88, 4579–4592, 1983.

Blumberg, A. F. and Mellor, G. L.: A description of a three-

dimensional coastal ocean circulation model, Coast. Est. Sci., 4,

1–16, 1987.

Browne, S., Dongarra, J., Garner, N., Ho, G., and Mucci, P.: A

portable programming interface for performance evaluation on

modern processors, Int. J. High Perf. Comp. Appl., 14, 189–204,

2000.

Chang, Y.-L. and Oey, L.-Y.: Instability of the North Pacific sub-

tropical countercurrent, J. Phys. Oceanogr., 44, 818–833, 2014.

www.geosci-model-dev.net/8/2815/2015/ Geosci. Model Dev., 8, 2815–2827, 2015

https://github.com/hxmhuang/POM.gpu
https://github.com/hxmhuang/POM.gpu
http://dx.doi.org/10.5194/gmd-8-2815-2015-supplement
http://dx.doi.org/10.1175/1520-0485(1996)026<2011:DCOTOC>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1996)026<2011:DCOTOC>2.0.CO;2

2826 X. Huang et al.: POM.gpu-v1.0

Chapman, B., Jost, G., and Van Der Pas, R.: Using OpenMP:

portable shared memory parallel programming, vol. 10, The MIT

Press, 2008.

Ezer, T. and Mellor, G. L.: A numerical study of the variability

and the separation of the Gulf Stream, induced by surface atmo-

spheric forcing and lateral boundary flows, J. Phys. Oceanogr.,

22, 660–682, 1992.

Gopalakrishnan, S., Liu, Q., Marchok, T., Sheinin, D., Surgi, N.,

Tuleya, R., Yablonsky, R., and Zhang, X.: Hurricane Weather Re-

search and Forecasting (HWRF) model scientific documentation,

edited by: Bernardet, L., 75, 2010.

Gopalakrishnan, S., Liu, Q., Marchok, T., Sheinin, D., Surgi,

N., Tong, M., Tallapragada, V., Tuleya, R., Yablonsky, R.,

and Zhang, X.: Hurricane Weather Research and Forecast-

ing (HWRF) model: 2011 scientific documentation, edited by:

Bernardet, L., 2011.

Govett, M., Middlecoff, J., and Henderson, T.: Running the NIM

next-generation weather model on GPUs, in: Cluster, Cloud and

Grid Computing (CCGrid), 2010 10th IEEE/ACM International

Conference on, 792–796, IEEE, 2010.

Gropp, W. D., Lusk, E. L., and Thakur, R.: Using MPI-2: Advanced

features of the message-passing interface, vol. 2, Globe Pequot,

1999.

Guo, X., Miyazawa, Y., and Yamagata, T.: The Kuroshio Onshore

Intrusion along the Shelf Break of the East China Sea: The Origin

of the Tsushima Warm Current, J. Phys. Oceanogr., 36, 2006.

Henderson, T., Middlecoff, J., Rosinski, J., Govett, M., and Mad-

den, P.: Experience applying Fortran GPU compilers to numer-

ical weather prediction, in: Application Accelerators in High-

Performance Computing (SAAHPC), 2011 Symposium, 34–41,

IEEE, 2011.

Huang, S.-M. and Oey, L.: Right-side cooling and phytoplank-

ton bloom in the wake of a tropical cyclone, J. Geophys. Res.-

Oceans, 2015.

Huang, X. M., Wang, W. C., Fu, H. H., Yang, G. W., Wang, B., and

Zhang, C.: A fast input/output library for high-resolution climate

models, Geosci. Model Dev., 7, 93–103, doi:10.5194/gmd-7-93-

2014, 2014.

Isobe, A., Kako, S., Guo, X., and Takeoka, H.: Ensemble numerical

forecasts of the sporadic Kuroshio water intrusion (kyucho) into

shelf and coastal waters, Ocean Dyn., 62, 633–644, 2012.

Jordi, A. and Wang, D.-P.: sbPOM: A parallel implementation of

Princenton Ocean Model, Environ. Model. Softw., 38, 59–61,

2012.

Kagimoto, T. and Yamagata, T.: Seasonal transport variations of the

Kuroshio: An OGCM simulation, J. Phys. Oceanogr., 27, 403–

418, 1997.

Korres, G., Hoteit, I., and Triantafyllou, G.: Data assimilation into

a Princeton Ocean Model of the Mediterranean Sea using ad-

vanced Kalman filters, J. Marine Syst., 65, 84–104, 2007.

Kurihara, Y., Bender, M. A., Tuleya, R. E., and Ross, R. J.: Improve-

ments in the GFDL hurricane prediction system, Mon. Weather

Rev., 123, 2791–2801, 1995.

Kurihara, Y., Tuleya, R. E., and Bender, M. A.: The GFDL hurri-

cane prediction system and its performance in the 1995 hurricane

season., Mon. Weather Rev., 126, 1306–1322, 1998.

Leutwyler, D., Fuhrer, O., Cumming, B., Lapillonne, X., Gysi, T.,

Lüthi, D., Osuna, C., and Schär, C.: Towards Cloud-Resolving

European-Scale Climate Simulations using a fully GPU-enabled

Prototype of the COSMO Regional Model, in: EGU General As-

sembly Conference Abstracts, vol. 16, p. 11914, 2014.

Lin, X., Xie, S.-P., Chen, X., and Xu, L.: A well-mixed warm water

column in the central Bohai Sea in summer: Effects of tidal and

surface wave mixing, J. Geophys. Res.-Oceans, 111, C11017,

doi:10.1029/2006JC003504, 2006.

Linford, J. C., Michalakes, J., Vachharajani, M., and Sandu, A.:

Multi-core acceleration of chemical kinetics for simulation and

prediction, in: Proceedings of the Conference on High Per-

formance Computing Networking, Storage and Analysis, p. 7,

ACM, 2009.

Mak, J., Choboter, P., and Lupo, C.: Numerical ocean modeling and

simulation with CUDA, in: OCEANS 2011, 1–6, IEEE, 2011.

McCalpin, J. and Wonnacott, D.: Time skewing: A value-based ap-

proach to optimizing for memory locality, Tech. rep., Technical

Report DCS-TR-379, Department of Computer Science, Rugers

University, 477–480, 1999.

Michalakes, J. and Vachharajani, M.: GPU acceleration of numeri-

cal weather prediction, Parallel Proc. Lett., 18, 531–548, 2008.

Miyazawa, Y., Zhang, R., Guo, X., Tamura, H., Ambe, D., Lee, J.-

S., Okuno, A., Yoshinari, H., Setou, T., and Komatsu, K.: Water

mass variability in the western North Pacific detected in a 15-

year eddy resolving ocean reanalysis, J. Oceanogr., 65, 737–756,

2009.

Newberger, P. and Allen, J. S.: Forcing a three-dimensional, hy-

drostatic, primitive-equation model for application in the surf

zone: 1. Formulation, J. Geophys. Res.-Oceans, (1978–2012),

112, 2007a.

Newberger, P. A. and Allen, J. S.: Forcing a three-dimensional, hy-

drostatic, primitive-equation model for application in the surf

zone: 2. Application to DUCK94, J. Geophys. Res.-Oceans, 112,

2007b.

NVIDIA: CUDA C Best Practices Guide, available at:

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

index.html#coalesce%d-access-to-global-memory (last access:

April 2015), 2015.

Oey, L., Chang, Y.-L., Lin, Y.-C., Chang, M.-C., Xu, F.-H., and

Lu, H.-F.: ATOP-the Advanced Taiwan Ocean Prediction Sys-

tem based on the mpiPOM Part 1: model descriptions, analyses

and results, Terr Atmos Ocean Sci, 24, 2013.

Oey, L.-Y.: A wetting and drying scheme for POM, Ocean Mod-

elling, 9, 133–150, 2005.

Oey, L.-Y.: Geophysical Fluid Modeling with the mpi ver-

sion of the Princeton Ocean Model (mpiPOM). Lecture

Notes, 70 pp., ftp://profs.princeton.edu/leo/lecture-notes/

OceanAtmosModeling/Notes/GFModellingUsingMpiPOM.pdf

(last access: January 2014), 2014.

Oey, L.-Y. and Chen, P.: A model simulation of circulation in the

northeast Atlantic shelves and seas, J. Geophys. Res.-Oceans, 97,

20087–20115, 1992a.

Oey, L.-Y. and Chen, P.: A nested-grid ocean model: With appli-

cation to the simulation of meanders and eddies in the Norwe-

gian Coastal Current, J. Geophys. Res.-Oceans, (1978–2012), 97,

20 063–20 086, 1992b.

Oey, L.-Y., Mellor, G. L., and Hires, R. I.: A three-dimensional

simulation of the Hudson-Raritan estuary. Part I: Description of

the model and model simulations, J. Phys. Oceanogr., 15, 1676–

1692, 1985a.

Geosci. Model Dev., 8, 2815–2827, 2015 www.geosci-model-dev.net/8/2815/2015/

http://dx.doi.org/10.5194/gmd-7-93-2014
http://dx.doi.org/10.5194/gmd-7-93-2014
http://dx.doi.org/10.1029/2006JC003504
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#coalesce\T1\textbackslash %d-access-to-global-memory
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#coalesce\T1\textbackslash %d-access-to-global-memory
ftp://profs.princeton.edu/leo/lecture-notes/OceanAtmosModeling/Notes/GFModellingUsingMpiPOM.pdf
ftp://profs.princeton.edu/leo/lecture-notes/OceanAtmosModeling/Notes/GFModellingUsingMpiPOM.pdf

X. Huang et al.: POM.gpu-v1.0 2827

Oey, L.-Y., Mellor, G. L., and Hires, R. I.: A three-dimensional sim-

ulation of the Hudson-Raritan estuary. Part II: Comparison with

observation, J. Phys. Oceanogr., 15, 1693–1709, 1985b.

Oey, L.-Y., Mellor, G. L., and Hires, R. I.: A three-dimensional sim-

ulation of the Hudson-Raritan estuary. Part III: Salt flux analyses,

J. Phys. Oceanogr., 15, 1711–1720, 1985c.

Oey, L.-Y., Lee, H.-C., and Schmitz, W. J.: Effects of winds and

Caribbean eddies on the frequency of Loop Current eddy shed-

ding: A numerical model study, J. Geophys. Res.-Oceans, 108,

3324, doi:10.1029/2002JC001698, 2003.

Shimokawabe, T., Aoki, T., Muroi, C., Ishida, J., Kawano, K., Endo,

T., Nukada, A., Maruyama, N., and Matsuoka, S.: Proceedings of

the International Conference for High Performance Computing,

Networking, Storage and Analysis, 1–11, An 80-fold speedup,

15.0 TFlops full GPU acceleration of non-hydrostatic weather

model ASUCA production code, 2010.

Siewertsen, E., Piwonski, J., and Slawig, T.: Porting marine ecosys-

tem model spin-up using transport matrices to GPUs, Geosci.

Model Dev., 6, 17–28, doi:10.5194/gmd-6-17-2013, 2013.

Smolarkiewicz, P. K.: A fully multidimensional positive definite

advection transport algorithm with small implicit diffusion, J.

Comp. Phys., 54, 325–362, 1984.

Sun, J., Oey, L., Xu, F., Lin, Y., Huang, S., and Chang, R.: The

Influence of Ocean on Typhoon Nuri (2008), in: AGU Fall Meet-

ing Abstr., 1, L3360, available at: http://adsabs.harvard.edu/abs/

2014AGUFM.A33L3360S, 2014.

Sun, J., Oey, L.-Y., Chang, R., Xu, F., and Huang, S.-M.: Ocean

response to typhoon Nuri (2008) in western Pacific and South

China Sea, Ocean Dynam., 65, 735–749, 2015.

Varlamov, S. M., Guo, X., Miyama, T., Ichikawa, K., Waseda, T.,

and Miyazawa, Y.: M2 baroclinic tide variability modulated by

the ocean circulation south of Japan, J. Geophys. Res.-Oceans,

2015.

Wonnacott, D.: Using time skewing to eliminate idle time due to

memory bandwidth and network limitations, in: Parallel and Dis-

tributed Processing Symposium, 2000. IPDPS 2000, Proceed-

ings, 14th International, 171–180, IEEE, 2000.

Xu, F.-H. and Oey, L.-Y.: The origin of along-shelf pressure gradi-

ent in the Middle Atlantic Bight, J. Phys. Oceanogr., 41, 1720–

1740, 2011.

Xu, F.-H. and Oey, L.-Y.: State analysis using the Local Ensemble

Transform Kalman Filter (LETKF) and the three-layer circula-

tion structure of the Luzon Strait and the South China Sea, Ocean

Dynam., 64, 905–923, 2014.

Xu, F.-H. and Oey, L.-Y.: Seasonal SSH variability of the Northern

South China Sea, J. Phys. Oceanogr., 45, 1595–1609, 2015.

Xu, F.-H., Oey, L.-Y., Miyazawa, Y., and Hamilton, P.: Hindcasts

and forecasts of Loop Current and eddies in the Gulf of Mex-

ico using local ensemble transform Kalman filter and optimum-

interpolation assimilation schemes, Ocean Model., 69, 22–38,

2013.

Yang, C., Xue, W., Fu, H., Gan, L., Li, L., Xu, Y., Lu, Y., Sun, J.,

Yang, G., and Zheng, W.: A peta-scalable CPU-GPU algorithm

for global atmospheric simulations, in: Proceedings of the 18th

ACM SIGPLAN symposium on Principles and practice of paral-

lel programming, 1–12, ACM, 2013.

Yin, X.-Q. and Oey, L.-Y.: Bred-ensemble ocean forecast of Loop

Current and rings, Ocean Model., 17, 300–326, 2007.

Zavatarelli, M. and Mellor, G. L.: A numerical study of the Mediter-

ranean Sea circulation, J. Phys. Oceanogr., 25, 1384–1414, 1995.

Zavatarelli, M. and Pinardi, N.: The Adriatic Sea modelling sys-

tem: a nested approach, Ann. Geophys., 21, 345–364, 10.5194/

angeo-21-345-2003, 2003.

Zhenya, S., Haixing, L., Xiaoyan, L., and Zhao, W.: The Applica-

tion of GPU in Ocean General Circulation Mode POP, Comp.

Appl. Softw., 27, 27–29, 2010.

www.geosci-model-dev.net/8/2815/2015/ Geosci. Model Dev., 8, 2815–2827, 2015

http://dx.doi.org/10.1029/2002JC001698
http://dx.doi.org/10.5194/gmd-6-17-2013
http://adsabs.harvard.edu/abs/2014AGUFM.A33L3360S
http://adsabs.harvard.edu/abs/2014AGUFM.A33L3360S
10.5194/angeo-21-345-2003
10.5194/angeo-21-345-2003

	Abstract
	Introduction
	The mpiPOM
	GPU computing model overview
	Full GPU acceleration of the mpiPOM
	Computational optimizations in a single GPU
	Standard optimizations of fusion
	Special optimizations of the GPU
	Results of the computational optimizations

	Communication optimizations among multiple GPUs
	I/O optimizations between the GPUs and the CPUs

	Experiments
	Platform setup
	The test case and the verification of accuracy
	Model performance
	Single GPU performance
	Multiple GPU performance
	I/O performance
	Comparison with a cluster

	Code availability
	Conclusions and future work
	Acknowledgements
	References

