Articles | Volume 8, issue 6
https://doi.org/10.5194/gmd-8-1775-2015
https://doi.org/10.5194/gmd-8-1775-2015
Model description paper
 | 
17 Jun 2015
Model description paper |  | 17 Jun 2015

ESP v2.0: enhanced method for exploring emission impacts of future scenarios in the United States – addressing spatial allocation

L. Ran, D. H. Loughlin, D. Yang, Z. Adelman, B. H. Baek, and C. G. Nolte

Related authors

Examining Spin-Up Behaviour within WRF Dynamical Downscaling Applications
Megan S. Mallard, Tanya Spero, Jared Bowden, Jeff Willison, Christopher G. Nolte, and Anna M. Jalowska
EGUsphere, https://doi.org/10.5194/egusphere-2025-2352,https://doi.org/10.5194/egusphere-2025-2352, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
The Detailed Emissions Scaling, Isolation, and Diagnostic (DESID) module in the Community Multiscale Air Quality (CMAQ) modeling system version 5.3.2
Benjamin N. Murphy, Christopher G. Nolte, Fahim Sidi, Jesse O. Bash, K. Wyat Appel, Carey Jang, Daiwen Kang, James Kelly, Rohit Mathur, Sergey Napelenok, George Pouliot, and Havala O. T. Pye
Geosci. Model Dev., 14, 3407–3420, https://doi.org/10.5194/gmd-14-3407-2021,https://doi.org/10.5194/gmd-14-3407-2021, 2021
Short summary
The Community Multiscale Air Quality (CMAQ) model versions 5.3 and 5.3.1: system updates and evaluation
K. Wyat Appel, Jesse O. Bash, Kathleen M. Fahey, Kristen M. Foley, Robert C. Gilliam, Christian Hogrefe, William T. Hutzell, Daiwen Kang, Rohit Mathur, Benjamin N. Murphy, Sergey L. Napelenok, Christopher G. Nolte, Jonathan E. Pleim, George A. Pouliot, Havala O. T. Pye, Limei Ran, Shawn J. Roselle, Golam Sarwar, Donna B. Schwede, Fahim I. Sidi, Tanya L. Spero, and David C. Wong
Geosci. Model Dev., 14, 2867–2897, https://doi.org/10.5194/gmd-14-2867-2021,https://doi.org/10.5194/gmd-14-2867-2021, 2021
Short summary
Evaluating wildfire emissions projection methods in comparisons of simulated and observed air quality
Uma Shankar, Donald McKenzie, Jeffrey P. Prestemon, Bok Haeng Baek, Mohammed Omary, Dongmei Yang, Aijun Xiu, Kevin Talgo, and William Vizuete
Atmos. Chem. Phys., 19, 15157–15181, https://doi.org/10.5194/acp-19-15157-2019,https://doi.org/10.5194/acp-19-15157-2019, 2019
Short summary
Integrating multimedia models to assess nitrogen losses from the Mississippi River basin to the Gulf of Mexico
Yongping Yuan, Ruoyu Wang, Ellen Cooter, Limei Ran, Prasad Daggupati, Dongmei Yang, Raghavan Srinivasan, and Anna Jalowska
Biogeosciences, 15, 7059–7076, https://doi.org/10.5194/bg-15-7059-2018,https://doi.org/10.5194/bg-15-7059-2018, 2018
Short summary

Related subject area

Climate and Earth system modeling
SURFER v3.0: a fast model with ice sheet tipping points and carbon cycle feedbacks for short- and long-term climate scenarios
Victor Couplet, Marina Martínez Montero, and Michel Crucifix
Geosci. Model Dev., 18, 3081–3129, https://doi.org/10.5194/gmd-18-3081-2025,https://doi.org/10.5194/gmd-18-3081-2025, 2025
Short summary
NMH-CS 3.0: a C# programming language and Windows-system-based ecohydrological model derived from Noah-MP
Yong-He Liu and Zong-Liang Yang
Geosci. Model Dev., 18, 3157–3174, https://doi.org/10.5194/gmd-18-3157-2025,https://doi.org/10.5194/gmd-18-3157-2025, 2025
Short summary
A method for quantifying uncertainty in spatially interpolated meteorological data with application to daily maximum air temperature
Conor T. Doherty, Weile Wang, Hirofumi Hashimoto, and Ian G. Brosnan
Geosci. Model Dev., 18, 3003–3016, https://doi.org/10.5194/gmd-18-3003-2025,https://doi.org/10.5194/gmd-18-3003-2025, 2025
Short summary
Baseline Climate Variables for Earth System Modelling
Martin Juckes, Karl E. Taylor, Fabrizio Antonio, David Brayshaw, Carlo Buontempo, Jian Cao, Paul J. Durack, Michio Kawamiya, Hyungjun Kim, Tomas Lovato, Chloe Mackallah, Matthew Mizielinski, Alessandra Nuzzo, Martina Stockhause, Daniele Visioni, Jeremy Walton, Briony Turner, Eleanor O'Rourke, and Beth Dingley
Geosci. Model Dev., 18, 2639–2663, https://doi.org/10.5194/gmd-18-2639-2025,https://doi.org/10.5194/gmd-18-2639-2025, 2025
Short summary
PaleoSTeHM v1.0: a modern, scalable spatiotemporal hierarchical modeling framework for paleo-environmental data
Yucheng Lin, Robert E. Kopp, Alexander Reedy, Matteo Turilli, Shantenu Jha, and Erica L. Ashe
Geosci. Model Dev., 18, 2609–2637, https://doi.org/10.5194/gmd-18-2609-2025,https://doi.org/10.5194/gmd-18-2609-2025, 2025
Short summary

Cited articles

Akhtar, F., Pinder, R., Loughlin, D., and Henze, D.: GLIMPSE: A rapid decision framework for energy and environmental policy, Environ. Sci. Technol., 47, 12011–12019, https://doi.org/10.1021/es402283j, 2013.
Avise, J., Chen, J., Lamb, B., Wiedinmyer, C., Guenther, A., Salathé, E., and Mass, C.: Attribution of projected changes in summertime US ozone and PM2.5 concentrations to global changes, Atmos. Chem. Phys., 9, 1111–1124, https://doi.org/10.5194/acp-9-1111-2009, 2009.
Avise, J., Gonzalez-Abraham, R., Chung, S. H. Chen, J., Lamb, B., Salathé, E. P., Zhang, Y., Nolte, C. G., Loughlin, D. H., Guenther, A., Wiedinmyer, C., and Duhl, T.: Evaluating the effects of climate change on summertime ozone using a relative response factor approach for policymakers, J. Air Waste Ma., 62, 1061–1074, https://doi.org/10.1080/10962247.2012.696531, 2012.
Bierwagen, B. G., Theobald, D. M., Pyke, C. R., Choate, A., Groth, P., Thomas, J. V., and Morefield, P.: National housing and impervious surface scenarios for integrated climate impact assessments, P. Natl. Acad. Sci. USA, 107, 20887–20892, https://doi.org/10.1073/pnas.1002096107, 2010.
Byun, D. and Schere, K.: Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system, Appl. Mech. Rev., 59, 51–77, https://doi.org/10.1115/1.2128636, 2006.
Download
Short summary
We present and demonstrate Version 2.0 of the Emission Scenario Projection (ESP) method. This method produces multi-decadal air pollutant emission projections suitable for air quality modeling. The method focuses on energy-related emissions, including those from the electric sector, buildings, industry and transportation. ESP v2.0 enhances ESP v1.0 by taking population growth, migration and land use change into consideration.
Share