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Abstract. The Emission Scenario Projection (ESP) method

produces future-year air pollutant emissions for mesoscale

air quality modeling applications. We present ESP v2.0,

which expands upon ESP v1.0 by spatially allocating future-

year non-power sector emissions to account for projected

population and land use changes. In ESP v2.0, US Census

division-level emission growth factors are developed using

an energy system model. Regional factors for population-

related emissions are spatially disaggregated to the county

level using population growth and migration projections.

The county-level growth factors are then applied to grow

a base-year emission inventory to the future. Spatial surro-

gates are updated to account for future population and land

use changes, and these surrogates are used to map projected

county-level emissions to a modeling grid for use within an

air quality model. We evaluate ESP v2.0 by comparing US

12 km emissions for 2005 with projections for 2050. We also

evaluate the individual and combined effects of county-level

disaggregation and of updating spatial surrogates. Results

suggest that the common practice of modeling future emis-

sions without considering spatial redistribution over-predicts

emissions in the urban core and under-predicts emissions in

suburban and exurban areas. In addition to improving multi-

decadal emission projections, a strength of ESP v2.0 is that

it can be applied to assess the emissions and air quality im-

plications of alternative energy, population and land use sce-

narios.

1 Introduction

Emission projections are often the dominant factor influenc-

ing the outcome of future-year air quality modeling studies

(e.g., Tagaris et al., 2007; Tao et al., 2007; Avise et al., 2009).

Thus, building plausible emission scenarios and correctly al-

locating emissions to modeling grids are critical steps in con-

ducting those studies. The Emission Scenario Projection v1.0

(ESP v1.0) method, described by Loughlin et al. (2011), fa-

cilitates the development of future-year air pollutant emis-

sion inventories by producing US Census division level-,

source-category- and pollutant-specific emission growth fac-

tors. For most emission categories, multiplicative emission

growth factors are developed using the MARKet ALlocation

(MARKAL) energy system model (Fishbone and Abilock,

1981; Loulou et al., 2004). These factors are applied to a

base-year emissions inventory, such as the United States En-

vironmental Protection Agency (US EPA) National Emis-

sions Inventory (NEI) (US EPA, 2010), using the Sparse Ma-

trix Operator Kernel Emission (SMOKE) model (Houyoux

et al., 2000). The resulting future-year emission inventory is

then temporally and spatially allocated to a gridded model-

ing domain for use by an air quality model such as the Com-

munity Multi-scale Air Quality (CMAQ) model (Byun and

Schere, 2006), typically at 4–36 km grid resolution.

Since the release of ESP v1.0, a number of improvements

to the method and its components have been made. For ex-

ample, in ESP v1.0, pollutants represented explicitly in the

MARKAL database were carbon dioxide (CO2), nitrogen

oxides (NOx), sulfur dioxide (SO2), and particulate matter

with diameter less than 10 µm (PM10). The pollutant cov-
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erage in the ESP v2.0 MARKAL database has been ex-

panded to include carbon monoxide (CO), methane (CH4),

nitrous oxide (N2O), volatile organic compounds (VOCs),

PM with diameter less than 2.5 µm (PM2.5), black carbon

(BC), and organic carbon (OC). Furthermore, while the ESP

v1.0 MARKAL database was calibrated to the 2006 An-

nual Energy Outlook (AEO) (US EIA, 2006), the ESP v2.0

MARKAL database used here is calibrated to AEO 2010

(US EIA, 2010), and the method accommodates MARKAL

databases calibrated to more recent AEO projections. As a

result, developments such as the economic recession of 2008

and the increased availability of natural gas can now be con-

sidered. Additional detail in the electric sector also facilitates

consideration of coal plant retirements and improvements in

the cost-effectiveness of renewables.

Another aspect of the method that has been improved is

the spatial representation of future-year emissions. In ESP

v1.0, the application of multiplicative emission growth fac-

tors resulted in emissions being grown (or shrunk) in place.

This approach does not account for any spatial redistribu-

tion of emissions resulting from population shifts or land use

changes. The grow-in-place assumption is common in air

quality modeling applications, most of which project emis-

sions only 5–15 years into the future (Woo et al., 2008; Zhang

et al., 2010). For modeling time horizons within this range,

the grow-in-place assumption may be reasonable in light of

the many other uncertainties associated with predicting fu-

ture emissions. The EPA’s Office of Research and Develop-

ment (ORD) is increasingly interested in air quality modeling

applications that extend well beyond 2030, however. In its

Global Change Air Quality Assessment, ORD examined the

impacts of climate change on air quality through 2050 (e.g.,

Nolte et al., 2008; US EPA, 2009b; Weaver et al., 2009). Sim-

ilarly, the GEOS-Chem LIDORT Integrated with MARKAL

for the Purpose of Scenario Exploration (GLIMPSE) frame-

work is being used to examine climate and air quality man-

agement strategies through 2055 (Akhtar et al., 2013). The

rationale for growing emissions in place is weaker when

modeling over multi-decadal time horizons, where trends

such as population growth and migration, as well as urban-

ization, may result in a very different future spatial distribu-

tion of emissions.

Land use change models are useful tools for investigating

alternative assumptions regarding the spatial distribution of

future-year emissions. For example, the Integrated Climate

and Land Use Scenarios (ICLUS) model (Theobald, 2005;

US EPA, 2009a; Bierwagen et al., 2010) was developed to

provide a consistent framework for producing future-year

population and land use change projections. ICLUS outputs

have been generated over the US for a base case scenario,

as well as several alternatives that are consistent with those

described in the Intergovernmental Panel on Climate Change

(IPCC) Special Report on Emission Scenarios (Nakicenovic

and Swart, 2000).

 

Figure 1. Schematic diagram showing components of the Emis-

sion Scenario Projection v2.0 system. Dashed blue box contains

enhancements from ESP v1.0.

The key advancement of ESP v2.0 is the integration of

ICLUS results to adjust the spatial allocation of future-year

emissions in the residential, commercial, transportation, and

agricultural sectors. ICLUS results are integrated into ESP

v2.0 in three places. First, we use ICLUS population pro-

jections to adjust energy demands in MARKAL, including

passenger vehicle miles traveled, lumens for lighting, and

watts per square foot of space conditioning. Second, county-

level population projections also are used to disaggregate the

regional emission growth factors derived from MARKAL

into county-level growth factors. Finally, ICLUS outputs are

used to develop new future-year spatial surrogates that map

county-level emissions to an air quality modeling grid. The

incorporation of ICLUS into ESP v2.0 is depicted in Fig. 1.

The two steps associated with spatial allocation of emissions

are listed as 1 and 2 in the figure.

The objective of this paper is to describe, demonstrate

and evaluate the new spatial allocation features within ESP

v2.0. First, the typical approach for spatial allocation in emis-

sion processing is described. Next, the new spatial allocation

method is presented and evaluated. The method is then ap-

plied using an experimental design that isolates separately

the impacts of using projected spatial surrogates and those of

mapping regional growth factors to the county level. Conclu-

sions and future plans for ESP v3.0 are presented in the last

section.

2 Background

In most air quality modeling applications with CMAQ, the

SMOKE model is used to transform an emission inventory,

such as the NEI, from a textual list of sources and their

respective annual emissions to a gridded, temporally allo-
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cated, and chemically speciated air quality model-ready bi-

nary file. Major steps in the generation of future emissions

for an air quality model include the application of multiplica-

tive emission growth and control factors to produce a future-

year emission inventory, temporal allocation of emissions by

season, day and hour, and spatial allocation of hourly emis-

sions onto a 2-dimensional grid over the modeling domain.

A major component of the spatial allocation process is the

use of other high-resolution data, such as census block group

population or road networks, as surrogates to map county-

level emissions to grid cells.

Spatial surrogate computation for emission allocation is

rarely mentioned in the documentation of air quality mod-

eling studies. In the US, surrogate shapefiles (a standard

file format for representing spatial data) are released by the

US EPA Emissions Modeling Clearinghouse and are used to

compute spatial surrogates to be used in SMOKE. Most of

the surrogate shapefiles used at the time this analysis was

conducted were created from 2000 census data (e.g., popula-

tion and roads), as well as many other spatial data sets (such

as building square footage and agricultural areas) that were

generated around that time period. Note that the spatial sur-

rogate shapefiles were subsequently updated in the 2011 EPA

modeling platform (US EPA, 2011, 2014a, b).

The surrogate shapefiles are processed to create gridded

surrogates using the Surrogate Tools software package (Ran,

2015), a part of the Spatial Allocator (SA) system (UNC,

2014a). Figure 2 provides an example of the computation

of a population-based spatial surrogate for a 12 km grid cell

within Wake County, North Carolina, which includes the

state’s capital, Raleigh.

The total population range for each census block group

area for Wake County and some adjacent counties (dark pur-

ple boundaries) in North Carolina is displayed. The surrogate

value for any grid cell (i) and county (j) is computed as

SurrogateValue(i,j)=
SurrogateAttribute(i,j)∑
iSurrogateAttribute(i,j)

. (1)

Wake County’s total population, found by summing the pop-

ulation of each of its census block groups, was 627 846

in 2000. A population of 98 681 lived within the grid cell

indicated by the arrow. The population-based spatial sur-

rogate value for this grid cell and county is calculated as

98 681/627 846, or 0.1572. Thus, 15.72 % of Wake County

population-related emissions are allocated to this grid cell.

Spatial surrogate values always range from 0 to 1; 0 indi-

cates that no emissions are allocated to the grid cell (e.g., the

grid cell does not intersect the county), and 1 indicates that

all the county’s emissions are allocated to the grid cell (e.g.,

the county is completely located within the grid cell). While

the example grid cell lies within just one county, quite often

a grid cell can cross multiple county boundaries. When this

happens, a weighting method (area for polygons, length for

lines, or number of points) is used.

Figure 2. Population-based spatial surrogate computation for

CMAQ 12 km modeling grid (blue cells) over Wake County (dark

purple polygon), North Carolina area, from the 2000 census popu-

lation at the census block group level (grey color polygons).

As of April 2014, the EPA has 91 different spatial surro-

gate shapefiles (e.g., population, housing, urban primary road

miles) available via the EPA Emissions Modeling Clearing-

house (US EPA, 2014b). Since each surrogate has to be gen-

erated for each modeling grid domain and air quality mod-

eling often includes multiple nested domains, the Surrogate

Tools and their associated quality assurance functions make

surrogate computation much easier for preparing emission

input to air quality models.

Accurate spatial allocation is particularly important for

finer-resolution modeling (e.g., 12 km or less) when multiple

modeling grid cells are located within a county. While most

previous CMAQ studies of future air quality have been con-

ducted at relatively coarse resolutions (≥ 36 km) (Hogrefe et

al., 2004; Tagaris et al., 2007; Nolte et al., 2008), finer reso-

lutions are becoming more common with the rapid advance-

ment of computing capabilities (Zhang et al., 2010; Gao et

al., 2013; Trail et al., 2014). Thus, considering landscape

changes due to human activities becomes particularly im-

portant in emission spatial allocation for high-resolution air

quality modeling over long time horizons into the future.

3 Method

Spatial allocation in ESP v2.0 involves the two-step pro-

cess displayed in Fig. 1. The models used in the method are

listed and described briefly in Table 1. For this paper, the

method is demonstrated for a 2050 emission scenario, pro-

jecting 2005 base-year emissions using growth factors from

MARKAL. We use ICLUS-produced population and hous-

ing density projections that assume county-level population

growth in line with the US Census Bureau projections and a

land use development pattern that follows historical trends

www.geosci-model-dev.net/8/1775/2015/ Geosci. Model Dev., 8, 1775–1787, 2015
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Figure 3. CMAQ 12 km modeling domain (blue box) showing nine

MARKAL emission projection regions (dark purple) and the South-

east area (black box).

(US EPA, 2009a). Following the business-as-usual (BAU)

development assumption, the method is applied to the con-

terminous US (CONUS) study area, with additional analysis

conducted on the southeastern US. The MARKAL emission

projection regions, CMAQ 12 km modeling domain, and the

Southeast area are depicted in Fig. 3. The grid uses a Lambert

conformal conic projection with 299 rows and 459 columns.

Figure 4 shows county-level population growth factors

over the CONUS as well as 2005 and 2050 housing densities

in the North Carolina, South Carolina, and Georgia areas. In

the ICLUS projection, there is a distinct trend of population

shifts towards big cities (e.g., Atlanta, Georgia and Charlotte,

North Carolina) and a resulting increase in housing density

around those urban areas. In general, county populations in-

crease in most southern and coastal counties but decrease in

northern and inland rural counties. The approaches for using

these ICLUS projections to disaggregate regional emission

growth factors and create future-year spatial surrogates are

presented below.

3.1 Developing county-level emission growth factors

MARKAL outputs include regional growth factors for

energy-related source category codes (SCCs). SMOKE pro-

jection packets with growth factors for each species and

source category of interest were generated, as described by

Loughlin et al. (2011). The six emission source sectors (US

EPA, 2011) included in this projection were

1. point sources from the electric generating utility (EGU)

sector

2. non-EGU point sources (e.g., airports)

3. remaining non-point sources (area sources not in agri-

culture and fugitive dust sectors)

4. on-road mobile sources (e.g., light duty vehicles)

 

  

Population Growth Factor: 

2050 Population / 2005 Population 

Figure 4. County-level population growth factors (2050/2005) (top)

and ICLUS housing densities for 2005 and 2050 (bottom) for the

Southeast area shown in Fig. 3. Areas in white are designated as

undevelopable.

5. non-road mobile sources (e.g., construction equipment)

6. mobile emissions from aircraft, locomotives, and com-

mercial marine vessels.

Though MARKAL-generated regional growth factors cap-

ture large-scale emission growth patterns, they do not cap-

ture variation in growth from one state to another or from

one county to another within the region. To capture this spa-

tial variation while maintaining the overall regional growth

pattern from MARKAL, we introduce an adjustment calcu-

lation.

Let Fp denote the regional population growth factor and fp

denote the county-level population growth factor. The ratio

of fp over Fp captures the relative population growth rate of

a county in comparison to its region (e.g., fp/Fp= 1 means

the same growth rate, and fp/Fp > 1 means the county popu-

lation growth is faster than the regional average growth). The

regional emission growth factor Fe is adjusted by this ratio

in computing the initial county emission growth factor f ′e :

f ′e(r,j,SCC, s)= Fe(r,SCC, s) ·
fp(r,j)

Fp(r)
, (2)

where r is the region, j is a county within r , and s is the

species. To ensure that the total regional projected emission

is preserved after applying the county-level growth factors,

the projected county emissions are re-normalized as

e2050(r,j,SCC, s)=
[
f ′e(r,j,SCC, s) · e2005(r,j,SCC, s)

]
·Rre(r,SCC, s), (3)

Geosci. Model Dev., 8, 1775–1787, 2015 www.geosci-model-dev.net/8/1775/2015/
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Table 1. Models used in the ESP v2.0 method.

Model Description

MARKAL MARKet ALlocation (MARKAL) is an energy system optimization model (Loulou et al., 2004). We use

MARKAL with the ESP v2.0 database to characterize scenarios of the transition of the US energy system

from 2005 through 2055 in 5-year increments. ESP v2.0 is an updated version of the EPAUS9r_2010_v1.3

MARKAL database (Lenox et al., 2013). The following major sectors are included: electricity production, re-

fineries, other energy-intensive industries, residential, commercial, and transportation. Spatial coverage is the

US, and spatial resolution is the US Census division. Outputs include regional-level, energy-related technology

penetrations, fuel use, and emissions of air pollutants and greenhouse gases. The ESP v2.0 baseline scenario is

calibrated to approximate the AEO 2010. The primary environmental regulations included in the baseline are

the Cross State Air Pollution Rule (CSAPR), Tier II mobile emission requirements, and the corporate average

fuel efficiency standard that requires 54.5 miles per gallon by 2025. Regulations that have not been finalized are

not included.

ICLUS The Integrated Climate and Land Use Scenarios (ICLUS) model is used to develop US population and land

use projections through 2100 (US EPA, 2009a). The demographic model consists of a cohort-component model

and a gravity model. Together, these produce future county-level population estimates. A land use change

model then computes corresponding housing density at the hectare resolution, or 10 000 m2. Input assumptions

regarding household size and travel times can be adjusted to allow different scenarios to be represented. We use

a baseline scenario intended to be generally consistent with US Census Bureau projections.

SMOKE The Sparse Matrix Operator Kernel Emissions (SMOKE) modeling system is used to transform an emissions

inventory into the emissions format needed for air quality modeling (UNC, 2014b). Specific steps carried out

by SMOKE typically include applying growth and control factors, spatially allocating emissions to a modeling

grid, temporally allocating emissions to represent seasonal and diurnal patterns, and speciating emissions to

provide more detail and account for additional factors such as temperature.

Surrogate tools A set of programs used to develop spatial surrogate files for SMOKE (UNC, 2014a). These surrogates are then

used to map emissions to grid cells.

CMAQ The Community Scale Air Quality (CMAQ) modeling system is used to characterize meteorology, pollutant

transport and chemical transformation, and resulting air pollutant concentrations (UNC, 2012). CMAQ can

be applied at a variety of scales, and is commonly used for urban, state, and regional air quality modeling

applications within the US and around the world.

where e2005 and e2050 are county-level emissions for 2005

and 2050 and Rre is the ratio of regional emissions computed

using regional growth factors to regional emissions derived

from county growth factors:

Rre(r,SCC, s)=

Fe(r,SCC, s) ·
∑
j

e2005(r,j,SCC, s)∑
j

f ′e(r,j,SCC, s) · e2005(r,j,SCC, s)
.

(4)

The final county emission growth factors (fe) are then com-

puted as

fe(r,j,SCC,S)=
e2050(r,j,SCC, s)

e2005(r,j,SCC,s)
. (5)

For source categories expected to have emission changes

correlated with population changes, the resulting set of

fe(r,j,SCC, s) factors are then used to grow the matching

county-level emissions into the future. A spreadsheet with

example calculations is included in the Supplement that ac-

companies this manuscript.

Changes in the spatial distribution of some emissions will

not necessarily be correlated with population shifts, how-

ever. For example, we use regional emission growth factors,

Fe(r,SCC, s), for electric utilities, large external combustion

boilers, and petroleum refining.

We applied ESP v2.0 to grow the 2005 NEI (US EPA,

2010) inventory to 2050. Figure 5 displays representative

county-level emission growth factors. The two plots on the

left are the MARKAL regional growth factors for NOx from

highway light duty gasoline vehicles (LDGVs) and for SO2

from residential stationary source fuel combustion, both of

which would be expected to be correlated with population.

The overall regional emission trends are driven by population

growth, fuel switching and regulations that limit emissions.

The county-level growth factors illustrate the effects of pro-

jected county-by-county population changes on these overall

trends. Using county-level emission growth factors, we then

generated SMOKE projection packets and used SMOKE to

grow the emission inventory to 2050.

www.geosci-model-dev.net/8/1775/2015/ Geosci. Model Dev., 8, 1775–1787, 2015
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Figure 5. Light duty gasoline vehicle (LDGV) regional NOx

growth factors, generated by MARKAL, are shown in the top left

panel. The top right panel shows corresponding county-level growth

factors after adjustments are made to account for ICLUS county-

level population changes. Similarly, the bottom two panels show

regional- and county-level SO2 growth factors for residential com-

bustion, before and after population-based adjustments have been

made.

3.2 Updating surrogate shapefiles and emission

surrogates

The next step in spatial allocation is to create surrogate

shapefiles using ICLUS-projected population and housing

density. Standard EPA population and housing surrogate

shapefiles are slightly different from 2005 ICLUS data. To

avoid this discrepancy and ensure that surrogate shapefiles

are generated consistently for comparison, ICLUS data are

used to develop both the 2005 base and the 2050 shapefiles.

3.2.1 Surrogate shapefiles

Using ICLUS data, we created four new surrogate shapefiles

for both 2005 and 2050. The first shapefile contains cen-

sus block group polygons with associated population, hous-

ing units, urban, and level of development (e.g., no, low

or high). The census polygon boundaries are based on the

EPA 2002 population surrogate shapefiles. For each cen-

sus block group, ICLUS housing units are spatially allo-

cated to the census polygon using the area weighted method.

Then, ICLUS county population is allocated to each census

block group within a county according to the fraction of the

county’s housing units within that block group. Using ICLUS

outputs for 2000, 2005, 2040, and 2050, we computed hous-

ing unit changes from 2000 to 2005 and from 2040 to 2050,

which are needed for housing unit change surrogate compu-

tations for 2005 and 2050. For both 2005 and 2050, we clas-

sified census block groups as urban if their ICLUS-produced

population density per square mile is ≥ 1000. This criterion

Population density in 2005 (people Km   ) Increase in population density, 2005 to 2050 

  

Urban areas (shown as red), 2005 Additional urban areas (red), 2005 to 2050 

  

 
 

-2

Figure 6. ICLUS population density and urban shapefiles for 2005

are shown on the left. Difference plots indicating ICLUS-predicted

changes to these metrics from 2005 to 2050 are shown to the right.

is partially consistent with the US Census Bureau’s definition

of an urban area although, for simplicity, we did not use the

Census Bureau’s requirement of the surrounding area hav-

ing a total population of 50 000 or more. In addition, census

block groups were classified into no, low, or high develop-

ment areas based on housing density.

Figure 6 shows the change in population and urban surro-

gate shapefile data over the Southeast region between 2005

and 2050. The figure indicates expansion of urban areas, in-

cluding Atlanta, Charlotte, Greensboro, and Raleigh. How-

ever, some rural areas, particularly in the north and south of

this region, display slightly decreasing population densities.

The second surrogate shapefile we generated contains road

networks. Though road networks are likely to expand in the

future, it is very difficult to project future road networks.

We use existing current road surrogate shapefiles with the

ICLUS-identified urban areas to classify roads into four cat-

egories: rural and urban primary roads and rural and urban

secondary roads. These categories are required for surrogate

computation for mobile emission allocations. The third sur-

rogate shapefile we generated contains rural land classifica-

tion. We created this shapefile from the EPA 2002 rural land

surrogate shapefile using urban and non-urban areas iden-

tified in the first shapefile. The last surrogate shapefile we

created contains agricultural land classes. This shapefile was

created from the EPA 2002 agricultural land surrogate file by

excluding urban areas identified in the first shapefile.

Geosci. Model Dev., 8, 1775–1787, 2015 www.geosci-model-dev.net/8/1775/2015/
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Table 2. ICLUS-based surrogates generated for 2005 and 2050.

Surrogate name Surrogate code

Population 100

Urban population 110

Rural population 120

Housing change 130

Housing change and population 137

Urban primary road miles 140

Rural primary road miles 200

Urban secondary road miles 210

Rural secondary road miles 220

Total road miles 230

Urban primary plus rural primary road miles 240

0.75 total roadway miles plus 0.25 population 255

Low intensity residential 300

Total agriculture 310

Rural land area 400

Residential – high density 500

3.2.2 Surrogates computation

With the ICLUS-based surrogate shapefiles, we computed

2005 and 2050 surrogates using the Surrogate Tools. As

noted previously, EPA employs a set of 65 spatial surrogates

to allocate emissions from various source sectors to a grid-

ded modeling domain. The 17 surrogates listed in Table 2

were computed using the four ICLUS-based shapefiles. We

assumed that the other 48 surrogates remain unchanged from

current EPA surrogates.

The percentage change of ICLUS population-based sur-

rogates from 2005 to 2050 is shown in Fig. 7. As expected,

population-based surrogate changes on the 12 km grid follow

the trends shown in Fig. 4. Since surrogates for the grid cells

intersecting a county necessarily sum to 1, large surrogate

increases (red colors) in some grid cells are often accompa-

nied by large decreases (blue colors) in other grid cells within

the same county. Large percentage changes are particularly

obvious in sparsely populated areas, such as parts of Cali-

fornia, Nevada, Arizona, New Mexico, Texas, and Florida.

The mean change of population-based surrogates from 2005

to 2050 is 6.23 %, although a standard deviation of 46.96 %

indicates a wide range across the grid cells.

4 Application

We applied ESP v2.0 to generate 2005 and 2050 CMAQ-

ready gridded emission files. Only the six sectors listed above

from the 2005 NEI were used in the 2050 projection. Emis-

sions from any SCCs not included in the projection packets

were held constant from 2005.We used the Emission Model-

ing Framework (Houyoux et al., 2006) to conduct SMOKE

modeling tasks.

Next, two additional 2050 inventories were created, one

using the regional growth factors from MARKAL and one

using the surrogates based upon 2005 ICLUS results. The

Table 3. Standard and sensitivity runs for ESP v2.0 demonstration

and evaluation.

Inventory Inventory ICLUS Growth

ID year surrogates factors

Base 2005 2005 NA

Future 2050 2050 County

Future05Surr 2050 2005 County

FutureRegGF 2050 2050 Regional

Figure 7. Population-based surrogate change (%) for CMAQ 12 km

modeling grids.

four resulting gridded inventories that were developed are

listed in Table 3.

Future represents the result of the full ESP v2.0 projec-

tion method. Comparing Future with Base thus reveals the

projected changes in both magnitude and location of emis-

sions over the 45-year period. Comparing Future with Fu-

tureRegGF isolates the effects of disaggregating regional

growth factors to the county level. Similarly, comparing Fu-

ture with Future05Surr identifies spatial changes resulting

from updating the future spatial surrogates.

The fractional difference (FD) metric is used to evaluate

grid-level differences among the inventories. For a model

grid cell (i) and species (s), the FD is calculated as

fractional difference (FD)=

2 ·

[
eA(i, s)− eB(i, s)

eA(i, s)+ eB(i, s)

]
· 100, (6)

where eA(i, s) and eB(i, s) are the emissions of species s in

grid cell i for the gridded inventories, A and B, that are be-

ing compared. FD is generally called fractional bias when it

is used to evaluate errors of modeling results against obser-

vations (e.g., Morris et al., 2006). FD is a symmetric met-

ric ranging from −200 to +200 %. A value of 67 % for FD

represents that eA is larger than eB by a factor of 2, while

an FD of 0 means that values are the same. The mean and

standard deviation of FD values across groups of grid cells

provide information about the magnitude and variability of

differences between two gridded inventories. Other statistical

metrics can be used to evaluate differences from one gridded
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Figure 8. FD (%) of annual emissions, Future minus Base, over the

12 km CONUS domain. (Future: 2050 inventory, 2050 surrogates,

county growth factors; Base: 2005 inventory, 2005 surrogates).

inventory to another. Several such metrics are described and

applied in the Supplement.

4.1 Base and future emission differences

Figure 8 shows FDs between annual emissions in the Base

and Future for each of the six projected pollutant species.

These plots reflect the combined effects of population growth

and migration, economic growth and transformation, fuel

switching, technological improvements, land use change,

and various regulations limiting emissions (Loughlin et al.,

2011). Most of the US has more than a 30 % reduction (green

and blue colors) in modeled NOx , SO2, CO, VOCs, PM2.5

and PM10. Grids with emission increases for these six species

are mainly located in areas projected to have high popu-

lation growth (e.g., Los Angeles and Atlanta). Among the

six species, NOx and SO2 show reductions of more than a

factor of 2 in many areas because of control requirements

on electricity production, transportation, and many industrial

sources. Emissions of CO, VOCs, PM2.5 and PM10 also fall

across most of the domain.

4.2 Region-to-county growth disaggregation

Next, we evaluate the effect of disaggregating regional

growth factors to the county level by examining the differ-

ences between Future and FutureRegGF. Grid-cell-level FD

values are shown in Fig. 9 for the six projected pollutants.

The spatial distribution of FD indicates that regional-to-

county disaggregation results in increased emissions around

urban areas (e.g., Los Angeles, Las Vegas and Dallas in the

west and Atlanta in the Southeast) as those areas expand

into surrounding counties. Many grid cells at the fringe of

large urban areas have FD values exceeding 30 %, indicating

 

Figure 9. FD (%) of annual 2050 emissions, Future minus Futur-

eRegGF, for grid cells in the CONUS 12 km domain. (Future: 2050

inventory, 2050 surrogates, county growth factors; FutureRegGF:

2050 inventory, 2050 surrogates, regional growth factors).

a large increase in emissions as a result of using county-level

growth factors. Large reductions in emissions, indicated by

FD values ≤−20 %, are particularly obvious in rural areas

in the west and south regions. Using county growth factors

has high impacts on emission allocations in the regions of

the west and south, particularly for SO2.

Another way to analyze FD results is to calculate mean FD

(MFD) values across grid cells with common characteristics.

For example, in Fig. 10, we provide MFDs for each pollutant

over grid cells that are in the same population density range.

For areas with greater density, the trend is that emis-

sion differences become increasingly positive, reflecting that

ICLUS population algorithm typically results in migration of

people to more dense areas. However, as described above, the

ICLUS predicts continued urban sprawl such that the positive

MFD in the urban cores (population density >= 200 k grid-

cell−1, about 1400 km−2) is slightly less than in the more

moderately dense areas, where density is between 130 and

200 k grid-cell−1. Thus, projecting emission changes by re-

gion without using the county growth allocation method sig-

nificantly underestimates the future emissions in the more

populated areas.

4.3 Updating emission surrogates

Next, we evaluate the effects of adjusting future surrogates

by comparing Future and Future05Surr. The two gridded

emission files were generated from the same 2050 county-

level emission growth factors but using ICLUS-derived sur-

rogates for 2050 and 2005, respectively. Thus, emission dif-

ferences are introduced only from different spatial surro-
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Figure 10. MFD (%) of 2050 annual emissions, Future minus Fu-

tureRegGF, stratified by grid-cell population for 2050. (Future:

2050 inventory, 2050 surrogates, county growth factors; Futur-

eRegGF: 2050 inventory, 2050 surrogates, regional growth factors).

gates. Figure 11 presents the resulting FD values for the six

projected pollutants.

In Fig. 11, it is apparent that large increases (FD≥ 20 %)

often occur in the grid cells surrounding large cities. Further-

more, FD percentage increases are particularly obvious in the

west and southwest regions, where urban expansion moves

into previously low density grid cells. The counties in these

regions tend to be large; thus, changes in spatial surrogates

affect a larger number of grid cells. In contrast, changes in

gridded emissions tend to be less pronounced in areas with

small counties that are closer in size to the 12× 12 km grid

cells. Updating the spatial surrogates has a small or negligi-

ble impact in rural areas with limited urbanization. Among

the six species compared, SO2 has the least changes. SO2

emissions from mobile sources would have been reduced

considerably by regulations limiting sulfur content in fuels.

Most of the remaining SO2 emissions originate from elec-

tricity production and industrial sources. In the ESP v2.0

method, we do not adjust the spatial surrogates for either cat-

egory, assuming that they are not correlated with population.

In contrast, incorporating the 2050 surrogates has particu-

larly high impacts on CO and VOCs. Major sources for these

pollutants are the transportation, residential and commercial

sectors, all of which are linked to population- and land-use-

based surrogates.

Figure 12 also provides an indication of how updating sur-

rogates affects emissions by land use class. MFDs for each

of the six pollutants by 2050 population density ranges are

shown in Fig. 12. This figure indicates a complicated rela-

tionship. There is a small decrease in emissions in rural areas

and a larger decrease in the densest areas. Conversely, there

is an increase in emissions from categories ranging in density

from 5 to 80 k per cell. Thus, emission modeling using 2050

surrogates allocates more emissions to the suburban areas as

they densify, while emissions allocated to the high density

urban core grid cells are reduced. This does not mean that

populations in cities are projected to decline but rather that

 

Figure 11. FD (%) of annual 2050 emissions, Future minus Fu-

ture05Surr, for grid cells in the CONUS 12 km domain. (Fu-

ture: 2050 inventory, 2050 surrogates, county growth factors; Fu-

ture05Surr: 2050 inventory, 2005 surrogates, county growth fac-

tors).

the projected urban emissions are partially redistributed to

the fringe areas since county emission totals are the same for

both scenarios. This analysis demonstrates that the common

practice of projecting future emissions without projecting

future surrogates can lead to over-prediction of urban core

emissions and under-prediction of suburban/exurban emis-

sions.

5 Conclusions

Gridded emission data are key inputs to air quality models.

Pollutant growth factors play a dominant role in determining

regional emission and air quality patterns (Tao et al., 2007;

Avise et al., 2012). It is commonplace in such applications

to apply these growth factors such that emissions grow in

place. In this paper, we demonstrate that the region-to-county

growth factor disaggregation and county-to-grid allocation

approaches included in ESP v2.0 yield a different spatial pat-

tern of emissions. For a given population and land use change

scenario, the region-to-county growth disaggregation enables

the distinction of different growth levels among counties, and

updating spatial surrogates provides a more realistic mapping

of emissions to grid cells.

Conversely, growing residential emissions in place and

applying current spatial surrogates to future-year emissions

may result in an over-prediction of urban core emissions and

under-prediction of suburban emissions. Thus, ignoring these

shifts may overstate future improvements in human exposure

and health risk due to air pollution mitigation as more dense
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Figure 12. MFD (%) of 2050 annual emissions, Future minus Fu-

ture05Surr, stratified by 2050 grid-cell population. (Future: 2050

inventory, 2050 surrogates, county growth factors; Future05Surr:

2050 inventory, 2005 surrogates, county growth factors).

urban cores yield greater opportunities for human exposures

(e.g., Post et al., 2012; West et al., 2013; Silva et al., 2013).

There are many uncertainties in future air quality stud-

ies associated with emissions, climate, and changes of land-

scape. Improving emission allocation in SMOKE will help

reduce uncertainties in outcomes (e.g., O3 and PM2.5 concen-

trations and climate forcing from gases and aerosols) from

regional climate and air quality modeling systems such as

the coupled WRF/CMAQ (Wong et al., 2012) and help im-

prove confidence in making air quality policies related to hu-

man health and environment. Another important aspect of

the approach presented here is that it could be applied to

examine alternative development scenarios. For example, a

smart growth scenario would project greater growth factors

in cities and less in suburban/exurban areas than the BAU

scenario on which ICLUS was based. Furthermore, within

the larger ESP v2.0 framework, emissions and resulting im-

pacts could be examined for wide ranging scenarios that dif-

fer in assumptions about population growth and migration,

economic growth and transformation, technology change,

land use change, and various energy, environmental and land

use policies.

While ESP v2.0 represents a state-of-the-art method for

generating multi-decadal air pollutant emission projections

for non-power sector sources, there are a number of limita-

tions that must be considered in evaluating its utility for spe-

cific applications. One such limitation is the current omis-

sion of a mechanism to change the spatial distribution of

power sector and large industrial emission sources. Spatial

re-allocation of these “point” source emissions requires a sit-

ing algorithm, the development or application of which is

beyond the scope of ESP v2.0. We acknowledge that this

is a desirable capability, however, and that considerable re-

search has been conducted in this area (e.g., Cohon et al.,

1980; Hobbs et al., 2010; Kraucunas et al., 2015).

Another limitation of ESP v2.0 is that temporal re-

allocation of emissions is not included at this time. Our re-

search suggests that the changing role of technologies and fu-

els in electricity production may affect seasonal and diurnal

emission patterns. For example, natural gas historically has

been used within combustion turbines to generate electric-

ity for meeting summer afternoon air conditioning demands.

With expanded access to natural gas resources, however,

electric utilities are incrementally shifting gas to baseload

electricity production. Thus, over the coming decades, the

temporal profile of gas-related emissions will change both

seasonally and diurnally.

ESP will always be limited by the limitations of its com-

ponents. The MARKAL energy modeling system, for ex-

ample, does not account for economic feedbacks associated

with changes in energy prices. Also, real-world electric sec-

tor decisions are influenced by many factors, some of which

act at a much finer resolution than the spatial and temporal

resolution of MARKAL. For example, on hot summer days,

electric utility dispatch decisions must factor in meteorolog-

ical conditions that both increase energy demands and tropo-

spheric ozone formation (Chen et al., 2015). Dispatch deci-

sions thus might result in temporal and spatial changes that

could not be captured by MARKAL. ESP v2.0 is more suited

to longer-range projections with the intent on capturing long-

term trends and the multi-decadal effects of transformations

in energy, economy and land use. Alternatively, there may

be approaches for using ESP in conjunction with a more de-

tailed dispatch model.

Another current limitation is the inability to evaluate

the effects of climate change on energy demands. Climate-

related changes currently would need to be evaluated outside

of ESP v2.0. However, exogenous estimates of increased en-

ergy demands could be input into MARKAL to evaluate how

they would affect energy system emissions.

These various limitations are driving our current ESP

v3.0 development process. For example, we are working to-

wards generating scenario-specific temporal adjustment fac-

tors, and we plan to explore the inclusion of point source

siting algorithms. Furthermore, future ESP iterations will in-

corporate more recent versions of ICLUS and MARKAL and

thus utilize updated population, land use, economic, and en-

ergy projections, as well as recent emission regulations.

Other possible updates are being considered. To improve

compatibility with other long-term projections, it may be ad-

vantageous to harmonize the population, land use and en-

ergy assumptions with the IPCC’s representative concentra-

tion pathways (RCPs) (Van Vuuren et al., 2011) and shared

socioeconomic scenarios (Van Vuuren et al., 2012). Also,

while the baseline spatial surrogates used here were devel-

oped in 2000, these could be updated to the 2010 surrogate

files that are now used within the EPA’s 2011 modeling plat-

form.
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Model and data availability

Most of the modeling components that comprise this

methodology are publically available. SMOKE and the Spa-

tial Allocator can be downloaded from the Community Mod-

eling & Analysis System Center (http://www.cmascenter.

org). ICLUS modeling tools and land use projections can

be obtained from the US EPA (http://www.epa.gov/ncea/

global/iclus/). The MARKAL model is distributed by the En-

ergy Technology Systems Analysis Program of the Interna-

tional Energy Agency (http://www.iea-etsap.org). Executing

MARKAL requires licensing and additional software. Please

contact Dan Loughlin (loughlin.dan@epa.gov) for informa-

tion about obtaining the US EPA’s database, which allows

MARKAL to be applied to the US energy system. The EPA’s

MARKAL nine-region database used in this study, as well as

more recent versions, are available upon request at no cost.

Regional- and county-level emission growth factors and sur-

rogate shapefiles for 2005 and 2050 are available for down-

load in the Supplement.

The Supplement related to this article is available online

at doi:10.5194/gmd-8-1775-2015-supplement.
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