Articles | Volume 8, issue 6
https://doi.org/10.5194/gmd-8-1677-2015
https://doi.org/10.5194/gmd-8-1677-2015
Model description paper
 | 
09 Jun 2015
Model description paper |  | 09 Jun 2015

libcloudph++ 1.0: a single-moment bulk, double-moment bulk, and particle-based warm-rain microphysics library in C++

S. Arabas, A. Jaruga, H. Pawlowska, and W. W. Grabowski

Related authors

Breakups are complicated: an efficient representation of collisional breakup in the superdroplet method
Emily de Jong, John Ben Mackay, Oleksii Bulenok, Anna Jaruga, and Sylwester Arabas
Geosci. Model Dev., 16, 4193–4211, https://doi.org/10.5194/gmd-16-4193-2023,https://doi.org/10.5194/gmd-16-4193-2023, 2023
Short summary
On numerical broadening of particle-size spectra: a condensational growth study using PyMPDATA 1.0
Michael A. Olesik, Jakub Banaśkiewicz, Piotr Bartman, Manuel Baumgartner, Simon Unterstrasser, and Sylwester Arabas
Geosci. Model Dev., 15, 3879–3899, https://doi.org/10.5194/gmd-15-3879-2022,https://doi.org/10.5194/gmd-15-3879-2022, 2022
Short summary
On the CCN (de)activation nonlinearities
Sylwester Arabas and Shin-ichiro Shima
Nonlin. Processes Geophys., 24, 535–542, https://doi.org/10.5194/npg-24-535-2017,https://doi.org/10.5194/npg-24-535-2017, 2017
Short summary
libmpdata++ 1.0: a library of parallel MPDATA solvers for systems of generalised transport equations
A. Jaruga, S. Arabas, D. Jarecka, H. Pawlowska, P. K. Smolarkiewicz, and M. Waruszewski
Geosci. Model Dev., 8, 1005–1032, https://doi.org/10.5194/gmd-8-1005-2015,https://doi.org/10.5194/gmd-8-1005-2015, 2015
Short summary

Related subject area

Atmospheric sciences
Forecasting contrail climate forcing for flight planning and air traffic management applications: the CocipGrid model in pycontrails 0.51.0
Zebediah Engberg, Roger Teoh, Tristan Abbott, Thomas Dean, Marc E. J. Stettler, and Marc L. Shapiro
Geosci. Model Dev., 18, 253–286, https://doi.org/10.5194/gmd-18-253-2025,https://doi.org/10.5194/gmd-18-253-2025, 2025
Short summary
Simulation of the heat mitigation potential of unsealing measures in cities by parameterizing grass grid pavers for urban microclimate modelling with ENVI-met (V5)
Nils Eingrüber, Alina Domm, Wolfgang Korres, and Karl Schneider
Geosci. Model Dev., 18, 141–160, https://doi.org/10.5194/gmd-18-141-2025,https://doi.org/10.5194/gmd-18-141-2025, 2025
Short summary
AI-NAOS: an AI-based nonspherical aerosol optical scheme for the chemical weather model GRAPES_Meso5.1/CUACE
Xuan Wang, Lei Bi, Hong Wang, Yaqiang Wang, Wei Han, Xueshun Shen, and Xiaoye Zhang
Geosci. Model Dev., 18, 117–139, https://doi.org/10.5194/gmd-18-117-2025,https://doi.org/10.5194/gmd-18-117-2025, 2025
Short summary
Orbital-Radar v1.0.0: a tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev., 18, 101–115, https://doi.org/10.5194/gmd-18-101-2025,https://doi.org/10.5194/gmd-18-101-2025, 2025
Short summary
The Modular and Integrated Data Assimilation System at Environment and Climate Change Canada (MIDAS v3.9.1)
Mark Buehner, Jean-Francois Caron, Ervig Lapalme, Alain Caya, Ping Du, Yves Rochon, Sergey Skachko, Maziar Bani Shahabadi, Sylvain Heilliette, Martin Deshaies-Jacques, Weiguang Chang, and Michael Sitwell
Geosci. Model Dev., 18, 1–18, https://doi.org/10.5194/gmd-18-1-2025,https://doi.org/10.5194/gmd-18-1-2025, 2025
Short summary

Cited articles

Ahnert, K. and Mulansky, M.: Boost.Numeric.Odeint: solving ordinary differential equations, in: Boost Library Documentation, available at: http://www.boost.org/doc/libs/ (last access: 15 November 2014), 2013.
Andrejczuk, M., Reisner, J., Henson, B., Dubey, M., and Jeffery, C.: The potential impacts of pollution on a nondrizzling stratus deck: does aerosol number matter more than type?, J. Geophys. Res., 113, D19204, https://doi.org/10.1029/2007JD009445, 2008.
Andrejczuk, M., Grabowski, W., Reisner, J., and Gadian, A.: Cloud-aerosol interactions for boundary layer stratocumulus in the Lagrangian Cloud Model, J. Geophys. Res., 115, D22214, https://doi.org/10.1029/2010JD014248, 2010.
Arabas, S. and Pawlowska, H.: Adaptive method of lines for multi-component aerosol condensational growth and CCN activation, Geosci. Model Dev., 4, 15–31, https://doi.org/10.5194/gmd-4-15-2011, 2011.
Download
Short summary
This paper introduces a free and open-source C++ library of algorithms for representing cloud microphysics in numerical models. In the current release, the library covers three warm-rain schemes: the single- and double-moment bulk schemes, and the particle-based scheme with Monte Carlo coalescence. The three schemes are intended for modelling frameworks of different dimensionalities and complexities ranging from parcel models to multi-dimensional cloud-resolving (e.g. large-eddy) simulations.