Articles | Volume 8, issue 6
https://doi.org/10.5194/gmd-8-1677-2015
https://doi.org/10.5194/gmd-8-1677-2015
Model description paper
 | 
09 Jun 2015
Model description paper |  | 09 Jun 2015

libcloudph++ 1.0: a single-moment bulk, double-moment bulk, and particle-based warm-rain microphysics library in C++

S. Arabas, A. Jaruga, H. Pawlowska, and W. W. Grabowski

Related authors

Breakups are complicated: an efficient representation of collisional breakup in the superdroplet method
Emily de Jong, John Ben Mackay, Oleksii Bulenok, Anna Jaruga, and Sylwester Arabas
Geosci. Model Dev., 16, 4193–4211, https://doi.org/10.5194/gmd-16-4193-2023,https://doi.org/10.5194/gmd-16-4193-2023, 2023
Short summary
On numerical broadening of particle-size spectra: a condensational growth study using PyMPDATA 1.0
Michael A. Olesik, Jakub Banaśkiewicz, Piotr Bartman, Manuel Baumgartner, Simon Unterstrasser, and Sylwester Arabas
Geosci. Model Dev., 15, 3879–3899, https://doi.org/10.5194/gmd-15-3879-2022,https://doi.org/10.5194/gmd-15-3879-2022, 2022
Short summary
On the CCN (de)activation nonlinearities
Sylwester Arabas and Shin-ichiro Shima
Nonlin. Processes Geophys., 24, 535–542, https://doi.org/10.5194/npg-24-535-2017,https://doi.org/10.5194/npg-24-535-2017, 2017
Short summary
libmpdata++ 1.0: a library of parallel MPDATA solvers for systems of generalised transport equations
A. Jaruga, S. Arabas, D. Jarecka, H. Pawlowska, P. K. Smolarkiewicz, and M. Waruszewski
Geosci. Model Dev., 8, 1005–1032, https://doi.org/10.5194/gmd-8-1005-2015,https://doi.org/10.5194/gmd-8-1005-2015, 2015
Short summary

Related subject area

Atmospheric sciences
Optimized dynamic mode decomposition for reconstruction and forecasting of atmospheric chemistry data
Meghana Velagar, Christoph Keller, and J. Nathan Kutz
Geosci. Model Dev., 18, 4667–4684, https://doi.org/10.5194/gmd-18-4667-2025,https://doi.org/10.5194/gmd-18-4667-2025, 2025
Short summary
Interpolating turbulent heat fluxes missing from a prairie observation on the Tibetan Plateau using artificial intelligence models
Quanzhe Hou, Zhiqiu Gao, Zexia Duan, and Minghui Yu
Geosci. Model Dev., 18, 4625–4641, https://doi.org/10.5194/gmd-18-4625-2025,https://doi.org/10.5194/gmd-18-4625-2025, 2025
Short summary
Carbon dioxide plume dispersion simulated at the hectometer scale using DALES: model formulation and observational evaluation
Arseniy Karagodin-Doyennel, Fredrik Jansson, Bart J. H. van Stratum, Hugo Denier van der Gon, Jordi Vilà-Guerau de Arellano, and Sander Houweling
Geosci. Model Dev., 18, 4571–4599, https://doi.org/10.5194/gmd-18-4571-2025,https://doi.org/10.5194/gmd-18-4571-2025, 2025
Short summary
Low-level jets in the North and Baltic seas: mesoscale model sensitivity and climatology using WRF V4.2.1
Bjarke T. E. Olsen, Andrea N. Hahmann, Nicolas G. Alonso-de-Linaje, Mark Žagar, and Martin Dörenkämper
Geosci. Model Dev., 18, 4499–4533, https://doi.org/10.5194/gmd-18-4499-2025,https://doi.org/10.5194/gmd-18-4499-2025, 2025
Short summary
SynRad v1.0: a radar forward operator to simulate synthetic weather radar observations from volcanic ash clouds
Vishnu Nair, Anujah Mohanathan, Michael Herzog, David G. Macfarlane, and Duncan A. Robertson
Geosci. Model Dev., 18, 4417–4432, https://doi.org/10.5194/gmd-18-4417-2025,https://doi.org/10.5194/gmd-18-4417-2025, 2025
Short summary

Cited articles

Ahnert, K. and Mulansky, M.: Boost.Numeric.Odeint: solving ordinary differential equations, in: Boost Library Documentation, available at: http://www.boost.org/doc/libs/ (last access: 15 November 2014), 2013.
Andrejczuk, M., Reisner, J., Henson, B., Dubey, M., and Jeffery, C.: The potential impacts of pollution on a nondrizzling stratus deck: does aerosol number matter more than type?, J. Geophys. Res., 113, D19204, https://doi.org/10.1029/2007JD009445, 2008.
Andrejczuk, M., Grabowski, W., Reisner, J., and Gadian, A.: Cloud-aerosol interactions for boundary layer stratocumulus in the Lagrangian Cloud Model, J. Geophys. Res., 115, D22214, https://doi.org/10.1029/2010JD014248, 2010.
Arabas, S. and Pawlowska, H.: Adaptive method of lines for multi-component aerosol condensational growth and CCN activation, Geosci. Model Dev., 4, 15–31, https://doi.org/10.5194/gmd-4-15-2011, 2011.
Download
Short summary
This paper introduces a free and open-source C++ library of algorithms for representing cloud microphysics in numerical models. In the current release, the library covers three warm-rain schemes: the single- and double-moment bulk schemes, and the particle-based scheme with Monte Carlo coalescence. The three schemes are intended for modelling frameworks of different dimensionalities and complexities ranging from parcel models to multi-dimensional cloud-resolving (e.g. large-eddy) simulations.
Share