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Abstract. This paper introduces a library of algorithms

for representing cloud microphysics in numerical mod-

els. The library is written in C + +, hence the name lib-

cloudph++. In the current release, the library covers three

warm-rain schemes: the single- and double-moment bulk

schemes, and the particle-based scheme with Monte Carlo

coalescence. The three schemes are intended for modelling

frameworks of different dimensionalities and complexities

ranging from parcel models to multi-dimensional cloud-

resolving (e.g. large-eddy) simulations. A two-dimensional

(2-D) prescribed-flow framework is used in the paper to il-

lustrate the library features. The libcloudph++ and all its

mandatory dependencies are free and open-source software.

The Boost.units library is used for zero-overhead dimen-

sional analysis of the code at compile time. The particle-

based scheme is implemented using the Thrust library that

allows one to leverage the power of graphics processing units

(GPU), retaining the possibility of compiling the unchanged

code for execution on single or multiple standard proces-

sors (CPUs). The paper includes a complete description of

the programming interface (API) of the library and a per-

formance analysis including comparison of GPU and CPU

set-ups.

1 Introduction

Representation of cloud processes in numerical models is

crucial for weather and climate prediction. Taking climate

modelling as an example, one may learn that numerous dis-

tinct modelling systems are designed in similar ways, shar-

ing not only the concepts but also the implementations of

some of their components (Pennell and Reichler, 2010). This

creates a perfect opportunity for code reuse, which is one

of the key “best practices” for scientific computing (Wilson

et al., 2014, Sect. 6). The reality, however, is that the code to

be shared is often “transplanted” from one model to another

(Easterbrook and Johns, 2009, Sect. 4.6) rather than reused

in a way enabling the users to benefit from ongoing develop-

ment and updates of the shared code. From the authors’ expe-

rience, this practise is not uncommon in the development of

limited-area models as well (yet, such software-engineering

issues are rarely the subject of discussion in the literature).

As a consequence, there exist multiple implementations of

the same algorithms, but it is difficult to dissect and attribute

the differences between them. Avoiding “transplants” in the

code is not easy, as numerous software projects in atmo-

spheric modelling feature a monolithic design that hampers

code reuse.

This brings us to the conclusion that there is a poten-

tial demand for a library-type cloud-microphysics software

package that could be readily reused and that would enable

its users to easily benefit from developments of other re-

searchers (by gaining access to enhancements, corrections, or

entirely new schemes). The library approach would not only

facilitate collaboration, but also reduce development time

and maintenance effort by imposing a separation of cloud

microphysics logic from other model components such as the

dynamical core or the parallelisation logic. Such strict sepa-

ration of concerns is also a prerequisite for genuine software

testing.

The popularity of several geoscientific-modelling software

packages that offer shared-library functionality suggests the
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soundness of such an approach – e.g. libRadtran (Mayer and

Kylling, 2005) and CLUBB (Golaz et al., 2002), cited nearly

350 and 100 times, respectively.

The motivation behind the development of the lib-

clouph++ library introduced herein is twofold. First, we in-

tend to exemplify the possibilities of library-based code reuse

in the context of cloud modelling. Second, in the long run, we

intend to offer the community a range of tools applicable for

research on some of the key topics in atmospheric science

such as the interactions between aerosol, clouds and precip-

itation – phenomena that still pose significant challenges for

the existing tools and methodologies (Stevens and Feingold,

2009).

The library can be used in simulation frameworks of dif-

ferent dimensionalities, different dynamical cores, different

parallelisation strategies, and, in principle, models written in

different programming languages. The presented library is

written in C++, a choice motivated by the availability of high-

performance object-oriented libraries and the built-in “tem-

plate” mechanism. C++ templates allow the implemented al-

gorithms not to be bound to a single data type, single ar-

ray dimensionality, or single hardware type (e.g. CPU/GPU

choice). The library code and documentation are released as

free (meaning both gratis and libre) and open-source soft-

ware – a prerequisite for use in auditable and reproducible

research (Morin et al., 2012; Ince et al., 2012).

Openness, together with code brevity and documentation,

are also crucial for enabling the users not to treat the library

as a “black box”. While a self-contained package with a well-

defined interface is black-box approach compatible, the au-

thors encourage users to inspect and test the code.

Modelling of atmospheric clouds and precipitation em-

ploys computational techniques for particle-laden flows.

These are divided into Eulerian and Lagrangian approaches

(see e.g. Crowe et al., 2012, Chapter 8). In the Eulerian ap-

proach, the cloud and precipitation properties are assumed

to be continuous in space, like those of a fluid. In the La-

grangian approach, the so-called computational particles are

tracked through the model domain. Information associated

with those particles travels along their trajectories. The lo-

cal properties of a given volume are diagnosed by taking into

account the properties of particles contained within it. The

Eulerian approach is well suited for modelling transport of

gaseous species in the atmosphere and is the most common

choice for modelling atmospheric flows. This is why most

cloud microphysics models are built using the Eulerian con-

cept (e.g. Straka, 2009, Chapter 9.1). However, it is the La-

grangian approach that is particularly well suited for dilute

flows such as those of cloud droplets and rain drops in the

atmosphere.

In the current release, libcloudph++ is equipped with

implementations of three distinct models of cloud micro-

physics. All three belong to the so-called warm-rain class

of schemes, meaning they cover representation of processes

leading to formation of rain, but they do not cover representa-

tion of the ice phase (snow, hail, graupel, etc.). The so-called

single-moment bulk and double-moment bulk schemes de-

scribed in Sects. 3 and 4 belong to the Eulerian class of

methods. In Sect. 5, a coupled Eulerian–Lagrangian particle-

based scheme is presented. In the particle-based scheme, La-

grangian tracking is used to represent the dispersed phase

(atmospheric aerosol, cloud droplets, rain drops), while the

continuous phase (moisture, heat) is represented with the Eu-

lerian approach. A description of each of the three schemes

includes

– a discussion of the key assumptions,

– a formulation of the scheme,

– a definition of the programming interface (API),

– an overview of the implementation, and

– example results.

The particle-based scheme, being a novel approach to mod-

elling clouds and precipitation, is discussed in more detail

than the bulk schemes.

A description of the programming interface of lib-

cloudph++ includes C++ code listings of all data-structure

definitions and function signatures needed to use the library.

In those sections, C++ nomenclature is used without intro-

duction (for reference, see e.g. Brokken, 2013, that covers

the C++11 version of the language used in the presented

code). Sections covering scheme formulation feature cloud-

modelling nomenclature which is briefly introduced in Ap-

pendix A.

The library is equipped with Python bindings that allow

one to use all of the libcloudph++ features from the Python

programming language. The bindings are described in a sep-

arate technical note (Jarecka et al., 2015) which also includes

an example solution for interfacing libcloudph++ from For-

tran using the Python bindings.

The paper is structured as follows. Formulation of an ex-

ample modelling framework is presented in Sect. 2. The

three implemented schemes are described in Sects. 3–5. Sec-

tion 6 presents a performance evaluation of all three schemes.

Section 7 provides a summary of the key features of lib-

cloudph++.

Appendix A contains an outline of governing equations

for moist atmospheric flow. Appendix C contains a list of

symbols used throughout the text. Appendix B covers the de-

scription of an example program based on libcloudph++ that

was developed to perform the simulations presented through-

out the text.

The libcloudph++ and the program used to generate all

results presented in the paper are released as free and open-

source software – see the section on code availability at the

end of the paper.
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2 Example framework

Being a library, libcloudph++ does not constitute a complete

modelling system. It is a set of reusable software components

that need to be coupled to a model representing air motion.

In this section, we describe a simple example framework in

which the library may be used. The three following subsec-

tions cover the description of a 2-D kinematic flow model,

a set-up including initial conditions, and a conceptual numer-

ical solver. Example results obtained with these simulation

components are presented alongside the description of mi-

crophysics schemes in Sects. 3, 4 and 5.

A simple 2-D kinematic framework allows, and limits,

one to study cloud microphysical processes decoupled from

cloud dynamics. In fact, the differences between simulations

when feedback on the dynamics is taken out can lead to a

better understanding of the role of flow dynamics (e.g. Slaw-

inska et al., 2009). Such an approach results in a compu-

tationally cheap, yet still insightful, set-up of potential use

in (i) development and testing of cloud-process parameteri-

sations for larger-scale models, (ii) studying such processes

as cloud processing of aerosols, and (iii) developing remote-

sensing retrieval procedures involving detailed treatment of

cloud microphysics.

2.1 2-D kinematic flow model

The flow model formulation is inspired by the 2-D frame-

work described in Szumowski et al. (1998), Morrison and

Grabowski (2007) and Rasinski et al. (2011). The primary as-

sumption is that the dry-air density does not change in time

(here, a vertical profile ρd(z) is used), which allows one to

prescribe the 2-D velocity field using a stream function:{
ρd · u=−∂zψ,

ρd ·w = ∂xψ,
(1)

where ψ = ψ(x,z; t) is the stream function and u and w de-

note the horizontal and vertical components of the velocity

field u.

One may notice that the stationarity of the dry-air density

field, together with phase-change-related variations in time

of the temperature and the water vapour mixing ratio, imply

time variations of the pressure profile. The deviations from

the initial (hydrostatic) profile are insignificant, though.

2.2 8th ICMW VOCALS set-up

Example results presented in the following sections are based

on a modelling set-up designed for the 8th International

Cloud Modelling Workshop (ICMW, Muhlbauer et al., 2013,

case 1). It was designed as the simplest scenario applicable

for benchmarking models representing aerosol processing by

clouds. The cloud depth and aerosol characteristics are cho-

sen to mimic a drizzling stratocumulus cloud.
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Figure 1. The constant-in-time 2-D velocity field used in the pre-

sented simulations. See discussion of Eqs. (1) and (2).

The definition of the stream function ψ(x,z) is the same

as in Rasinski et al. (2011, Eq. 2):

ψ(x,z)=−wmax

X

π
sin
(
π
z

Z

)
cos
(

2π
x

X

)
, (2)

with wmax = 0.6 m s−1, domain width X = 1.5km and do-

main height Z = 1.5km. The resulting velocity field (de-

picted in Fig. 1) mimics an eddy spanning the whole domain,

thus covering an updraught and a downdraught region. The

domain is periodic in the horizontal direction. To maintain

flow incompressibility up to round-off error, velocity com-

ponents (cf. Eq. 1) are derived from Eq. (2) using numerical

differentiation formulae for a given grid type (an Arakawa-C

grid is used in the examples presented in the paper).

The initial profiles of liquid-water potential temperature

θl and the total water mixing ratio rt are defined as con-

stant with altitude (θl = 289K; rt = 7.5 g kg−1). The initial

air-density profile corresponds to the hydrostatic equilibrium

with a pressure of 1015hPa at the bottom of the domain. This

results in supersaturation in the upper part of the domain,

where a cloud deck is formed in the simulations.

The domain is assumed to contain aerosol particles. Their

dry size spectrum is a bi-modal log-normal distribution:

N(rd)=
∑
m

Nm
√

2π ln(σm)

1

rd
exp

−( ln(
rd
rm
)

√
2ln(σm)

)2
 , (3)

with the following parameters (values based on the VOCALS

campaign measurements, Allen et al., 2011, Table 4):

σ1 = 1.4; d1 = 0.04µm; N1 = 60cm−3,

σ2 = 1.6; d2 = 0.15µm; N2 = 40cm−3,

where σ1,2 is the geometric standard deviation, d1,2 = 2 · r1,2
is the mode diameter and N1,2 is the particle concentration
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under standard conditions (T = 20 ◦C and p = 1013.25 hPa).

This corresponds to a vertical gradient of concentration due

to the vertical gradient of air density, and a gradual shift to-

wards larger sizes of the wet particle spectrum due to the

vertical gradient of relative humidity. Both modes of the dis-

tribution are assumed to be composed of ammonium sulfate.

In the examples presented in this paper, the model was

initialised with θ = θl and rv = rt (i.e. no condensed water).

To avoid unrealistic supersaturation, an arbitrary limit of 5%

(RH= 1.05) was imposed when evaluating the drop-growth

equation during the spin-up.

To maintain steady mean temperature and moisture pro-

files (i.e. to compensate for gradual water loss due to pre-

cipitation and warming of the boundary layer due to latent

heating), mean temperature and moisture profiles are relaxed

to the initial profile. The temperature and moisture equations

include an additional source term in the form−(φ0−〈φ〉)/τ ,

where φ0, 〈φ〉 and τ are the initial profile, the horizontal

mean of φ at a given height and the relaxation timescale,

respectively. The relaxation timescale τ is height-dependent

(mimicking effects of surface heat fluxes) and is prescribed

as τ = τrlx · exp(z/zrlx) with τrlx = 300 s and zrlx = 200 m.

Note that such a formulation does not dampen small-scale

perturbations of φ, but simply shifts the horizontal mean to-

ward φ0.

For models that include a description of the cloud droplet

size spectrum, the initial data for the droplet concentration

and size are obtained by initialising the simulation with a 2 h

long spin-up period. During the spin-up, precipitation forma-

tion, cloud drop sedimentation and the relaxation terms are

switched off. The spin-up period is intended to adjust the ini-

tial cloud droplet size spectrum (not specified by the set-up)

to an equilibrium with the initial condition.

The grid steps are 20 m in both directions. The advection-

solver time step is 1 s. Shorter sub-time-steps may be used

for the microphysics.

2.3 A conceptual solver

The conceptual solver is meant to perform numerical integra-

tion of a system of heterogeneous transport equations, each

equation of the form

∂t ri +
1

ρd

∇ · (uρdri)= ṙi, (4)

where ri is the mixing ratio of the advected constituent, ρd

is the dry-air density, u is the velocity field, and the dot-

ted right-hand-side term ṙi depicts sources (see also Ap-

pendix A). The solver logic consists of five steps executed

in a loop, with each loop repetition advancing the solution

by one time step. Each of the first four integration steps is

annotated in Fig. 2 and described in the following paragraph.

The final step does data output and is performed condition-

ally every few time steps.

solver

adjust

ri = ADJ(ri)

update rhs terms

ṙi = RHS(ri)

apply rhs terms

ri += ∆t · ṙi
advect

ri = ADV(ri, ~C)

output

ri ; . . .

if time for outputif time for output

for each timestepfor each timestep

Figure 2. A sequence diagram depicting control flow in a concep-

tual solver described in Sect. 2.3. This solver design is extended

with libcloudph++ API calls in diagrams presented in Figs. 3, 5,

and 7. The diagram structure is modelled after the Unified Model-

ing Language (UML) sequence diagrams. Arrows with solid lines

depict calls, while the dashed arrows depict returns from the called

code. Individual solver steps are annotated with labels expressed

in semi-mathematical notation and depicting key data dependen-

cies. Model state variables are named ri ; their corresponding right-

hand-side terms are named ṙi . If a symbol appears on both sides

of the equation, a programming-like assignment notation is meant,

in which the old value of the symbol is used prior to assignment,

e.g. ri = ADV(ri ,C). ADV, ADJ, and RHS depict all operations

the solver does during the advection, adjustment, and right-hand-

side update steps, respectively.

The proposed solver features uncentered-in-time integra-

tion of the right-hand-side terms. The source terms that are

not formulated as time derivatives are referred to as adjust-

ments. The adjustments are applied after advection but before

updating the right-hand-side terms.

The library code is not bound to this particular solver logic

– it is just an example intended to present the library API.

We refer the reader to Grabowski and Smolarkiewicz (2002)

for the discussion of higher-order integration techniques for

moist atmospheric flows.

3 Single-moment bulk scheme

A common approach to represent cloud water and precipita-

tion in a numerical simulation is the so-called single-moment

bulk approach. The concepts behind it date back to the sem-

inal works of Kessler (1995, Sect. 3, and earlier works cited

Geosci. Model Dev., 8, 1677–1707, 2015 www.geosci-model-dev.net/8/1677/2015/
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Table 1. State variables for the three implemented schemes. Num-

ber of state variables times the number of Eulerian grid cells plus the

number of particle attributes times the number of Lagrangian com-

putational particles gives an estimation of the memory requirement

of a given scheme. See Appendix C for symbol definitions.

Eulerian (PDE) Lagrangian (ODE)

state variables particle attributes

Single-moment bulk θ , rv, rc, rr –

Double-moment bulk θ , rv, rc, rr, nc, nr –

Particle-based θ , rv r3
d

, r2
w, N , κ

therein). The constituting assumption of the scheme is the

division of water condensate into two categories: cloud wa-

ter and rain water. The term single-moment refers to the fact

that only the total mass (proportional to the third moment of

the particle size distribution) of water per category (cloud or

rain) is considered in the model formulation.

In an Eulerian framework, two transport equations for the

cloud water mixing ratio rc and the rain water mixing ratio

rr are solved in addition to the state variables θ and rv repre-

senting heat and moisture content, respectively (see Table 1

for a list of model-state variables in all schemes discussed in

the paper).

Single-moment bulk microphysics is a simplistic ap-

proach. Without information about the shape of droplet size

distribution, the model is hardly capable of being coupled to

a description of aerosol- or radiative-transfer processes.

3.1 Formulation

3.1.1 Key assumptions

The basic idea is to maintain saturation in the presence

of cloud water. Condensation/evaporation of cloud water

triggered by supersaturation/subsaturation occurs instanta-

neously. Rain water forms through autoconversion of cloud

water into rain (the negligible condensation of rain water

is not considered). Autoconversion occurs only after a pre-

scribed threshold of the cloud water mixing ratio is reached.

Subsequent increase in rain water is possible through the ac-

cretion of cloud water by rain.

Cloud water is assumed to follow the airflow, whereas rain

water falls relative to the air with a sedimentation velocity.

Rain water evaporates only after all available cloud water has

been evaporated and saturation is still not reached. In contrast

to cloud water, rain water evaporation does not occur instan-

taneously. The rain evaporation rate is a function of relative

humidity and is parameterised with an assumed shape of the

raindrop size distribution.

3.1.2 Phase changes

Phase changes of water are represented with the so-called

saturation adjustment procedure. Unlike in several other for-

mulations of the saturation adjustment procedure (cf. Straka,

2009, chapt. 4.2), the one implemented in libcloudph++ cov-

ers not only cloud water condensation and evaporation, but

also rain water evaporation.

Any excess of water vapour with respect to saturation is

instantly converted into cloud water, bringing the relative hu-

midity to 100 %. Similarly, any deficit with respect to satu-

ration causes instantaneous evaporation of liquid water. The

formulation of the saturation adjustment procedure takes the

latent heat release equation as a starting point. The heat

source depicted with1θ is defined through two integrals, the

first representing condensation or evaporation of cloud water,

and the second one representing rain evaporation:

1θ =

r ′v∫
rv

dθ

drv
drv+

r ′′v∫
r ′v

dθ

drv
drv (5)

1rv = (r
′
v− rv)︸ ︷︷ ︸
−1rc

+ (r ′′v − r
′
v)︸ ︷︷ ︸

−1rr

, (6)

where dθ
drv
=
−θlv
cpdT

(cf. Eq. A13 in Appendix A) and the in-

tegration limit r ′v for cloud water condensation/evaporation

is

r ′v =


r ′vs rv > rvs

r ′vs rv ≤ rvs ∧ rc ≥ r
′
vs− rv

rv+ rc rv ≤ rvs ∧ rc < r
′
vs− rv,

(7)

where r ′vs = rvs(ρd,θ
′, r ′v) is the saturation vapour density

evaluated after the adjustment. The first case in Eq. (7) cor-

responds to supersaturation. The second and the third cases

correspond to sub-saturation with either sufficient or insuffi-

cient amount of cloud water to bring the air back to satura-

tion.

When saturation is reached through condensation or evap-

oration of the cloud water, the second integral in Eq. (7)

vanishes. If there is not enough cloud water available to

reach saturation through evaporation, the integration contin-

ues with the limit r ′′v defined as follows:

r ′′v =


r ′v r ′v = r

′
vs

r ′′vs r ′v < r
′
vs ∧ δrr ≥ r

′′
vs− r

′
v

r ′v+ δrr r ′v < r
′
vs ∧ δrr < r

′′
vs− r

′
v

(8)

where δrr depicts the limit of evaporation of rain within one

time step. Here, it is parameterised as δrr =min(rr,1t ·Er),

with Er being the rain evaporation rate estimated following

Grabowski and Smolarkiewicz (1996, Eq. 5c) using the for-

mula of Ogura and Takahashi (1971, Eq. 25). As with r ′vs,

here r ′′vs = rvs(ρd,θ
′′, r ′′v ).

Noteworthy: the name adjustment reserved in Sect. 2.3

for source terms not formulated as time derivatives suits the

above-defined procedure, which is formulated through in-

tegration over the vapour mixing ratio and not over time

www.geosci-model-dev.net/8/1677/2015/ Geosci. Model Dev., 8, 1677–1707, 2015
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(see also the discussion of Eq. (3a) in Grabowski and Smo-

larkiewicz, 1990).

3.1.3 Coalescence

The collisions and coalescence of droplets are modelled with

two separate processes: autoconversion and accretion. Au-

toconversion represents collisions between cloud droplets

only, while accretion refers to collisions between rain drops

and cloud droplets. Both are parameterised in a phenomeno-

logical manner as right-hand-side (rhs) terms following

Grabowski and Smolarkiewicz (1996, Eq. 5a,b) using the

Kessler formulae. See Wood (2005) for a review of how these

formulations compare with other bulk warm-rain schemes.

In the Kessler formulation, the autoconversion source term

is proportional to max(rc− rc0,0), where the value of the

mixing-ratio threshold rc0 controls the onset of precipita-

tion. Values of rc0 found in the literature vary from 10−4 to

10−3 kg kg−1 (Grabowski and Smolarkiewicz, 1996).

3.1.4 Sedimentation

Representation of sedimentation of rain water is formulated

as a rhs term1. The rhs term is formulated employing the up-

stream advection scheme:

ṙnew
r = ṙold

r − (Fin−Fout)/ρd (9)

Fin = Fout|above (10)

Fout =−
rr

1z

[ρd|belowvt(rr|below)+ ρdvt(rr)]

2
, (11)

where old and new superscripts are introduced to indicate that

ṙr is a sum of multiple terms. The |above and |below symbols

refer to the grid cell sequence in a column, vt is the rain ter-

minal velocity parameterised as a function of rain water mix-

ing ratio (Eq. (5d) in Grabowski and Smolarkiewicz, 1996),

and Fin and Fout symbolise fluxes of rr through the grid cell

edges.

Employment of the upstream scheme brings several con-

sequences. First, unlike the cell-wise formulation of phase

changes and coalescence, the sedimentation scheme is de-

fined over a grid column. Second, the combination of ter-

minal velocity, vertical grid cell spacing 1z and time step

1t must adhere to the Courant condition (cf. discussion in

Grabowski and Smolarkiewicz, 2002). Last, but not least,

the upstream algorithm introduces numerical diffusion that

can be alleviated by application of a higher-order advection

scheme (e.g. MPDATA, cf. Smolarkiewicz, 2006, and refer-

ences therein).

1Another commonly used approach is to alter the vertical com-

ponent of the Courant number when calculating advection

3.2 Programming interface

3.2.1 API elements

The single-moment bulk scheme’s API consists of one struc-

ture (composite data type) and three functions, which are all

defined within the libcloudph::blk_1m namespace. The sep-

aration of the scheme’s logic into the three functions is done

first according to the conceptual solver design (i.e. separa-

tion of rhs terms and adjustments), and second according to

a data-dependency criterion (i.e. cell-wise or column-wise

calculations). In the case of the single-moment bulk scheme,

the three functions correspond to the three represented pro-

cesses, namely phase changes (cell-wise adjustments), coa-

lescence (cell-wise rhs terms), and sedimentation (column-

wise rhs term). Sedimentation is the only process involv-

ing column-wise traversal of the domain (note the |above and

|below symbols in Eqs. 9–11).

The blk_1m::opts_t structure (Listing 1) is intended for

storing options of the scheme for a given simulation. The

template parameter real_t controls the floating point for-

mat (e.g. float, double, etc.). The structure fields include

flags for toggling individual processes, a value of autocon-

version threshold rc0, and an absolute tolerance used in nu-

merical integration of Eq. (7). By default, all processes are

enabled, rc0 = 5× 10−4 kgkg−1 and the tolerance is set to

2×10−5 kgkg−1. All three functions from the single-moment

bulk scheme’s API expect an instance of opts_t as their first

parameter (see Listings 2–4).

The saturation adjustment of state variables

(cf. Sect. 3.1.2) is obtained through a call to the

blk_1m::adj_cellwise() function (signature in Listing 2).

The additional template parameter cont_t specifies the type

of data container used for passing model state variables.

The function expects cont_t to implement an STL-style2

iterator interface (e.g. the standard std::vector class or

a Blitz++ array slice as used in the example code described

in Appendix B).S. Arabas et al.: libcloudph++: cloud microphysics library in C++ 7

template<typename real_t>

struct opts_t {

bool

cond = true, // condensation

cevp = true, // evaporation of cloud

revp = true, // evaporation of rain

conv = true, // autoconversion

accr = true, // accretion

sedi = true; // sedimentation

real_t

r_c0 = 5e-4, // autoconv. threshold

r_eps = 2e-5; // absolute tolerance

};

Listing 1: blk_1m::opts_t definition.

The additional template parameter cont_t specifies the type
of data container used for passing model state variables.
The function expects cont_t to implement an STL-style2

iterator interface (e.g., the standard std::vector class or
a Blitz++ array slice as used in the example code described
in Appendix C). The function arguments include references

template <typename real_t, class cont_t>

void adj_cellwise(

const opts_t<real_t> &opts,

const cont_t &rhod_cont,

cont_t &th_cont,

cont_t &rv_cont,

cont_t &rc_cont,

cont_t &rr_cont,

const real_t &dt

)

Listing 2: blk_1m::adj_cellwise() signature.

template <typename real_t, class cont_t>

void rhs_cellwise(

const opts_t<real_t> &opts,

cont_t &dot_rc_cont,

cont_t &dot_rr_cont,

const cont_t &rc_cont,

const cont_t &rr_cont

)

Listing 3: blk_1m::rhs_cellwise() signature.

to containers storing ρd (read-only) and θ,rv, rc, rr (to be
adjusted). The last argument dt is the timestep needed to
calculate the precipitation evaporation limit (see discussion
of Eq. 8).

2C++ Standard Template Library

template <typename real_t, class cont_t>

real_t rhs_columnwise(

const opts_t<real_t> &opts,

cont_t &dot_rr_cont,

const cont_t &rhod_cont,

const cont_t &rr_cont,

const real_t &dz

)

Listing 4: blk_1m::rhs_columnwise() signature.

Forcings due to autoconversion and accretion are obtained
through a call to the blk_1m::rhs_cellwise() function whose
signature is given in Listing 3. The function modifies ṙc and
ṙr by adding the computed rhs terms to the values already
present in ṙc and ṙr. Read-only access is required for ρd, rc

and rr passed as the last three arguments.
Representation of sedimentation is included in a sepa-

rate function rhs_columnwise() (signature in Listing 4). The
cont_t references passed as arguments are assumed to point
to containers storing vertical columns of data with the last el-
ement placed at the top of the domain. The last argument dz
is the vertical grid spacing. The function returns the value of
Fout (see Eq. 9) for the lowermost grid cell within a column.

3.2.2 Example calling sequence

With the prototype solver concept defined in Sect. 2.3, all
three functions described above are called once per each
timestep. The diagram in Fig. 3 depicts the sequence of
calls. As suggested by its name, the adj_cellwise() func-
tion (covering representation of phase changes) is called
within the adjustments step. Functions rhs_cellwise() and
rhs_columnwise() covering representation of coalescence
and sedimentation, respectively, are both called during the
rhs-update step.

3.3 Implementation overview

The single-moment bulk scheme is implemented as a header-
only C++ library (i.e. one does not have to build it separately
and link with it, just the header files are needed to use it).
The implementation of the single-moment bulk scheme re-
quires a C++ compiler compliant with the C++11 version of
the language.

Variables, function arguments, and return values of physi-
cal meaning are all typed using the Boost.units classes (Sch-
abel and Watanabe, 2008). Consequently, all expressions in-
volving them are subject to dimensional analysis at compile
time – incurring no runtime overhead. This reduces the risk
of typo-like bugs (e.g. divide instead of multiply by density)
and contributes to readibility and hence maintainability of the
code.

Listing 1. blk_1m::opts_t definition.

2C++ Standard Template Library
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template<typename real_t>

struct opts_t {

bool

cond = true, // condensation

cevp = true, // evaporation of cloud

revp = true, // evaporation of rain

conv = true, // autoconversion

accr = true, // accretion

sedi = true; // sedimentation

real_t

r_c0 = 5e-4, // autoconv. threshold

r_eps = 2e-5; // absolute tolerance

};

Listing 1: blk_1m::opts_t definition.

The additional template parameter cont_t specifies the type
of data container used for passing model state variables.
The function expects cont_t to implement an STL-style2

iterator interface (e.g., the standard std::vector class or
a Blitz++ array slice as used in the example code described
in Appendix C). The function arguments include references

template <typename real_t, class cont_t>

void adj_cellwise(

const opts_t<real_t> &opts,

const cont_t &rhod_cont,

cont_t &th_cont,

cont_t &rv_cont,

cont_t &rc_cont,

cont_t &rr_cont,

const real_t &dt

)

Listing 2: blk_1m::adj_cellwise() signature.

template <typename real_t, class cont_t>

void rhs_cellwise(

const opts_t<real_t> &opts,

cont_t &dot_rc_cont,

cont_t &dot_rr_cont,

const cont_t &rc_cont,

const cont_t &rr_cont

)

Listing 3: blk_1m::rhs_cellwise() signature.

to containers storing ρd (read-only) and θ,rv, rc, rr (to be
adjusted). The last argument dt is the timestep needed to
calculate the precipitation evaporation limit (see discussion
of Eq. 8).

2C++ Standard Template Library

template <typename real_t, class cont_t>

real_t rhs_columnwise(

const opts_t<real_t> &opts,

cont_t &dot_rr_cont,

const cont_t &rhod_cont,

const cont_t &rr_cont,

const real_t &dz

)

Listing 4: blk_1m::rhs_columnwise() signature.

Forcings due to autoconversion and accretion are obtained
through a call to the blk_1m::rhs_cellwise() function whose
signature is given in Listing 3. The function modifies ṙc and
ṙr by adding the computed rhs terms to the values already
present in ṙc and ṙr. Read-only access is required for ρd, rc

and rr passed as the last three arguments.
Representation of sedimentation is included in a sepa-

rate function rhs_columnwise() (signature in Listing 4). The
cont_t references passed as arguments are assumed to point
to containers storing vertical columns of data with the last el-
ement placed at the top of the domain. The last argument dz
is the vertical grid spacing. The function returns the value of
Fout (see Eq. 9) for the lowermost grid cell within a column.

3.2.2 Example calling sequence

With the prototype solver concept defined in Sect. 2.3, all
three functions described above are called once per each
timestep. The diagram in Fig. 3 depicts the sequence of
calls. As suggested by its name, the adj_cellwise() func-
tion (covering representation of phase changes) is called
within the adjustments step. Functions rhs_cellwise() and
rhs_columnwise() covering representation of coalescence
and sedimentation, respectively, are both called during the
rhs-update step.

3.3 Implementation overview

The single-moment bulk scheme is implemented as a header-
only C++ library (i.e. one does not have to build it separately
and link with it, just the header files are needed to use it).
The implementation of the single-moment bulk scheme re-
quires a C++ compiler compliant with the C++11 version of
the language.

Variables, function arguments, and return values of physi-
cal meaning are all typed using the Boost.units classes (Sch-
abel and Watanabe, 2008). Consequently, all expressions in-
volving them are subject to dimensional analysis at compile
time – incurring no runtime overhead. This reduces the risk
of typo-like bugs (e.g. divide instead of multiply by density)
and contributes to readibility and hence maintainability of the
code.

Listing 2. blk_1m::adj_cellwise() signature.
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template<typename real_t>

struct opts_t {

bool

cond = true, // condensation

cevp = true, // evaporation of cloud

revp = true, // evaporation of rain

conv = true, // autoconversion

accr = true, // accretion

sedi = true; // sedimentation

real_t

r_c0 = 5e-4, // autoconv. threshold

r_eps = 2e-5; // absolute tolerance

};

Listing 1: blk_1m::opts_t definition.

The additional template parameter cont_t specifies the type
of data container used for passing model state variables.
The function expects cont_t to implement an STL-style2

iterator interface (e.g., the standard std::vector class or
a Blitz++ array slice as used in the example code described
in Appendix C). The function arguments include references

template <typename real_t, class cont_t>

void adj_cellwise(

const opts_t<real_t> &opts,

const cont_t &rhod_cont,

cont_t &th_cont,

cont_t &rv_cont,

cont_t &rc_cont,

cont_t &rr_cont,

const real_t &dt

)

Listing 2: blk_1m::adj_cellwise() signature.

template <typename real_t, class cont_t>

void rhs_cellwise(

const opts_t<real_t> &opts,

cont_t &dot_rc_cont,

cont_t &dot_rr_cont,

const cont_t &rc_cont,

const cont_t &rr_cont

)

Listing 3: blk_1m::rhs_cellwise() signature.

to containers storing ρd (read-only) and θ,rv, rc, rr (to be
adjusted). The last argument dt is the timestep needed to
calculate the precipitation evaporation limit (see discussion
of Eq. 8).

2C++ Standard Template Library

template <typename real_t, class cont_t>

real_t rhs_columnwise(

const opts_t<real_t> &opts,

cont_t &dot_rr_cont,

const cont_t &rhod_cont,

const cont_t &rr_cont,

const real_t &dz

)

Listing 4: blk_1m::rhs_columnwise() signature.

Forcings due to autoconversion and accretion are obtained
through a call to the blk_1m::rhs_cellwise() function whose
signature is given in Listing 3. The function modifies ṙc and
ṙr by adding the computed rhs terms to the values already
present in ṙc and ṙr. Read-only access is required for ρd, rc

and rr passed as the last three arguments.
Representation of sedimentation is included in a sepa-

rate function rhs_columnwise() (signature in Listing 4). The
cont_t references passed as arguments are assumed to point
to containers storing vertical columns of data with the last el-
ement placed at the top of the domain. The last argument dz
is the vertical grid spacing. The function returns the value of
Fout (see Eq. 9) for the lowermost grid cell within a column.

3.2.2 Example calling sequence

With the prototype solver concept defined in Sect. 2.3, all
three functions described above are called once per each
timestep. The diagram in Fig. 3 depicts the sequence of
calls. As suggested by its name, the adj_cellwise() func-
tion (covering representation of phase changes) is called
within the adjustments step. Functions rhs_cellwise() and
rhs_columnwise() covering representation of coalescence
and sedimentation, respectively, are both called during the
rhs-update step.

3.3 Implementation overview

The single-moment bulk scheme is implemented as a header-
only C++ library (i.e. one does not have to build it separately
and link with it, just the header files are needed to use it).
The implementation of the single-moment bulk scheme re-
quires a C++ compiler compliant with the C++11 version of
the language.

Variables, function arguments, and return values of physi-
cal meaning are all typed using the Boost.units classes (Sch-
abel and Watanabe, 2008). Consequently, all expressions in-
volving them are subject to dimensional analysis at compile
time – incurring no runtime overhead. This reduces the risk
of typo-like bugs (e.g. divide instead of multiply by density)
and contributes to readibility and hence maintainability of the
code.

Listing 3. blk_1m::rhs_cellwise() signature.

The function arguments include references to containers

storing ρd (read-only) and θ,rv, rc, rr (to be adjusted). The

last argument dt is the time step needed to calculate the pre-

cipitation evaporation limit (see the discussion of Eq. 8).

Forcings due to autoconversion and accretion are obtained

through a call to the blk_1m::rhs_cellwise() function whose

signature is given in Listing 3. The function modifies ṙc and

ṙr by adding the computed rhs terms to the values already

present in ṙc and ṙr. Read-only access is required for ρd, rc
and rr passed as the last three arguments.

Representation of sedimentation is included in a sepa-

rate function rhs_columnwise() (signature in Listing 4). The

cont_t references passed as arguments are assumed to point

to containers storing vertical columns of data with the last el-

ement placed at the top of the domain. The last argument dz

is the vertical grid spacing. The function returns the value of

Fout (see Eq. 9) for the lowermost grid cell within a column.

3.2.2 Example calling sequence

With the prototype solver concept defined in Sect. 2.3, all

three functions described above are called once per each time

step. The diagram in Fig. 3 depicts the sequence of calls. As

suggested by its name, the adj_cellwise() function (covering

representation of phase changes) is called within the adjust-

ments step. Functions rhs_cellwise() and rhs_columnwise()

covering representation of coalescence and sedimentation,

respectively, are both called during the rhs-update step.
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template<typename real_t>

struct opts_t {

bool

cond = true, // condensation

cevp = true, // evaporation of cloud

revp = true, // evaporation of rain

conv = true, // autoconversion

accr = true, // accretion

sedi = true; // sedimentation

real_t

r_c0 = 5e-4, // autoconv. threshold

r_eps = 2e-5; // absolute tolerance

};

Listing 1: blk_1m::opts_t definition.

The additional template parameter cont_t specifies the type
of data container used for passing model state variables.
The function expects cont_t to implement an STL-style2

iterator interface (e.g., the standard std::vector class or
a Blitz++ array slice as used in the example code described
in Appendix C). The function arguments include references

template <typename real_t, class cont_t>

void adj_cellwise(

const opts_t<real_t> &opts,

const cont_t &rhod_cont,

cont_t &th_cont,

cont_t &rv_cont,

cont_t &rc_cont,

cont_t &rr_cont,

const real_t &dt

)

Listing 2: blk_1m::adj_cellwise() signature.

template <typename real_t, class cont_t>

void rhs_cellwise(

const opts_t<real_t> &opts,

cont_t &dot_rc_cont,

cont_t &dot_rr_cont,

const cont_t &rc_cont,

const cont_t &rr_cont

)

Listing 3: blk_1m::rhs_cellwise() signature.

to containers storing ρd (read-only) and θ,rv, rc, rr (to be
adjusted). The last argument dt is the timestep needed to
calculate the precipitation evaporation limit (see discussion
of Eq. 8).

2C++ Standard Template Library

template <typename real_t, class cont_t>

real_t rhs_columnwise(

const opts_t<real_t> &opts,

cont_t &dot_rr_cont,

const cont_t &rhod_cont,

const cont_t &rr_cont,

const real_t &dz

)

Listing 4: blk_1m::rhs_columnwise() signature.

Forcings due to autoconversion and accretion are obtained
through a call to the blk_1m::rhs_cellwise() function whose
signature is given in Listing 3. The function modifies ṙc and
ṙr by adding the computed rhs terms to the values already
present in ṙc and ṙr. Read-only access is required for ρd, rc

and rr passed as the last three arguments.
Representation of sedimentation is included in a sepa-

rate function rhs_columnwise() (signature in Listing 4). The
cont_t references passed as arguments are assumed to point
to containers storing vertical columns of data with the last el-
ement placed at the top of the domain. The last argument dz
is the vertical grid spacing. The function returns the value of
Fout (see Eq. 9) for the lowermost grid cell within a column.

3.2.2 Example calling sequence

With the prototype solver concept defined in Sect. 2.3, all
three functions described above are called once per each
timestep. The diagram in Fig. 3 depicts the sequence of
calls. As suggested by its name, the adj_cellwise() func-
tion (covering representation of phase changes) is called
within the adjustments step. Functions rhs_cellwise() and
rhs_columnwise() covering representation of coalescence
and sedimentation, respectively, are both called during the
rhs-update step.

3.3 Implementation overview

The single-moment bulk scheme is implemented as a header-
only C++ library (i.e. one does not have to build it separately
and link with it, just the header files are needed to use it).
The implementation of the single-moment bulk scheme re-
quires a C++ compiler compliant with the C++11 version of
the language.

Variables, function arguments, and return values of physi-
cal meaning are all typed using the Boost.units classes (Sch-
abel and Watanabe, 2008). Consequently, all expressions in-
volving them are subject to dimensional analysis at compile
time – incurring no runtime overhead. This reduces the risk
of typo-like bugs (e.g. divide instead of multiply by density)
and contributes to readibility and hence maintainability of the
code.

Listing 4. blk_1m::rhs_columnwise() signature.

3.3 Implementation overview

The single-moment bulk scheme is implemented as a header-

only C++ library (i.e. one does not have to build it separately

and link with it; just the header files are needed to use it).

The implementation of the single-moment bulk scheme re-

quires a C++ compiler compliant with the C++11 version of

the language.

Variables, function arguments, and return values of physi-

cal meaning are all typed using the Boost.units classes (Sch-

abel and Watanabe, 2008). Consequently, all expressions in-

volving them are subject to dimensional analysis at compile

time – incurring no runtime overhead. This reduces the risk

of typo-like bugs (e.g. divide instead of multiply by density)

and contributes to readibility and hence maintainability of the

code.

The integrals in Eq. (7) defining the saturation adjustment

procedure are computed using the Boost.Numeric.Odeint li-

brary (Ahnert and Mulansky, 2013). The container traversals

(e.g. iteration over elements of a set of array slices or a set of

vectors) are performed using the Boost.Iterator library.

3.4 Example results

The simulation framework described in Sect. 2 and imple-

mented as described in Appendix B was used to perform

an example simulation with the single-moment bulk scheme.

Integration of the transport equations was performed using

the nonoscillatory variant of the MPDATA advection scheme

(Smolarkiewicz, 2006). Figure 4 presents a snapshot of the

cloud and the rain water fields after 30 min simulation time

(excluding the spin-up period). The cloud deck is located in

the upper part of the domain with the cloud water content in-

creasing from the cloud base up to the upper boundary of the

domain. The model has reached a quasi-stationary state and

features a drizzle shaft that forms in the updraught region in

the left-hand side of the domain. The quasi-stationary state

was preceded by a transient rainfall across the entire domain

in the first minutes of the simulation. This was caused by

the initial cloud water content exceeding the autoconversion

threshold in the upper part of the entire cloud deck.
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solver libcloudph++

adjust

call adj cellwise(ρd, θ, rv, rc, rr)

condensationmodifies: θ, rv, rc, rr

update rhs terms

call rhs cellwise(rc, rr)

coalescencemodifies: ṙc, ṙr

call rhs columnswise(ρd, rr)

sedimentationmodifies: ṙr, returns rain flux

apply rhs terms

advect

output

if time for outputif time for output

for each timestepfor each timestep

Figure 3. Sequence diagram of libcloudph++ API calls for the single-moment bulk scheme and a prototype transport equation solver. See

the discussion in Sect. 3.2.2 and the caption of Fig. 2 for a description or the diagram elements.
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Figure 4. Example results from a 2-D kinematic simulation using the single-moment bulk scheme. All panels depict model state after 30 min

simulation time (excluding the spin-up period). Note the logarithmic colour scale for rain water plots. See Sect. 3.4 for discussion.
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4 Double-moment bulk scheme

A common extension of the single-moment bulk approach

is a double-moment bulk scheme. Similarly to the single-

moment approach, the double-moment warm-rain scheme

assumes that condensed water is divided into two categories:

cloud water and rain water. In addition to the total mass of

water in both categories, concentrations of droplets and drops

are also predicted. As a result, the scheme considers two mo-

ments of particle size distribution, hence the name. In the Eu-

lerian framework, four transport equations for cloud droplet

concentration nc, cloud water mixing ratio rc, rain drop con-

centration nr and rain water mixing ratio rr are solved (see

Table 1 for a list of model-state variables). With additional

information on the concentration of cloud droplets and rain

drops, the double-moment bulk microphysics scheme is bet-

ter suited than the single-moment scheme for coupling to

aerosol and radiative-transfer models.

The double-moment scheme implemented in lib-

cloudph++ was introduced by Morrison and Grabowski

(2007). The scheme includes prediction of the supersatura-

tion, making it well suited for depicting impacts of aerosol

on clouds and precipitation. However, the scheme does

not keep track of the changes in aerosol size distribution,

and hence excludes impacts of clouds and precipitation on

aerosol.

4.1 Formulation

4.1.1 Key assumptions

The formulation of the double-moment bulk scheme assumes

aerosol, cloud, and rain spectra shapes (log-normal, gamma,

and exponential, respectively). Aerosol is assumed to be

well mixed throughout the whole domain and throughout the

whole simulation time (uniform concentration per unit mass

of dry air). Cloud water forms only if some of the aerosol

particles are activated due to supersaturation. Activation and

subsequent growth by condensation are calculated by apply-

ing the predicted supersaturation. As in the single-moment

scheme, rain water forms through autoconversion and is fur-

ther increased by accretion. Prediction of the mean size of

cloud droplets and rain drops allows one to better link the

parameterisation of autoconversion and accretion to the solu-

tions of the collision–coalescence equation. As in the single-

moment scheme, cloud water is assumed to follow the air-

flow, whereas rain water falls relative to the air. Evapora-

tion of cloud and rain water is included in the formulation of

phase changes (and hence includes the negligible diffusional

growth of rain water).

4.1.2 Phase changes

Cloud droplets form from activated aerosol. The number of

activated droplets is derived by applying the Köhler theory

to the assumed multi-modal log-normal size distribution of

aerosols. Freshly activated cloud droplets are assumed to

have a radius of 1 µm; for full derivation, see Morrison and

Grabowski (2007, Eqs. 9–13) and Khvorostyanov and Curry

(2006). The concentrations of activated droplets are com-

puted separately for each mode of the aerosol size distribu-

tion and then summed.

The size distribution of aerosols is not resolved by the

model. To take into account the decrease in aerosol con-

centration due to previous activation, in each time step the

number of available aerosols is approximated by the differ-

ence between the initial aerosol concentration and the con-

centration of pre-existing cloud droplets. Note that this ap-

proximation is valid for weakly precipitating clouds only. For

a strongly raining cloud, the model should include an addi-

tional variable, the concentration of activated cloud droplets.

It differs from the droplet concentration because of collision–

coalescence (see Eqs. (7) and (8) in Morrison and Grabowski,

2008).

The changes in cloud and rain water due to condensation

and evaporation follow Eq. (8) in Morrison and Grabowski

(2007), with the phase relaxation times computed following

Eq. (4) in Morrison et al. (2005) adapted to the fall speed

parameterisation used in Morrison and Grabowski (2007).

The decrease in number concentration due to evaporation

of cloud droplets and rain drops is computed following the

approach of Khairoutdinov and Kogan (2000). Cloud droplet

concentration is kept constant during evaporation, until all

cloud water has to be removed. Rain drop concentration de-

creases during evaporation, preserving the mean size of rain

(drizzle) drops.

4.1.3 Coalescence

Parameterisation of autoconversion and accretion follows

Khairoutdinov and Kogan (2000). In contrast to the single-

moment scheme, the autoconversion rate is a continuous

function, and the rain onset is not controlled by a single

threshold. Drizzle drops formed due to autoconversion are

assumed to have an initial radius of 25 µm.

4.1.4 Sedimentation

Sedimentation is calculated in the same way as in the single-

moment scheme (see Sect. 3.1.4), employing upstream ad-

vection. Sedimentation velocities (mass-weighted for the

rain density and number-weighted for the rain drop concen-

tration) are calculated by applying the terminal velocity for-

mulation given in Simmel et al. (2002, Table 2). Sedimenta-

tion velocity is multiplied by ρd0/ρd to follow Eq. (A4) in

Morrison et al. (2005), where ρd0 is the density of dry air

under standard conditions.
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The decrease in number concentration due to evaporation
of cloud droplets and rain drops is computed following the
approach of Khairoutdinov and Kogan (2000). Cloud droplet
concentration is kept constant during evaporation, until all
cloud water has to be removed. Rain drop concentration de-
creases during evaporation preserving the mean size of rain
(drizzle) drops.

4.1.3 Coalescence

Parameterisation of autoconversion and accretion follows
Khairoutdinov and Kogan (2000). In contrast to the single-
moment scheme, the autoconversion rate is a continuous
function, and the rain onset is not controlled by a single
threshold. Drizzle drops formed due to autoconversion are
assumed to have initial radius of 25 µm.

4.1.4 Sedimentation

Sedimentation is calculated in the same way as in the single-
moment scheme (see Sect. 3.1.4), employing upstream ad-
vection. Sedimentation velocities (mass-weighted for the
rain density and number-weighted for the rain drop concen-
tration) are calculated by applying the terminal velocity for-
mulation given in Simmel et al. (2002, Table 2). Sedimenta-
tion velocity is multiplied by ρd0/ρd to follow Eq. (A4) in
Morrison et al. (2005), where ρd0 is the density of dry air at
standard conditions.

4.2 Programming interface

4.2.1 API elements

The double-moment bulk scheme’s API consists of one struc-
ture and two functions, all defined within the libcloud-
phxx::blk_2m namespace. The structure blk_2m::opts_t
holds the scheme’s options and its definition is provided in
Listing 5. Among the options, there are process-toggling
Boolean fields, parameters of the aerosol lognormal size
distribution (see Eq. 3) and the parameter β defining the
solubility of aerosol (see Khvorostyanov and Curry, 2006,
Sect. 2.1).

All processes are represented as right-hand-side
terms. Contributions to the rhs terms, due to phase
changes and coalescence, are obtained through a call
to blk_2m::rhs_cellwise() (see Listing 6). As in the
single-moment bulk scheme’s API, contribution from
sedimentation to the rhs terms can be computed by calling
blk_2m::rhs_columnwise() (Listing 7).

The meaning of the template parameters and the function
arguments is analogous to the single-moment bulk scheme’s
API (see Sect. 3.2). The computed values of rhs terms are
added to the values already present in the arrays passed as
arguments.

The cellwise-formulated processes are handled in the
following order: activation, condensation/evaporation of

template<typename real_t>

struct opts_t

{

bool

acti = true, // activation

cond = true, // condensation

acnv = true, // autoconversion

accr = true, // accretion

sedi = true; // sedimentation

// RH limit for activation

real_t RH_max = 44;

// aerosol spectrum

struct lognormal_mode_t

{

real_t

mean_rd, // [m]

sdev_rd, // [1]

N_stp, // [m-3] @STP

chem_b; // [1]

};

std::vector<lognormal_mode_t> dry_distros;

};

Listing 5: blk_2m::opts_t definition.

template <typename real_t, class cont_t>

void rhs_cellwise(

const opts_t<real_t> &opts,

cont_t &dot_th_cont,

cont_t &dot_rv_cont,

cont_t &dot_rc_cont,

cont_t &dot_nc_cont,

cont_t &dot_rr_cont,

cont_t &dot_nr_cont,

const cont_t &rhod_cont,

const cont_t &th_cont,

const cont_t &rv_cont,

const cont_t &rc_cont,

const cont_t &nc_cont,

const cont_t &rr_cont,

const cont_t &nr_cont,

const real_t &dt

)

Listing 6: blk_2m::rhs_cellwise() signature.

Listing 5. blk_2m::opts_t definition.
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All processes are represented as right-hand-side

terms. Contributions to the rhs terms, due to phase
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single-moment bulk scheme’s API, the contribution from

sedimentation to the rhs terms can be computed by calling

blk_2m::rhs_columnwise() (Listing 7).

The meaning of the template parameters and the function

arguments is analogous to the single-moment bulk scheme’s

API (see Sect. 3.2). The computed values of rhs terms are

added to the values already present in the arrays passed as

arguments.

The cell-wise-formulated processes are handled in the

following order: activation, condensation/evaporation of

cloud droplets, autoconversion, accretion, and condensa-

tion/evaporation of rain. In principle, there are no guarantees

that the summed contributions from all of those processes,
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of cloud droplets and rain drops is computed following the
approach of Khairoutdinov and Kogan (2000). Cloud droplet
concentration is kept constant during evaporation, until all
cloud water has to be removed. Rain drop concentration de-
creases during evaporation preserving the mean size of rain
(drizzle) drops.

4.1.3 Coalescence

Parameterisation of autoconversion and accretion follows
Khairoutdinov and Kogan (2000). In contrast to the single-
moment scheme, the autoconversion rate is a continuous
function, and the rain onset is not controlled by a single
threshold. Drizzle drops formed due to autoconversion are
assumed to have initial radius of 25 µm.

4.1.4 Sedimentation

Sedimentation is calculated in the same way as in the single-
moment scheme (see Sect. 3.1.4), employing upstream ad-
vection. Sedimentation velocities (mass-weighted for the
rain density and number-weighted for the rain drop concen-
tration) are calculated by applying the terminal velocity for-
mulation given in Simmel et al. (2002, Table 2). Sedimenta-
tion velocity is multiplied by ρd0/ρd to follow Eq. (A4) in
Morrison et al. (2005), where ρd0 is the density of dry air at
standard conditions.

4.2 Programming interface

4.2.1 API elements

The double-moment bulk scheme’s API consists of one struc-
ture and two functions, all defined within the libcloud-
phxx::blk_2m namespace. The structure blk_2m::opts_t
holds the scheme’s options and its definition is provided in
Listing 5. Among the options, there are process-toggling
Boolean fields, parameters of the aerosol lognormal size
distribution (see Eq. 3) and the parameter β defining the
solubility of aerosol (see Khvorostyanov and Curry, 2006,
Sect. 2.1).

All processes are represented as right-hand-side
terms. Contributions to the rhs terms, due to phase
changes and coalescence, are obtained through a call
to blk_2m::rhs_cellwise() (see Listing 6). As in the
single-moment bulk scheme’s API, contribution from
sedimentation to the rhs terms can be computed by calling
blk_2m::rhs_columnwise() (Listing 7).

The meaning of the template parameters and the function
arguments is analogous to the single-moment bulk scheme’s
API (see Sect. 3.2). The computed values of rhs terms are
added to the values already present in the arrays passed as
arguments.

The cellwise-formulated processes are handled in the
following order: activation, condensation/evaporation of

template<typename real_t>

struct opts_t

{

bool

acti = true, // activation

cond = true, // condensation

acnv = true, // autoconversion

accr = true, // accretion

sedi = true; // sedimentation

// RH limit for activation

real_t RH_max = 44;

// aerosol spectrum

struct lognormal_mode_t

{

real_t

mean_rd, // [m]

sdev_rd, // [1]

N_stp, // [m-3] @STP

chem_b; // [1]

};

std::vector<lognormal_mode_t> dry_distros;

};

Listing 5: blk_2m::opts_t definition.

template <typename real_t, class cont_t>

void rhs_cellwise(

const opts_t<real_t> &opts,

cont_t &dot_th_cont,

cont_t &dot_rv_cont,

cont_t &dot_rc_cont,

cont_t &dot_nc_cont,

cont_t &dot_rr_cont,

cont_t &dot_nr_cont,

const cont_t &rhod_cont,

const cont_t &th_cont,

const cont_t &rv_cont,

const cont_t &rc_cont,

const cont_t &nc_cont,

const cont_t &rr_cont,

const cont_t &nr_cont,

const real_t &dt

)

Listing 6: blk_2m::rhs_cellwise() signature.
Listing 6. blk_2m::rhs_cellwise() signature.
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solver libcloudph++

adjust (extrinsic)

update rhs terms

call rhs cellwise(ρd, θ, rv, rc, rr, nc, nr)

condensation

coalescencemodifies: θ̇, ṙv, ṙc, ṙr, ṅc, ṅr

call rhs columnswise(ρd, rr, nr)

sedimentationmodifies: ṙr, ṅr, returns rain flux

apply rhs terms

advect

output

if time for outputif time for output

for each timestepfor each timestep

Figure 5. Sequence diagram of libcloudph++ API calls for the double-moment bulk scheme and a prototype transport equation solver. See
discussion in Sect. 4.2.2 and the caption of Fig. 2 for description of the diagram elements.

template <typename real_t, class cont_t>

real_t rhs_columnwise(

const opts_t<real_t> &opts,

cont_t &dot_rr_cont,

cont_t &dot_nr_cont,

const cont_t &rhod_cont,

const cont_t &rr_cont,

const cont_t &nr_cont,

const real_t &dt,

const real_t &dz

)

Listing 7: blk_1m::rhs_columnwise() signature.

cloud droplets, autoconversion, accretion, and condensa-
tion/evaporation of rain. In principle, there are no guarantees
that the summed contributions from all of those processes,
multiplied by the timestep, are smaller than the available wa-
ter contents or droplet concentrations. To prevent negative
values of water contents or concentrations, each contribution
to the rhs term evaluated within rhs_cellwise() is added to

the array ṙi passed as argument using the following rule:

ṙnew
i = min

(
ṙ?i ,

ri + ∆t · ṙold
i

∆t

)
(12)

where ṙold
i is the value obtained in evaluation of previously-

handled processes, ṙ?i is the value computed using the model
formulæ, and ṙnew

i is the augmented value of rhs term that
guarantees non-negative values of ri after its application.
The same rule is applied when evaluating values of outgo-
ing fluxes Fout from Eq. (9) when calculating rhs term within
rhs_columnwise(). The rhs_columnwise() returns the value
of the Fout flux from the lowermost grid cell within a column.

4.2.2 Example calling sequence

A diagram with an example calling sequence for the double-
moment scheme is presented in Fig. 5. The only differ-
ence from the single-moment bulk scheme’s calling se-
quence presented in Sect. 3.2.2 is the lack of an adjust-
ments step. Condensation is represented using right-hand-
side terms and is computed together with coalescence by
calling blk_2m::rhs_cellwise().

Listing 7. blk_1m::rhs_columnwise() signature.

multiplied by the time step, will be smaller than the available

water contents or droplet concentrations. To prevent negative

values of water contents or concentrations, each contribution

to the rhs term evaluated within rhs_cellwise() is added to

the array ṙi passed as an argument using the following rule:

ṙnew
i =min

(
ṙ?i ,

ri +1t · ṙ
old
i

1t

)
, (12)

where ṙold
i is the value obtained in the evaluation of previ-

ously handled processes, ṙ?i is the value computed using the

model formulæ, and ṙnew
i is the augmented value of the rhs

term that guarantees non-negative values of ri after its ap-

plication. The same rule is applied when evaluating values

of outgoing fluxes Fout from Eq. (9) when calculating rhs

term within rhs_columnwise(). The rhs_columnwise() re-

turns the value of the Fout flux from the lowermost grid cell

within a column.

4.2.2 Example calling sequence

A diagram with an example calling sequence for the

double-moment scheme is presented in Fig. 5. The only
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solver libcloudph++

adjust (extrinsic)

update rhs terms

call rhs cellwise(ρd, θ, rv, rc, rr, nc, nr)

condensation

coalescencemodifies: θ̇, ṙv, ṙc, ṙr, ṅc, ṅr

call rhs columnswise(ρd, rr, nr)

sedimentationmodifies: ṙr, ṅr, returns rain flux

apply rhs terms

advect

output

if time for outputif time for output

for each timestepfor each timestep

Figure 5. Sequence diagram of libcloudph++ API calls for the double-moment bulk scheme and a prototype transport equation solver. See

the discussion in Sect. 4.2.2 and the caption of Fig. 2 for a description of the diagram elements.

difference from the single-moment bulk scheme’s calling

sequence presented in Sect. 3.2.2 is the lack of an adjust-

ments step. Condensation is represented using right-hand-

side terms and is computed together with coalescence by

calling blk_2m::rhs_cellwise().

4.3 Implementation overview

The implementation of the double-moment scheme fol-

lows closely the implementation of the single-moment

scheme (see Sect. 3.3). It is a header-only C++ library,

using Boost.units classes for dimensional analysis and

Boost.Iterator for iterating over sets of array slices.

4.4 Example results

Simulations presented in Sect. 3.4 were repeated with the

double-moment scheme. Figure 6 presents snapshots of the

cloud and rain water content as well as the cloud and rain

drop concentration fields after 30 min simulated time (ex-

cluding the spin-up period). Because of large differences in

the predicted rain, rain water content, and drop concentration

are plotted using logarithmic colour scale in order to keep the

same colour range for all three presented schemes.

Similarly to the results from the single-moment scheme

presented in Fig. 4, cloud water content increases from the

cloud base almost up to the upper boundary of the domain.

However, unlike in the case of the single-moment scheme,

the cloud deck in Fig. 6 features a “cloud hole” above the

downdraught region. The rain forms in the upper part of the

updraught and is advected into the downdraught region in the

right-hand side of the domain. The double-moment simula-

tion at the thirtieth minute is still to reach the quasi-stationary

state. This occurs because of the differences in the parame-

terisation of autoconversion that lead to different timings of

the onset of precipitation.

The cloud droplet concentration plot reveals that the model

captures the impact of the cloud-base vertical velocity (and

hence the supersaturation) on the concentration of activated

cloud droplets. The highest concentrations are found near

the updraught axis, and the lowest near the updraught edges.

There is a difference in shape between the rain drop concen-

tration field nr and the rain water mixing ratio field rr. This

corresponds to the different fall velocities for the two fields

– number- and mass-weighted for nr and rr, respectively.
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Figure 6. Example results from a 2-D kinematic simulation using the double-moment bulk scheme. All panels depict model state after 30 min

simulation time (excluding the spin-up period). Note the logarithmic colour scale used for plotting rain water. See Sect. 4.4 for discussion.

5 Particle-based scheme

The third scheme available in libcloudph++ differs substan-

tially from the two bulk schemes. It does not treat water con-

densate as continuous medium. Instead, the scheme employs

Lagrangian tracking of particles that represent atmospheric

aerosol, cloud and drizzle droplets, and rain drops. Volumes

relevant to atmospheric flows contain far too many particles

to be individually represented in a numerical model. Con-

sequently, each “computational particle” represents a multi-

plicity of particles of identical properties (i.e. spatial coor-

dinates and physicochemical properties). Such an approach

was recently applied for modelling precipitating clouds by

Andrejczuk et al. (2010), Sölch and Kärcher (2010), Riechel-

mann et al. (2012) and Arabas and Shima (2013). Formula-

tion of the scheme presented here follows the Super Droplet

Method of Shima et al. (2007, 2009) to represent collisions

and coalescence of particles.

5.1 Formulation

The formulated particle-based model involves a Lagrangian

component and an Eulerian component (that is not part of the

library). The Eulerian component is responsible for advect-

ing θ and rv (see Appendix A). The Lagrangian component

is responsible for tracking the computational particles, each

having the following attributes:

– multiplicity N ,

– location (i.e. spatial coordinates with zero, one, two or

three components),

– wet radius squared r2
w,

– dry radius cubed r3
d , and

– hygroscopicity parameter κ .

Multiplicity depicts the number of particles represented by a

computational particle. All particles represented by one com-

putational particle are assumed to be spherical aqueous solu-

tion droplets of radius rw. Following Shima et al. (2009), the

model is formulated in r2
w for numerical reasons.
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The amount of solvent is represented by the dry radius rd
(the third power is used in the model code because most often

r3
d serves as a proxy for the volume of the solvent). The hy-

groscopicity of the solvent is parameterised using the single-

parameter approach of Petters and Kreidenweis (2007).

The list of particle attributes can be extended. For exam-

ple, parameters describing chemical composition of the so-

lution or the electrical charge of a particle can be added.

Adding new particle attributes does not increase the com-

putational expense of the Eulerian component of the solver.

However, extension of the phase space by a new dimension

(the added attribute) potentially requires using more compu-

tational particles to achieve sufficient coverage of the phase

space.

5.1.1 Key assumptions

Most of the assumptions of the bulk models described in

Sects. 3 and 4 are no longer necessary. All particles are sub-

ject to the same set of processes. As a result, the model rep-

resents even dry deposition and collisions between aerosol

particles (both being effectively negligible). The supersat-

uration is resolved taking into account phase-change kinet-

ics (i.e. condensation and evaporation are not instantaneous).

There are no assumptions on the shape of the particle size

spectrum. Aerosol particles may be internally or externally

mixed (i.e. have the same or different solubility for particles

of different sizes).

There are, however, two notable consequences of the as-

sumptions of all particles being composed of an aqueous so-

lution and spherically shaped. First, the humidity within the

domain and the hygroscopicity of the aerosol substance must

both be high enough for the solution to be dilute. For tro-

pospheric conditions and typical complex-composition in-

ternally mixed aerosol, this assumption is generally sound

(Fernández-Díaz et al., 1999; Marcolli et al., 2004). Second,

the nonsphericity of large precipitation particles has to be

negligible. It is a valid assumption for drops smaller than

1 mm (Szakáll et al., 2010).

It is also assumed that a particle never breaks up into mul-

tiple particles. It is a reasonable assumption for the evap-

oration of cloud particles into aerosol (Mitra et al., 1992).

However, both collision-induced and spontaneous breakups

become significant (the latter to a much smaller extent) for

larger droplets (McFarquhar, 2010), and hence the scheme

requires an extension in order to allow for diagnosing rain

spectra for strongly precipitating clouds.

There is not yet any mechanism built into the model to

represent aerosol sources (other than regeneration of aerosol

by evaporation of cloud droplets).

5.1.2 Advection

In the current version of the library, it is assumed that particle

motion has two components: advection by the fluid flow and

gravitational sedimentation with the terminal velocity. The

library interface expects that the user will pass information

on the flow velocity in the form of Courant number fields,

one per each dimension. The Courant number is defined as

the flow velocity times the ratio of the time step to the grid

step in a given dimension. The Arakawa-C staggered grid is

used and hence the Courant numbers represent velocities at

the edges of the Eulerian grid cells.

Transport of particles by the flow is computed using the

backward Euler scheme:

x[n+1]
= x[n]+1x ·C(x[n+1]), (13)

where C is the Courant number field component, and 1x

is the grid step (formulæ are given for the x dimension, but

are applicable to other dimensions as well). Evaluation of

C(x[n+1]) is performed using linear approximation (interpo-

lation/extrapolation of the particle velocities using fluid ve-

locity values at the grid cell edges):

C(x[n+1])= (1−ω) ·C
[i− 1

2
]
+ω ·C

[i+ 1
2
]
, (14)

where the fractional indices i− 1
2

and i+ 1
2

denote the left

and right edges of a grid cell i in which a given particle is

located at time level n. The weight ω is defined as

ω = x[n+1]/1x−bx[n]/1xc, (15)

where bxc depicts the largest integer not greater than x. Sub-

stituting Eqs. (14) and (15) into Eq. (13) results in an analytic

solution for x[n+1]:

x[n+1]
=

x[n]+1x
(
C
i− 1

2
−bx[n]/1xc ·1C

)
1−1C

, (16)

where 1C = C
i+ 1

2
−C

i− 1
2
.

The same procedure is repeated in other spatial dimensions

if applicable (i.e. depending on the dimensionality of the Eu-

lerian component). Periodic horizontal boundary conditions

are assumed.

5.1.3 Phase changes

The growth rate of particles is calculated using the single-

equation (so-called Maxwell–Mason) approximation to the

heat and vapour diffusion process (Straka, 2009, rearranged

Eq. 5.106):

rw
drw

dt
=
Deff

ρw

(ρv− ρ◦) , (17)

where the effective diffusion coefficient is

D−1
eff =D

−1
+K−1 ρvslv

T

(
lv

RvT
− 1

)
(18)

and ρvs stands for the density of water vapour at saturation

with respect to a plane surface of pure water. The vapour

density at drop surface ρ◦ is modelled as

ρ◦ = ρvs · aw(rw, rd) · exp(A/rw), (19)
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where water activity aw and the so-called Kelvin term

exp(A/rw) are evaluated using the κ-Köhler parameterisa-

tion of Petters and Kreidenweis (2007). See Arabas and

Pawlowska (2011) for the formulae for A, lv and ρvs.

Vapour and heat diffusion coefficients D and K are evalu-

ated as

D =D0 ·βM ·
Sh

2
(20)

K =K0 ·βT ·
Nu

2
. (21)

The Fuchs–Sutugin transition-régime correction factors

βM(rw,T ) and βT (rw,T ,p) are used in the form recom-

mended for cloud modelling by Laaksonen et al. (2005,

i.e. employing mass and heat accommodation coefficients of

unity). The Sherwood number Sh and the Nusselt number

Nu (twice the mean ventilation coefficients) are modelled

following Clift et al. (1978) as advocated by Smolík et al.

(2001).

As in the particle-based ice-microphysics model of Sölch

and Kärcher (2010), no interpolation of the Eulerian state

variables to particle positions is done (in contrast to the ap-

proach employed in warm-rain models of Andrejczuk et al.,

2008; Shima et al., 2009; Riechelmann et al., 2012). It is

therefore assumed, likely in compliance with the logic of an

Eulerian solver component, that the heat and moisture are

homogeneous within a grid cell. Consequently, the effects

of subgrid-scale mixing on the particles follow the so-called

homogeneous-mixing scenario (see Jarecka et al., 2013, and

references therein). Furthermore, no effects of vapour field

inhomogeneity around particles are taken into consideration

(see Vaillancourt et al., 2001; Castellano and Ávila, 2011).

Particle terminal velocities used to evaluate Sh and Nu are

calculated using the parameterisation of Khvorostyanov and

Curry (2002, see also Sect. 5.1.5 herein).

The representation of condensation and evaporation in

the Lagrangian component involves a sub-stepping logic

in which the Eulerian component time step 1t is divided

into a number of equal sub-steps. This is intended to cope

with potentially large differences between the characteristic

timescales of condensation (notably during aerosol activa-

tion) and of the large-scale air flow solved by the Eulerian

component of the solver. Presently, the number of sub-time-

steps is kept constant throughout the domain and throughout

the simulation time. However, the actual constraints for time-

step length 1t ′ differ substantially, particularly with the dis-

tance from cloud base (see Fig. 2 in Arabas and Pawlowska,

2011). An adaptive time-step choice mechanism is planned

for a future release. For simplicity, the sub-stepping proce-

dure is not depicted explicitly in the following formulae. It is

only hinted at by labelling the sub-time-step as 1t ′ and the

sub-time-step number as n′. If the user enables sub-stepping,

the advective tendencies of θd and rv are applied fractionally

in each sub-step.

Within each sub-step, the drop growth equation is solved

for each computational particle with an implicit scheme with

respect to the wet radius but explicit with respect to rv and θ :

r2[n
′
+1]

w = r2[n
′
]

w +1t ′ ·
dr2
w

dt

∣∣∣∣
r2[n
′+1]

w ,r
[n′]
v ,θ [n

′]

, (22)

The solution to the above equation is sought by employing

a predictor–corrector type procedure. First, the value of the
dr2
w

dt
derivative evaluated at r2[n

′
]

w is used to construct an initial-

guess range a < r2[n
′
+1]

w < b in which roots of Eq. (22) are to

be sought, with

a =max

(
r2

d , r
2[n
′
]

w +min

(
2 ·

dr2
w

dt

∣∣∣∣
r
[n′]
w

,0

))
(23)

b = r2[n
′
]

w +max

(
2 ·

dr2
w

dt

∣∣∣∣
r
[n′]
w

,0

)
. (24)

Second, r2n
′
+1

w is iteratively searched using the bisection al-

gorithm. If the initial-guess range choice makes a bisection

search ill-posed (the minimisation function having the same

sign at a and b), the algorithm stops after the first iteration,

returning (a+ b)/2, which reduces the whole procedure to

the standard Euler scheme (due to the use of factor 2 in the

definition of a and b). It is worth noting that such treatment

of drop growth (i.e. Lagrangian in radius space, also called

the moving sectional or method of lines approach) incurs no

numerical diffusion.

After each sub-step, in addition to application of a fraction

of advective tendency, the thermodynamic fields rv and θ are

adjusted to account for water vapour content change due to

condensation or evaporation on particles within a given grid

cell and within a given sub-step by evaluating

r [n
′
+1]

v − r [n
′
]

v = ρ−1
d

−4πρw

31V

∑
i∈grid cell

N[i]

[
r3[n

′
+1]

w[i]
− r3[n

′
]

w[i]

]
(25)

θ [n
′
+1]
− θ [n

′
]
=

(
r [n
′
+1]

v − r [n
′
]

v

) dθ

drv

∣∣∣∣
r
[n′]
v ,θ [n

′]

, (26)

where 1V is the grid cell volume, and ρw is the density of

liquid water. Noteworthy: such a formulation maintains con-

servation of heat and moisture in the domain regardless of

the accuracy of the integration of the drop growth equation.

Phase-change calculations are performed before any other

processes. This is because condensation and evaporation are

the only processes modifying the rv and θ fields of the Eu-

lerian component. Consequently, the Eulerian component of

the solver may continue integration as soon as phase-change

calculations are completed. Such asynchronous logic is ap-

plicable when using a GPU – particle advection, sedimen-

tation, and collisions can be calculated by the Lagrangian

component of the solver using a GPU, while the Eulerian

component advects model state variables using a CPU.
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5.1.4 Coalescence

The coalescence scheme is an implementation of the Super

Droplet Method (SDM) described in Shima et al. (2009).

SDM is a Monte Carlo type algorithm for representing

particle collisions. As is done for phase changes, coales-

cence of particles is solved using sub-time-steps 1t ′′. In

each sub-time-step, all computational particles within a given

grid cell are randomly grouped into non-overlapping pairs

(i.e. no computational particle may belong to more than one

pair). Then, the probability of collisions between computa-

tional particles i and j in each pair is evaluated as

Pij =max(Ni,Nj )K(ri, rj )
1t ′′

1V

n(n− 1)

2bn/2c
, (27)

where n is the total number of computational particles within

a grid cell in a given time step and K(ri, rj ) is the collection

kernel. In analogy to a target-projectile configuration, scal-

ing the probability of collisions with the larger of the two

multiplicities max(Ni,Nj ) (target size) implies that if a col-

lision happens, min(Ni,Nj ) of particles will collide (num-

ber of projectiles). The last term in Eq. (27) upscales the

probability to account for the fact that not all (n(n− 1)/2)

possible pairs of computational particles are examined, but

only bn/2c of them. Evaluation of collision probability for

non-overlapping pairs only, instead of for all possible pairs

of particles, makes the computational cost of the algorithm

scale linearly, instead of quadratically, with the number of

computational particles (at the cost of increasing the sam-

pling error of the Monte Carlo scheme).

If geometric collisions are considered, the coalescence

kernel has the following form:

K(ri, rj )= E(ri, rj ) ·π(ri + rj )
2
· |vi − vj |, (28)

where E(ri, rj ) is the collection efficiency and v is the termi-

nal velocity of particles (i.e. their flow-relative sedimentation

velocity). The collection efficiency differs from unity if hy-

drodynamic effects (e.g. Vohl et al., 2007) or van der Waals

forces (Rogers and Davis, 1990) are considered. The whole

coalescence kernel may take a different form (in particular,

may be nonzero for drops of equal terminal velocity) if tur-

bulence effects are taken into account (Grabowski and Wang,

2013, and references therein).

In each sub-time-step, the evaluated probability Pij is

compared to a random number from a uniform distribution

over the (0,1) interval. If the probability is larger than the

random number, a collision event is triggered. During a col-

lision event, all min(Ni,Nj ) particles collide (see Fig. 1 and

Sect. 4.1.4 in Shima et al., 2009). One of the colliding com-

putational particles (the one with the smaller multiplicity) re-

tains its multiplicity but changes its dry and wet radii to those

of the newly formed particles. The second colliding compu-

tational particle (the one with the larger multiplicity) retains

its dry and wet radii but changes its multiplicity to the differ-

ence betweenNi andNj . Other particle parameters are either

summed (i.e. extensive parameters such as r3
d ) or averaged

(i.e. intensive parameters such as κ).

Unlike in the formulation of Shima et al. (2009), particles

with equal multiplicities collide using the same scheme, leav-

ing one of the particles with zero multiplicity. Particles with

zero multiplicity are “recycled” at the beginning of each time

step. The recycling procedure first looks for computational

particles with the highest multiplicities and then assigns their

properties to the recycled particles halving the multiplicity.

The “multiple coalescence” feature of SDM introduced in

Shima et al. (2009) to robustly cope with an undersampled

condition of Pij > 1 is implemented. It is also planned to use

the values of Pij to control an adaptive time-step logic to be

introduced in a future release.

Noteworthy: the collisional growth is represented in

a numerical-diffusion-free manner, that is, Lagrangian in par-

ticle radius space (both dry and wet radius). This is an ad-

vantage over the Eulerian-type schemes based on the Smolu-

chowski equation which exhibit numerical diffusion (see e.g.

Bott, 1998).

5.1.5 Sedimentation

Sedimentation velocity is computed using the formula of

Khvorostyanov and Curry (2002, Eqs. 2.7, 2.12, 2.13, 3.1).

The explicit Euler scheme is used for adjusting particle po-

sitions. Sedimentation may result in the particles leaving

the domain (i.e. dry deposition or ground-reaching rainfall).

Computational particles that left the domain undergo the

same recycling procedure as described in Sect. 5.1.4 for

equal-multiplicity collisions.

5.1.6 Initialisation

One of the key parameters of the particle-based simulation is

the number of computational particles used. As in several re-

cent cloud studies employing particle-based techniques, the

initial particle spatial coordinates are chosen randomly us-

ing a uniform distribution. Consequently, the initial condition

has a uniform initial mean density of computational particles

(assuming all cells have the same volume). The value of this

initial mean density defines the sampling error in the particle

parameter space, particularly in the context of phase changes

and coalescence, which are both formulated on a cell-wise

basis. The ranges of values used in the recent studies are

30–250 (Sölch and Kärcher, 2010, particles injected through-

out simulation), 100–200 (Andrejczuk et al., 2010, grid cell

size variable in height, particles added throughout simula-

tion), 26–186 (Riechelmann et al., 2012), 8–512 (Arabas and

Shima, 2013), 30–260 (Unterstrasser and Sölch, 2014).

The dry radii of the computational particles are chosen

randomly with a uniform distribution in the logarithm of the

radius. The minimal and maximal values of the dry radius are

chosen automatically by evaluating the initial dry-size distri-

bution. The criterion is that the particle multiplicity (i.e. the
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number of particles represented by a computational particle)

for both the minimal and maximal radii be greater than or

equal to 1.

The initial spectrum shape is arbitrary. Externally mixed

aerosol may be represented using multiple spectra, each char-

acterised by a different value of κ . The initial particle multi-

plicities are evaluated by treating the input spectra as corre-

sponding to the standard atmospheric conditions (STP), and

hence the concentrations are multiplied by the ratio of the

dry-air density in a given grid cell to the air density at STP.

In one and two dimensions, the grid cell volume 1V used

to derive multiplicities from the concentrations is defined

assuming a unit length of 1 m in the omitted dimensions.

This assumption has effectively no impact on the computed

rates of condensation or coalescence (Eqs. 25 and 27, re-

spectively), as in their formulation, the multiplicities always

appear divided by 1V . In a zero-dimensional configuration

intended for parcel-like frameworks, the 1V is updated in

every time step to match changes in the dry air density by

maintaining a constant total mass of dry air of 1 kg.

Equation (17) defines the relationships between the dry

and wet spectra in the model. These should, in principle, be

fulfilled by the initial condition imposed on the model state

variables. For cloud-free air, it is obtained by assuming an

equilibrium defined by putting zero on the left-hand side of

Eq. (17). This allows one to diagnose the wet spectrum from

the dry one. Bringing all particles to equilibrium at a given

humidity is done without changing θ and rv to resemble bulk

models’ initial state. A small amount of water needed to ob-

tain equilibrium is thus added to the system.

For set-ups assuming the initial presence of cloud water

within the model domain, the equilibrium condition may be

applied only to sub-saturated regions within the model do-

main. The initial wet radius of particles within the super-

saturated regions is set to its equilibrium value at a given

threshold relative humidity (e.g. RH= 95 % as used in Lebo

and Seinfeld, 2011). Subsequent growth is computed within

the first few minutes of the simulation. Optionally, in order

to avoid activation of all available aerosol, the drop growth

Eq. (17) is evaluated, limiting the value of the supersaturation

to a given threshold, e.g. 5 % as used in the set-up defined in

Sect. 2.2 (see also the discussion on particle-based simula-

tion initialisation in Andrejczuk et al., 2010, Sect. 2.2).

5.2 Programming interface

5.2.1 API elements

The particle-based scheme’s API differs substantially from

bulk schemes’ APIs. It features the object-oriented approach

of equipping data structures (referred to as classes) with

functions (referred to as methods). Furthermore, unlike the

bulk schemes’ APIs, the particle-based scheme is not im-

plemented as a header-only library, but requires linking to

the libcloudphxx_lgrngn shared library. The particle-based

scheme’s API consists of four structures (classes), one func-

tion and two enumerations, all defined within the libcloud-

phxx::lgrngn namespace. The often occurring template pa-

rameter real_t controls the floating point format.

As in the case of bulk schemes, the scheme options are

stored in a separate structure lgrngn::opts_t whose defini-

tion is given in Listing 8. The first Boolean fields provide

control over process toggling. The RH_max field defines the

RH limit for evaluating the drop growth equation (e.g. during

a spin-up period; see Sect. 2.2).

Other options of the particle-based scheme not meant to be

altered during simulation are grouped into a structure named

lgrngn::opts_init_t (Listing 9). The initial dry size spec-

trum of aerosol is represented with the dry_distros map. The

map associates values of the solubility parameter κ with par-

ticle size distributions. The size distributions are specified

as pointers to functors returning the concentration of parti-

cles at STP as a function of logarithm of dry radius. Sub-

sequent fields specify the geometry of the Eulerian grid and

the time step. It is assumed that the Eulerian component op-

erates on a rectilinear grid with a constant grid cell spacing,

although this assumption may easily be lifted in future re-

leases if needed. The parameters x0, y0, z0, x1, y1, and z1 are

intended for defining a subregion of the Eulerian domain to

be covered with computational particles. The number of sub-

steps to be taken within one Eulerian time step when calcu-

lating condensation and coalescence is defined by sstp_cond

and sstp_coal, respectively. The last two fields provide con-

trol of the initial mean concentration of computational par-

ticles per grid cell and the type of coalescence kernel to be

used. As of the current release, two options are available: the

geometric kernel and the Golovin kernel; see Listing 10).

Unlike in the case of the bulk schemes, here the actual ge-

ometry and memory layout of the Eulerian grid need to be

known to map the particle spatial coordinates to the Eulerian

grid cell indices. The memory layout of array data is repre-

sented in the API using the lgrngn::arrinfo_t structure (List-

ing 11). The meanings of the dataZero and strides fields

match those of equally named methods of the Blitz++ Ar-

ray class. Quoting the Blitz++ documentation (Veldhuizen,

2005): “dataZero is a pointer to the element (0,0, . . .,0),

even if such an element does not exist in the array. What’s the

point of having such a pointer? Say you want to access the

element (i,j,k). If you add to the pointer the dot product of

(i,j,k) with the stride vector stride, you get a pointer to the

element (i,j,k).” Using arrinfo_t as the type for API func-

tion arguments makes the library potentially compatible with

a wide range of array containers, Blitz++ being just an ex-

ample. In addition, no assumptions are made with respect to

array index ranges or dimension ordering, which allows the

library to operate on array slabs (e.g. array segments exclud-

ing the so-called halo regions) and both row- and column-

major storage.

The state of the Lagrangian component of the model

(notably, the values of particle attributes) is stored in an
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template<typename real_t>

struct opts_t

{

// process toggling

bool adve, sedi, cond, coal;

// RH limit for drop growth

real_t RH_max;

Listing 8: lgrngn::opts_t definition.

RH limit for evaluating drop growth equation (e.g. during a
spin-up period, see Sect. 2.2).

Other options of the particle-based scheme not meant to be
altered during simulation are grouped into a structure named
lgrngn::opts_init_t (Listing 9). The initial dry size spec-

template<typename real_t>

struct opts_init_t

{

// initial dry sizes of aerosol

typedef boost::ptr_unordered_map<

real_t, // kappa

unary_function<real_t> // n(ln(rd)) @ STP

> dry_distros_t;

dry_distros_t dry_distros;

// Eulerian component parameters

int nx, ny, nz;

real_t dx, dy, dz, dt;

// no. of substeps

int sstp_cond, sstp_coal;

// Lagrangian domain extents

real_t x0, y0, z0, x1, y1, z1;

// mean no. of super-droplets per cell

real_t sd_conc_mean;

// coalescence Kernel type

kernel_t kernel;

Listing 9: lgrngn::opts_init_t definition.

trum of aerosol is represented with the dry_distros map.
The map associates values of the solubility parameter κ with
particle size distributions. The size distributions are speci-
fied as pointers to functors returning concentration of parti-
cles at STP as a function of logarithm of dry radius. Sub-
sequent fields specify the geometry of the Eulerian grid and
the timestep. It is assumed that the Eulerian component oper-
ates on a rectilinear grid with a constant grid cell spacing, al-
though this assumption may easily be lifted in future releases
if needed. The parameters x0, y0, z0, x1, y1, z1 are intended

for defining a subregion of the Eulerian domain to be cov-
ered with computational particles. The number of sub-steps
to be taken within one Eulerian timestep when calculating
condensation and coalescence is defined by sstp_cond and
sstp_coal, respectively. The last two fields provide control of
the initial mean concentration of computational particles per
grid cell and the type of the coalescence kernel to be used.
As of the current release, two options are available: the geo-
metric kernel and the Golovin kernel, see Listing 10).

enum kernel_t { geometric, golovin };

Listing 10: lgrngn::kernel_t definition.

Unlike in the case of the bulk schemes, here the actual ge-
ometry and memory layout of the Eulerian grid need to be
known to map the particle spatial coordinates to the Eule-
rian grid cell indices. The memory layout of array data is
represented in the API using the lgrngn::arrinfo_t structure
(Listing 11). The meaning of dataZero and strides fields

template <typename real_t>

struct arrinfo_t

{

// member fields:

real_t * const dataZero;

const ptrdiff_t *strides;

Listing 11: lgrngn::arrinfo_t definition.

match those of equally-named methods of the Blitz++ Array
class. Quoting Blitz++ documentation (Veldhuizen, 2005):
„dataZero is a pointer to the element (0,0, . . .,0), even if
such an element does not exist in the array. What’s the point
of having such a pointer? Say you want to access the ele-
ment (i, j,k). If you add to the pointer the dot product of
(i, j,k) with the stride vector stride, you get a pointer to the
element (i, j,k).” Using arrinfo_t as the type for API func-
tion arguments makes the library potentially compatible with
a wide range of array containers, Blitz++ being just an ex-
ample. In addition, no assumptions are made with respect to
array index ranges or dimension ordering, what allows the li-
brary to operate on array slabs (e.g. array segments excluding
the so-called halo regions) and both row- and column-major
storage.

The state of the Lagrangian component of the model (no-
tably, the values of particle attributes) is stored in an in-
stance of the lgrngn::particles_t class (see Listing 12). In-
ternally, the Lagrangian calculations are implemented using
the Thrust library3 which, among other, allows to run the

3http://thrust.github.io/
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real_t RH_max;
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RH limit for evaluating drop growth equation (e.g. during a
spin-up period, see Sect. 2.2).

Other options of the particle-based scheme not meant to be
altered during simulation are grouped into a structure named
lgrngn::opts_init_t (Listing 9). The initial dry size spec-

template<typename real_t>

struct opts_init_t

{

// initial dry sizes of aerosol

typedef boost::ptr_unordered_map<

real_t, // kappa

unary_function<real_t> // n(ln(rd)) @ STP

> dry_distros_t;

dry_distros_t dry_distros;

// Eulerian component parameters

int nx, ny, nz;

real_t dx, dy, dz, dt;

// no. of substeps

int sstp_cond, sstp_coal;

// Lagrangian domain extents

real_t x0, y0, z0, x1, y1, z1;

// mean no. of super-droplets per cell
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// coalescence Kernel type

kernel_t kernel;
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trum of aerosol is represented with the dry_distros map.
The map associates values of the solubility parameter κ with
particle size distributions. The size distributions are speci-
fied as pointers to functors returning concentration of parti-
cles at STP as a function of logarithm of dry radius. Sub-
sequent fields specify the geometry of the Eulerian grid and
the timestep. It is assumed that the Eulerian component oper-
ates on a rectilinear grid with a constant grid cell spacing, al-
though this assumption may easily be lifted in future releases
if needed. The parameters x0, y0, z0, x1, y1, z1 are intended

for defining a subregion of the Eulerian domain to be cov-
ered with computational particles. The number of sub-steps
to be taken within one Eulerian timestep when calculating
condensation and coalescence is defined by sstp_cond and
sstp_coal, respectively. The last two fields provide control of
the initial mean concentration of computational particles per
grid cell and the type of the coalescence kernel to be used.
As of the current release, two options are available: the geo-
metric kernel and the Golovin kernel, see Listing 10).

enum kernel_t { geometric, golovin };

Listing 10: lgrngn::kernel_t definition.

Unlike in the case of the bulk schemes, here the actual ge-
ometry and memory layout of the Eulerian grid need to be
known to map the particle spatial coordinates to the Eule-
rian grid cell indices. The memory layout of array data is
represented in the API using the lgrngn::arrinfo_t structure
(Listing 11). The meaning of dataZero and strides fields

template <typename real_t>

struct arrinfo_t

{

// member fields:

real_t * const dataZero;

const ptrdiff_t *strides;

Listing 11: lgrngn::arrinfo_t definition.

match those of equally-named methods of the Blitz++ Array
class. Quoting Blitz++ documentation (Veldhuizen, 2005):
„dataZero is a pointer to the element (0,0, . . .,0), even if
such an element does not exist in the array. What’s the point
of having such a pointer? Say you want to access the ele-
ment (i, j,k). If you add to the pointer the dot product of
(i, j,k) with the stride vector stride, you get a pointer to the
element (i, j,k).” Using arrinfo_t as the type for API func-
tion arguments makes the library potentially compatible with
a wide range of array containers, Blitz++ being just an ex-
ample. In addition, no assumptions are made with respect to
array index ranges or dimension ordering, what allows the li-
brary to operate on array slabs (e.g. array segments excluding
the so-called halo regions) and both row- and column-major
storage.

The state of the Lagrangian component of the model (no-
tably, the values of particle attributes) is stored in an in-
stance of the lgrngn::particles_t class (see Listing 12). In-
ternally, the Lagrangian calculations are implemented using
the Thrust library3 which, among other, allows to run the

3http://thrust.github.io/

Listing 9. lgrngn::opts_init_t definition.

instance of the lgrngn::particles_t class (see Listing 12).

Internally, the Lagrangian calculations are implemented us-

ing the Thrust library3, which, among other things, al-

lows one to run the particle-based simulations either on

CPU(s) or on a GPU. The second template parameter of

lgrngn::particles_t is the type of the backend to be used

by the Thrust library, and as of current release it has three

possible values: serial, OpenMP, or CUDA (cf. Listing 13

with the definition of the backend_t enumeration). The

OpenMP4 backend offers multi-threading using multiple

CPU cores and/or multiple CPUs. The CUDA5 backend en-

ables the user to perform the computations on a GPU. The

serial backend does single-thread computations on a CPU.

The “backend-aware” particles_t<real_t, backend> in-

herits from “backend-unaware” particles_proto_t<real_t>

3http://thrust.github.io/
4http://openmp.org/
5http://nvidia.com/
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// process toggling
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// RH limit for drop growth
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{

// initial dry sizes of aerosol
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real_t, // kappa

unary_function<real_t> // n(ln(rd)) @ STP

> dry_distros_t;

dry_distros_t dry_distros;

// Eulerian component parameters
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// no. of substeps

int sstp_cond, sstp_coal;

// Lagrangian domain extents
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// coalescence Kernel type
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ment (i, j,k). If you add to the pointer the dot product of
(i, j,k) with the stride vector stride, you get a pointer to the
element (i, j,k).” Using arrinfo_t as the type for API func-
tion arguments makes the library potentially compatible with
a wide range of array containers, Blitz++ being just an ex-
ample. In addition, no assumptions are made with respect to
array index ranges or dimension ordering, what allows the li-
brary to operate on array slabs (e.g. array segments excluding
the so-called halo regions) and both row- and column-major
storage.

The state of the Lagrangian component of the model (no-
tably, the values of particle attributes) is stored in an in-
stance of the lgrngn::particles_t class (see Listing 12). In-
ternally, the Lagrangian calculations are implemented using
the Thrust library3 which, among other, allows to run the

3http://thrust.github.io/

Listing 10. lgrngn::kernel_t definition.
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template<typename real_t>

struct opts_t

{

// process toggling

bool adve, sedi, cond, coal;

// RH limit for drop growth

real_t RH_max;

Listing 8: lgrngn::opts_t definition.

RH limit for evaluating drop growth equation (e.g. during a
spin-up period, see Sect. 2.2).

Other options of the particle-based scheme not meant to be
altered during simulation are grouped into a structure named
lgrngn::opts_init_t (Listing 9). The initial dry size spec-

template<typename real_t>

struct opts_init_t

{

// initial dry sizes of aerosol

typedef boost::ptr_unordered_map<

real_t, // kappa

unary_function<real_t> // n(ln(rd)) @ STP

> dry_distros_t;

dry_distros_t dry_distros;

// Eulerian component parameters

int nx, ny, nz;

real_t dx, dy, dz, dt;

// no. of substeps

int sstp_cond, sstp_coal;

// Lagrangian domain extents

real_t x0, y0, z0, x1, y1, z1;

// mean no. of super-droplets per cell

real_t sd_conc_mean;

// coalescence Kernel type

kernel_t kernel;

Listing 9: lgrngn::opts_init_t definition.

trum of aerosol is represented with the dry_distros map.
The map associates values of the solubility parameter κ with
particle size distributions. The size distributions are speci-
fied as pointers to functors returning concentration of parti-
cles at STP as a function of logarithm of dry radius. Sub-
sequent fields specify the geometry of the Eulerian grid and
the timestep. It is assumed that the Eulerian component oper-
ates on a rectilinear grid with a constant grid cell spacing, al-
though this assumption may easily be lifted in future releases
if needed. The parameters x0, y0, z0, x1, y1, z1 are intended

for defining a subregion of the Eulerian domain to be cov-
ered with computational particles. The number of sub-steps
to be taken within one Eulerian timestep when calculating
condensation and coalescence is defined by sstp_cond and
sstp_coal, respectively. The last two fields provide control of
the initial mean concentration of computational particles per
grid cell and the type of the coalescence kernel to be used.
As of the current release, two options are available: the geo-
metric kernel and the Golovin kernel, see Listing 10).

enum kernel_t { geometric, golovin };

Listing 10: lgrngn::kernel_t definition.

Unlike in the case of the bulk schemes, here the actual ge-
ometry and memory layout of the Eulerian grid need to be
known to map the particle spatial coordinates to the Eule-
rian grid cell indices. The memory layout of array data is
represented in the API using the lgrngn::arrinfo_t structure
(Listing 11). The meaning of dataZero and strides fields

template <typename real_t>

struct arrinfo_t

{

// member fields:

real_t * const dataZero;

const ptrdiff_t *strides;

Listing 11: lgrngn::arrinfo_t definition.

match those of equally-named methods of the Blitz++ Array
class. Quoting Blitz++ documentation (Veldhuizen, 2005):
„dataZero is a pointer to the element (0,0, . . .,0), even if
such an element does not exist in the array. What’s the point
of having such a pointer? Say you want to access the ele-
ment (i, j,k). If you add to the pointer the dot product of
(i, j,k) with the stride vector stride, you get a pointer to the
element (i, j,k).” Using arrinfo_t as the type for API func-
tion arguments makes the library potentially compatible with
a wide range of array containers, Blitz++ being just an ex-
ample. In addition, no assumptions are made with respect to
array index ranges or dimension ordering, what allows the li-
brary to operate on array slabs (e.g. array segments excluding
the so-called halo regions) and both row- and column-major
storage.

The state of the Lagrangian component of the model (no-
tably, the values of particle attributes) is stored in an in-
stance of the lgrngn::particles_t class (see Listing 12). In-
ternally, the Lagrangian calculations are implemented using
the Thrust library3 which, among other, allows to run the

3http://thrust.github.io/

Listing 11. lgrngn::arrinfo_t definition.

(definition not shown), which allows one to use a single

pointer to particles_proto_t with different backends (as used

in the return value of lgrngn::factory() discussed below).

Initialisation, time-stepping, and data output are per-

formed by calling particles_t’s methods, whose signatures

are given in Listing 12 and discussed in the following three

paragraphs.

The particles_t::init() method performs the initialisation

steps described in Sect. 5.1.6 and is intended to be called

once at the beginning of the simulation. The first three ar-

guments are mandatory and should point to the θ , rv and

ρd fields of the Eulerian component of the solver. The next

arguments should point to the Courant number field compo-

nents. The number of components depends on the dimension-

ality of the modelling framework, and ranges from zero (par-

cel framework) up to three (3-D simulation). The Courant

number components are expected to be discretised on the

Arakwa-C grid; thus, for the 2-D case, courant_1’s shape

is (nx+1)×nz and courant_2’s shape is nx× (nz+1).

Time-stepping is split into two methods: parti-

cles_t::step_sync() and particles_t::step_async(). The

former covers representation of the processes that alter the

Eulerian fields (i.e. phase changes). The latter covers all

other processes (transport of particles, sedimentation, and

coalescence) which may be computed asynchronously, for

example, while the Eulerian model calculates advection of

the Eulerian fields. Both methods take a reference to an in-

stance of lgrngn::opts_t as their first argument. Among the

arguments of step_sync(), only the first three are mandatory.

The passed θ and rv fields will be overwritten by the method.

The Courant field components need to be specified only if

the Eulerian component of the model solves air dynamics

(they are omitted in the case of the kinematic framework

used in examples in this paper). The last argument pointing

to a ρd array is also optional and needs to be specified only

if the Eulerian framework allows the density to vary in time.

The step_async() method returns accumulated rain flux

through the bottom of the domain.
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particle-based simulations either on CPU[s] or on a GPU.
The second template parameter of lgrngn::particles_t is
the type of the backend to be used by the Thrust li-
brary, and as of current release it has three possible val-
ues: serial, OpenMP, or CUDA (cf. Listing 13 with def-
inition of the backend_t enumeration). The OpenMP4

backend offers multi-threading using multiple CPU cores
and/or multiple CPUs. The CUDA5 backend enables the
user to perform the computations on a GPU. The serial
backend does single-thread computations on a CPU. The
“backend-aware” particles_t<real_t, backend> inherits
from “backend-unaware” particles_proto_t<real_t> (def-
inition not shown) what allows to use a single pointer to par-
ticles_proto_t with different backends (as used in the return
value of lgrngn::factory() discussed below).

Initialisation, time-stepping, and data output is performed
by calling particles_t’s methods whose signatures are given
in Listing 12 and discussed in the following three paragraphs.

The particles_t::init() method performs the initialisation
steps described in Sect. 5.1.6 and is intended to be called
once at the beginning of the simulation. The first three ar-
guments are mandatory and should point to the θ, rv and
ρd fields of the Eulerian component of the solver. The next
arguments should point to the Courant number field compo-
nents. The number of components depends on the dimension-
ality of the modelling framework, and ranges from zero (par-
cel framework) up to three (3-D simulation). The Courant
number components are expected to be discretised on the
Arakwa-C grid, thus for the 2-D case courant_1’s shape is
(nx+1)×nz and courant_2’s shape is nx× (nz+1).

Time-stepping is split into two methods: parti-
cles_t::step_sync() and particles_t::step_async(). The
former covers representation of the processes that alter the
Eulerian fields (i.e. phase changes). The latter covers all
other processes (transport of particles, sedimentation, and
coalescence) which may be computed asynchronously, for
example, while the Eulerian model calculates advection of
the Eulerian fields. Both methods take a reference to an
instance of lgrngn::opts_t as their first argument. Among
arguments of step_sync(), only the first three are mandatory.
The passed θ and rv fields will be overwritten by the method.
The Courant field components need to be specified only if
the Eulerian component of the model solves air dynamics
(they are omitted in the case of the kinematic framework
used in examples in this paper). The last argument pointing
to a ρd array is also optional and needs to be specified only
if the Eulerian framework allows the density to vary in time.
The step_async() method returns accumulated rain flux
through the bottom of the domain.

The particles_t’s methods prefixed with diag_ pro-
vide a mechanism for obtaining statistical information

4http://openmp.org/
5http://nvidia.com/

template <typename real_t, backend_t backend>

struct particles_t: particles_proto_t<real_t>

{

// initialisation

void init(

const arrinfo_t<real_t> th,

const arrinfo_t<real_t> rv,

const arrinfo_t<real_t> rhod,

const arrinfo_t<real_t> courant_1,

const arrinfo_t<real_t> courant_2,

const arrinfo_t<real_t> courant_3

);

// time-stepping methods

void step_sync(

const opts_t<real_t> &,

arrinfo_t<real_t> th,

arrinfo_t<real_t> rv,

const arrinfo_t<real_t> courant_1,

const arrinfo_t<real_t> courant_2,

const arrinfo_t<real_t> courant_3,

const arrinfo_t<real_t> rhod

);

real_t step_async(

const opts_t<real_t> &

);

// diagnostic methods

void diag_sd_conc();

void diag_dry_rng(

const real_t &r_mi, const real_t &r_mx

);

void diag_wet_rng(

const real_t &r_mi, const real_t &r_mx

);

void diag_dry_mom(const int &k);

void diag_wet_mom(const int &k);

real_t *outbuf();

// ...

Listing 12: lgrngn::particles_t definition.

enum backend_t { serial, OpenMP, CUDA };

Listing 13: lgrngn::backend_t definition.

template <typename real_t>

particles_proto_t<real_t> *factory(

const backend_t,

const opts_init_t<real_t> &

);

Listing 14: lgrngn::factory() signature.

Listing 12. lgrngn::particles_t definition.
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particle-based simulations either on CPU[s] or on a GPU.
The second template parameter of lgrngn::particles_t is
the type of the backend to be used by the Thrust li-
brary, and as of current release it has three possible val-
ues: serial, OpenMP, or CUDA (cf. Listing 13 with def-
inition of the backend_t enumeration). The OpenMP4

backend offers multi-threading using multiple CPU cores
and/or multiple CPUs. The CUDA5 backend enables the
user to perform the computations on a GPU. The serial
backend does single-thread computations on a CPU. The
“backend-aware” particles_t<real_t, backend> inherits
from “backend-unaware” particles_proto_t<real_t> (def-
inition not shown) what allows to use a single pointer to par-
ticles_proto_t with different backends (as used in the return
value of lgrngn::factory() discussed below).

Initialisation, time-stepping, and data output is performed
by calling particles_t’s methods whose signatures are given
in Listing 12 and discussed in the following three paragraphs.

The particles_t::init() method performs the initialisation
steps described in Sect. 5.1.6 and is intended to be called
once at the beginning of the simulation. The first three ar-
guments are mandatory and should point to the θ, rv and
ρd fields of the Eulerian component of the solver. The next
arguments should point to the Courant number field compo-
nents. The number of components depends on the dimension-
ality of the modelling framework, and ranges from zero (par-
cel framework) up to three (3-D simulation). The Courant
number components are expected to be discretised on the
Arakwa-C grid, thus for the 2-D case courant_1’s shape is
(nx+1)×nz and courant_2’s shape is nx× (nz+1).

Time-stepping is split into two methods: parti-
cles_t::step_sync() and particles_t::step_async(). The
former covers representation of the processes that alter the
Eulerian fields (i.e. phase changes). The latter covers all
other processes (transport of particles, sedimentation, and
coalescence) which may be computed asynchronously, for
example, while the Eulerian model calculates advection of
the Eulerian fields. Both methods take a reference to an
instance of lgrngn::opts_t as their first argument. Among
arguments of step_sync(), only the first three are mandatory.
The passed θ and rv fields will be overwritten by the method.
The Courant field components need to be specified only if
the Eulerian component of the model solves air dynamics
(they are omitted in the case of the kinematic framework
used in examples in this paper). The last argument pointing
to a ρd array is also optional and needs to be specified only
if the Eulerian framework allows the density to vary in time.
The step_async() method returns accumulated rain flux
through the bottom of the domain.

The particles_t’s methods prefixed with diag_ pro-
vide a mechanism for obtaining statistical information

4http://openmp.org/
5http://nvidia.com/

template <typename real_t, backend_t backend>

struct particles_t: particles_proto_t<real_t>

{

// initialisation

void init(

const arrinfo_t<real_t> th,

const arrinfo_t<real_t> rv,

const arrinfo_t<real_t> rhod,

const arrinfo_t<real_t> courant_1,

const arrinfo_t<real_t> courant_2,

const arrinfo_t<real_t> courant_3

);

// time-stepping methods

void step_sync(

const opts_t<real_t> &,

arrinfo_t<real_t> th,

arrinfo_t<real_t> rv,

const arrinfo_t<real_t> courant_1,

const arrinfo_t<real_t> courant_2,

const arrinfo_t<real_t> courant_3,

const arrinfo_t<real_t> rhod

);

real_t step_async(

const opts_t<real_t> &

);

// diagnostic methods

void diag_sd_conc();

void diag_dry_rng(

const real_t &r_mi, const real_t &r_mx

);

void diag_wet_rng(

const real_t &r_mi, const real_t &r_mx

);

void diag_dry_mom(const int &k);

void diag_wet_mom(const int &k);

real_t *outbuf();

// ...

Listing 12: lgrngn::particles_t definition.

enum backend_t { serial, OpenMP, CUDA };

Listing 13: lgrngn::backend_t definition.

template <typename real_t>

particles_proto_t<real_t> *factory(

const backend_t,

const opts_init_t<real_t> &

);

Listing 14: lgrngn::factory() signature.

Listing 13. lgrngn::backend_t definition.

The particles_t’s methods prefixed with diag_ pro-

vide a mechanism for obtaining statistical information

on the droplet parameters gridded on the Eulerian com-

ponent mesh. The particles_t::diag_sd_conc() method

calculates the concentration of computational particles

per cell. The particles_t::diag_dry_mom() and parti-

cles_t::diag_wet_mom() calculate statistical moments of

the dry and wet size spectra respectively. The kth moment

18 S. Arabas et al.: libcloudph++: cloud microphysics library in C++

particle-based simulations either on CPU[s] or on a GPU.
The second template parameter of lgrngn::particles_t is
the type of the backend to be used by the Thrust li-
brary, and as of current release it has three possible val-
ues: serial, OpenMP, or CUDA (cf. Listing 13 with def-
inition of the backend_t enumeration). The OpenMP4

backend offers multi-threading using multiple CPU cores
and/or multiple CPUs. The CUDA5 backend enables the
user to perform the computations on a GPU. The serial
backend does single-thread computations on a CPU. The
“backend-aware” particles_t<real_t, backend> inherits
from “backend-unaware” particles_proto_t<real_t> (def-
inition not shown) what allows to use a single pointer to par-
ticles_proto_t with different backends (as used in the return
value of lgrngn::factory() discussed below).

Initialisation, time-stepping, and data output is performed
by calling particles_t’s methods whose signatures are given
in Listing 12 and discussed in the following three paragraphs.

The particles_t::init() method performs the initialisation
steps described in Sect. 5.1.6 and is intended to be called
once at the beginning of the simulation. The first three ar-
guments are mandatory and should point to the θ, rv and
ρd fields of the Eulerian component of the solver. The next
arguments should point to the Courant number field compo-
nents. The number of components depends on the dimension-
ality of the modelling framework, and ranges from zero (par-
cel framework) up to three (3-D simulation). The Courant
number components are expected to be discretised on the
Arakwa-C grid, thus for the 2-D case courant_1’s shape is
(nx+1)×nz and courant_2’s shape is nx× (nz+1).

Time-stepping is split into two methods: parti-
cles_t::step_sync() and particles_t::step_async(). The
former covers representation of the processes that alter the
Eulerian fields (i.e. phase changes). The latter covers all
other processes (transport of particles, sedimentation, and
coalescence) which may be computed asynchronously, for
example, while the Eulerian model calculates advection of
the Eulerian fields. Both methods take a reference to an
instance of lgrngn::opts_t as their first argument. Among
arguments of step_sync(), only the first three are mandatory.
The passed θ and rv fields will be overwritten by the method.
The Courant field components need to be specified only if
the Eulerian component of the model solves air dynamics
(they are omitted in the case of the kinematic framework
used in examples in this paper). The last argument pointing
to a ρd array is also optional and needs to be specified only
if the Eulerian framework allows the density to vary in time.
The step_async() method returns accumulated rain flux
through the bottom of the domain.

The particles_t’s methods prefixed with diag_ pro-
vide a mechanism for obtaining statistical information

4http://openmp.org/
5http://nvidia.com/

template <typename real_t, backend_t backend>

struct particles_t: particles_proto_t<real_t>

{

// initialisation

void init(

const arrinfo_t<real_t> th,

const arrinfo_t<real_t> rv,

const arrinfo_t<real_t> rhod,

const arrinfo_t<real_t> courant_1,

const arrinfo_t<real_t> courant_2,

const arrinfo_t<real_t> courant_3

);

// time-stepping methods

void step_sync(

const opts_t<real_t> &,

arrinfo_t<real_t> th,

arrinfo_t<real_t> rv,

const arrinfo_t<real_t> courant_1,

const arrinfo_t<real_t> courant_2,

const arrinfo_t<real_t> courant_3,

const arrinfo_t<real_t> rhod

);

real_t step_async(

const opts_t<real_t> &

);

// diagnostic methods

void diag_sd_conc();

void diag_dry_rng(

const real_t &r_mi, const real_t &r_mx

);

void diag_wet_rng(

const real_t &r_mi, const real_t &r_mx

);

void diag_dry_mom(const int &k);

void diag_wet_mom(const int &k);

real_t *outbuf();

// ...

Listing 12: lgrngn::particles_t definition.

enum backend_t { serial, OpenMP, CUDA };

Listing 13: lgrngn::backend_t definition.

template <typename real_t>

particles_proto_t<real_t> *factory(

const backend_t,

const opts_init_t<real_t> &

);

Listing 14: lgrngn::factory() signature.
Listing 14. lgrngn::factory() signature.

M of the dry (d) or wet (w) spectrum is defined here as

M
[k]
d, w = (ρd1V )

−1
∑

i∈grid cell
rd,w[i]∈[rmi,rmx]

N[i]r
k
d,w[i]

, (29)

where the index i traverses all computational particles and

N is the particle multiplicity. The moment number k is cho-

sen through the methods’ argument k. The range of radii

[rmi, rmx] over which the moments are calculated is chosen

by calling diag_dry_rng() or diag_wet_rng() before calls to

diag_dry_mom() and diag_wet_mom(), respectively. The

particles_t::outbuf() method stores the calculated fields in

an output buffer and returns a pointer to the first element of

this buffer.

The last element of the particle-based scheme’s API is the

factory() function. It returns a pointer to a newly allocated

instance of the particles_t class. Its arguments are the back-

end type (see Listing 13) and the scheme’s options grouped

in the opts_init_t structure (see Listing 9). The purpose of

introducing the lgrngn::factory() function is twofold. First,

it makes the backend choice a runtime mechanism rather than

a compile-time one (backend is one of the compile-time tem-

plate parameters of particles_t). Second, it does report an

error if the library was compiled without CUDA (GPU) or

OpenMP (multi-threading) backend support.

5.2.2 Example calling sequence

Figure 7 depicts an example calling sequence for the particle-

based scheme’s API. The API calls are split among the

adjustments and output steps of the solver. The rhs steps

are presented in the diagram, but here they refer to forc-

ings extrinsic with respect to the cloud microphysics scheme

(e.g. the relaxation terms in the set-up described in Sect. 2.2).

In the case of bulk schemes (Figs. 3 and 5), both the solver

and library flow control were handled by a single thread (or

a group of threads performing the same operations in case of

domain decomposition). Here, there are two separate threads

(or a group of solver threads plus one library thread in case

of domain decomposition). The synchronisation between the

solver and the library threads is depicted in the diagram with

“wait for . . . ” labels.

In the presented calling sequence, the diagnostic meth-

ods are only called within the output step. Depending on

the modelling framework, such calls may also be needed in

every time step, for example, to provide data on a particle
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solver (CPU) libcloudph++ (CPU or GPU)

adjust

wait for particles t::step async()
...

call particles t::step sync(ρd, θ, rv, ρd ~C)

condensationmodifies: θ, rv

launch particles t::step async()

transport

sedimentation

coalescence

...

update rhs terms (extrinsic)

apply rhs terms (extrinsic)

advect

output

wait for particles t::step async()
...

call particles t::diag dry/wet rng(rmi, rmx)

selecting

call particles t::diag dry/wet mom()

countingprovides M (via outbuf())

M ; . . .

for each momentfor each moment

for each size range (dry and/or wet)for each size range (dry and/or wet)

if time for outputif time for output

for each timestepfor each timestep

Figure 7. Sequence diagram of libcloudph++ API calls for the particle-based scheme and a prototype transport equation solver. Diagram

discussed in Sect. 5.2.2. See also caption of Fig. 2 for description or diagram elements.
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surface for a radiative-transfer component, or the data on a

particle mass for a dynamical component of the solver. Note

that a single call to diag_dry/wet_rng() may be followed by

multiple calls to diag_dry/wet_mom() as depicted by nest-

ing the “for each moment” loop within the “for each size

range” loop.

5.3 Implementation overview

The Lagrangian component of the model is implemented us-

ing the Thrust library (Hoberock and Bell, 2010). Conse-

quently, all parallelisation logic is hidden behind the Thrust

API calls. The parallelisation is obtained by splitting the

computational-particle population among several computa-

tional units using shared memory. Thrust allows one to com-

pile the same code for execution on multiple parallel archi-

tectures, including general-purpose GPUs (via CUDA) and

multi-core CPUs (via OpenMP). The implemented particle-

based scheme is particularly well suited for running in

a set-up where the Eulerian computations are carried out on

a CPU, and the Lagrangian computations are delegated to

a GPU. That is due to

– the low data exchange rate between these two com-

ponents (there is never a need to transfer the state

of all computational particles to the Eulerian compo-

nent residing in the main memory; only the aggregated

size spectrum parameters defined per each grid box are

needed); and

– the possibility of performing part of the micro-

physics computations asynchronously, simultaneously

with other computations carried out on CPU(s)

(cf. Sect. 5.1.3).

Since the version of the CUDA compiler available at the

time of development did not support C++11, the particle-

based scheme was implemented using C++03 constructs

only. Furthermore, the CUDA compiler does not support

all C++ constructs used by the Boost.units library. For this

reason, a fake_units drop-in replacement for Boost.units

was written and is shipped with libcloudph++. It causes

all quantities in the program to behave as dimensionless. It

is included instead of Boost.units only when compiling the

CUDA backend. Consequently, the particle-based scheme’s

code is checked for unit correctness while compiling other

backends.

The asynchronous launch/wait logic is left to be han-

dled by the caller. In the example program icicle (see Ap-

pendix B), it is implemented using the C++11’s std::async()

call.

Both in the cases of GPU and CPU configurations, the

Mersenne Twister (Matsumoto and Nishimura, 1998) ran-

dom number generator is used. When using GPU, the CUDA

cuRAND’s MTGP32 is used, offering parallel execution

with multiple random number streams. When not using GPU,

the C++11 std::mt19937 is used and the random number

generation is done by a single thread only, even when using

OpenMP.

5.4 Example results

Figures 8 and 9 present results from an example simulation

with the particle-based scheme performed using the frame-

work described in Sect. 2. The simulations are analogous

to those discussed in Sects. 3.4 (single-moment) and 4.4

(double-moment). As before, the plots are for the thirtieth

minute of the simulation time (excluding the 2 h long spin-up

period). The initial mean concentration of computational par-

ticles was set to 64 per cell. The number of sub-steps was set

to 10 for both condensation and coalescence. The geometric

coalescence kernel was used, with the collection efficiency

arbitrarily set to 0.5. With the employed simulation set-up,

this causes the timing of precipitation onset to roughly match

the one of the double-moment scheme.

Figure 8 depicts aerosol, cloud, and rain properties ob-

tained by calculating moments of the particle size distribu-

tion in each grid cell. In addition to quantities corresponding

to the bulk model variables rc, rr (cf. Figs. 4 and 6) and nc

and nr (cf. Fig. 6), Fig. 8 features plots of the effective radius

(ratio of the third to the second moment of the size spec-

trum) and the aerosol concentration. The distinction between

aerosol particles, cloud droplets, and rain drops is made us-

ing radius thresholds of 0.5 and 25 µm for aerosol/cloud and

cloud/rain boundaries, respectively. The noise in most panels

comes from sampling errors of the particle-based scheme;

these errors get smaller with increasing number of compu-

tational particles used (not shown). The cloud water content

and cloud droplet concentration plots both show strong simi-

larities to the results of simulation using the double-moment

scheme (Fig. 6). The increase with height of cloud water con-

tent, the approximately constant with height drop concentra-

tion, presence of the maximum droplet concentration near

the updraught axis, and presence of the cloud hole are all ev-

ident in both the particle-based and the double-moment sim-

ulations. The range of values of the rain water content and

the rain drop concentration predicted by the particle-based

model roughly matches those of the double-moment scheme,

yet the level of agreement is much smaller than in the case of

cloud water. For example, the maximum rain water content

in the double-moment simulation is located in the centre of

the downdraught, whereas this location features virtually no

rain in the particle-based simulation. The two schemes agree

with respect to the vertical extent of the drizzle shaft as it

vanishes at about 500 m above the bottom boundary of the

domain in both cases.

The plot of the effective radius in Fig. 8 shows the grad-

ual increase in drop sizes from the cloud base up to the top

of the cloud. The effective radius plot features the smoothest

gradients among all presented plots. This is likely due to the

fact that, unlike other plotted quantities, the effective radius
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Figure 8. Example results from a 2-D kinematic simulation using the particle-based scheme. All panels depict the model state after 30 min

simulation time (excluding the spin-up period). The black overlaid squares mark grid cells for which the dry and wet size spectra are shown

in Fig. 9. See Sect. 5.4 for a discussion.
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Figure 9. Plots of dry and wet size spectra for ten locations within the model domain. The locations and their labels (a–j) are overlaid on

plots in Fig. 8. The vertical bars at 0.5 and 25 µm indicate the range of particle wet radii which is associated with cloud droplets. See Sect. 5.4

for a discussion.
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is an intensive parameter and hence is not proportional to

the drop concentration, which inherits random fluctuations

of the initial aerosol concentrations. The aerosol concentra-

tion demonstrates the anticipated presence of the interstitial

aerosol within the cloud. The regions of the largest rain water

content correspond to regions of lowered aerosol concentra-

tions, both within and below the cloud. This likely demon-

strates the effect of scavenging of aerosol particles by the

drizzle drops, most likely overpredicted by the geometric col-

lision kernel applied in the simulation.

The ten black squares overlaid on each plot in Fig. 8 show

the locations of the regions for which the wet and dry particle

size spectra are plotted in Fig. 9. The ten locations are com-

posed of 3× 3 grid cells each. The spectra plotted in Fig. 9

are all averages over the 3× 3 cell regions. The dry spectra

are composed of 40 bins in an isologarithmic layout from

1 nm to 10 µm. The wet spectra are composed of 25 bins ex-

tending the above range up to 100 µm. Each square in Fig. 8

and its corresponding panel in Fig. 9 are labelled with a letter

(a to j). All panels in Fig. 9 contain two vertical lines at 0.5

and 25 µm that depict the threshold values of the particle wet

radius used to differentiate between aerosol, cloud droplets,

and rain drops.

To match the pathway of cloud evolution, we shall discuss

the panels in Fig. 9 anti-clockwise, starting from panel (i),

which presents data on the aerosol size spectrum in the

updraught below the cloud base. There, the wet spectrum

plotted with the thick blue line is slightly shifted towards

larger sizes than the dry spectrum plotted with the thin red

line. This shift corresponds to humidification of the hygro-

scopic aerosol. Panels (g) and (e) show how the wet spec-

trum evolves while the updraught lifts the particles across the

cloud base, causing the largest aerosol to be activated and to

form cloud droplets. Panel (c) shows a bimodal wet spec-

trum with an unactivated aerosol mode to the left and the

cloud droplet mode just below 10 µm. Panel (a) depicts the

near-cloud-top conditions and reveals that some of the cloud

droplets had already grown pass the 25 µm threshold, likely

through collisional growth. Such drops have significant fall

velocities which cause the air in the upper part of the domain

to become void of the largest aerosol. This is evident from the

shape of the dry spectrum in panel (b) depicting conditions

above the downdraught. Panel (d) and panel (c) show size

spectra at the same altitude of about 100 m above cloud base.

Their comparison reveals that the spectrum of cloud droplets

in the downdraught (panel d, edge of the cloud hole) is much

wider than near the updraught axis (panel c). Finally, pan-

els (f), (h), and (j) show gradual evaporation of drizzle and

cloud droplets back to aerosol-sized particles.

6 Performance evaluation

Computational cost of a microphysics scheme is one of the

key factors determining its practical applicability. Here, we

present a basic analysis of the computational cost of the three

schemes presented in this paper. The analysis is based on

timing of simulations carried out with the kinematic frame-

work and the simulation set-up described in Sect. 2.1 using

the icicle tool described in Appendix B. In order to depict

the contributions of individual elements of the schemes, all

simulations were repeated with four sets of process-toggling

options:

– advection only,

– advection and phase changes,

– advection, phase changes and coalescence, and

– all of the above plus sedimentation.

For the particle-based scheme, the advection-only runs in-

clude transport of particles and the Eulerian fields (moisture

and heat).

Simulations were performed with a 6-core AMD Phe-

nom II CPU and a 96-core nVidia Quadro 600 GPU (an ex-

ample 2010 prosumer desktop computer). The CPU code was

compiled using GCC 4.8 with -Ofast, -march= native and -

DNDEBUG options enabled. The GPU code was compiled

with nvcc 6.0 with -O3, -use_fast_math and -DNDEBUG op-

tions enabled. No data output was performed.

In order to eliminate from the reported values the time

spent on simulation startup, all simulations were repeated

twice, performing a few time steps in the first run and a dozen

time steps in the second run. The long and short run times

were subtracted and the result was normalised by the differ-

ence in the number of time steps.

In order to reduce the influence of other processes on the

wall-clock timing, all simulations were additionally repeated

three times, and the shortest measured time is reported.

The particle-based simulations were performed with three

different mean densities of computation particles, 8, 32 and

128 per grid cell, and with four “backend” settings:

– serial backend,

– OpenMP backend using two threads,

– OpenMP backend using four threads, and

– CUDA backend using the GPU.

The test was completed for single-precision arithmetics. The

GPU used offered about 3 times higher performance at sin-

gle precision. Higher-performance GPU hardware available

in computing centres is expected to deliver similar perfor-

mance for double precision. Execution times for CPU-only

calculations hardly change when switching from double to

single precision.

Figure 10 presents measured wall-clock times for the four

sets of processes (bottom x axis labels) and for all three

schemes (different colours and symbols). For simulations
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Figure 10. Computational cost of the three microphysics schemes expressed as wall-clock time per time step per grid box. Values measured

for different settings of process-toggling options shown (bottom horizontal axis). Results obtained with the particle-based scheme are grouped

by the number of computational particles used (upper helper horizontal axes). See Sect. 6 for a discussion.

with all processes turned on, it takes the double-moment

scheme roughly twice as long as the single-moment scheme

to advance the solution by one time step. The particle-based

scheme may be anything from about 10 to over 100 times

more costly than the double-moment bulk scheme, depend-

ing on its settings.

Figure 10 also shows how the execution time of the

particle-based scheme depends on the backend choice and

on the number of computational particles used. The execu-

tion time is also dependent on the number of sub-time-steps

used for phase changes and coalescence (not shown; 10 sub-

time-steps per one advective step were used here). Arguably,

the most striking feature depicted in Fig. 10 is the order-of-

magnitude speedup between serial execution times for CPU

and the GPU execution times. Even compared to the four-

thread OpenMP runs, the GPU backend offers a five- to ten-

fold speedup. It is worth reiterating here the two reasons

why the particle-based scheme is particularly well suited

for GPUs. First, the large body of data defining the state of

all particles never leaves the GPU memory (the GPU–CPU

transfer bandwidth is often a major issue for the performance

of GPU codes). Here, all data that are transferred from the

GPU are first gridded onto the Eulerian mesh before being

sent from the GPU to the main memory. Second, a significant

part of the computations (i.e. everything but phase changes)

may be computed asynchronously, leaving all but one CPU

available for other tasks of the solver (one thread is busy con-

trolling the GPU).

Finally, Fig. 10 also depicts the linear scaling of the com-

putational cost of the particle-based method with the num-

ber of computational particles (cf. Sect. 5). Regardless of the

backend choice, increasing the mean number of particles per

cell from 8 to 32 to 128 gives a linear increase in wall time,

as seen in the logarithmic scale of the plot.

The library is still at its initial stage of development, and

improvements in performance are expected.

7 Summary

The main goal of developing libcloudph++ has been to offer

the community a set of reusable software components of ap-

plicability in modern cloud modelling. Incorporation of the

double-moment bulk and the particle-based schemes makes

the library applicable for research on the widely discussed

indirect effects of aerosol on climate.

The implementation of the library was done with main-

tainability and auditability as priorities. This is reflected in

– the choice of C++ with its concise and modularity-

encouraging syntax6;

– the separation of code elements related to the schemes’

formulation (formulæ) from other elements of the li-

brary (API, numerics);

– the adoption of compile-time dimensional analysis for

all physically meaningful expressions in the code;

– the delegation of a substantial part of the library im-

plementation to external libraries (including the dimen-

sional analysis, algorithm parallelisation and GPU hard-

ware handling); and

– the hosting of library development and handling of code

dissemination through a public code repository.

All of the above, supported by the choice of the GNU Gen-

eral Public License, underpin our goal of offering reusable

code.

6As of the current release, libcloudph++ consists of ca. 100 files

with a total of ca. 8000 lines of code (LOC), of which ca. 1000 LOC

are common to all schemes; ca. 500, 1000, and 4500 LOC pertain

to the single-moment, double-moment, and particle-based schemes,

respectively; ca. 1000 LOC define the Python bindings.
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Appendix A: Common concepts and nomenclature

This section presents some key elements of a mostly stan-

dard approach to analytic description of motion of moist air,

particularly in the context of modelling of the warm-rain pro-

cesses. It is given for the sake of completeness of the formu-

lation and to ease referencing of particular equations from

within the text and the source code.

Governing equations

There are three key types of matter considered in the model

formulation, and their densities ρi and mass mixing ratios ri
are defined as follows:

ρd dry air

ρv = rvρd water vapour (A1)

ρl = rlρd liquid water (A2)

The governing equations are the continuity equation for dry

air, a conservation law for water vapour, and the thermody-

namic equation (see e.g. Vallis, 2006, Sect. 1.6):

∂tρd+∇ · (uρd)= 0 (A3)

Drv

Dt
= ṙv (A4)

Ds

Dt
=
q̇

T
, (A5)

where s and q̇ represent entropy and heat sources, respec-

tively (both defined per unit mass of dry air). The dot nota-

tion is used to distinguish variations due to transport and due

to thermodynamic processes.

It is assumed already in Eq. (A3) that the presence of

moisture and its transformations through phase changes do

not influence the density of dry air. Dry-air flow is assumed

to act as a carrier flow for trace constituents. This assump-

tion is corroborated by the fact that in the Earth’s atmosphere

1� rv > rl.

System of transport equations

Equations (A4) and (A5) may be conveniently expressed as

a pair of transport equations of a similar form to Eq. (A3).

A continuity equation for water vapour density ρv is ob-

tained by summing Eq. (A4) ·ρd+ rv·Eq. (A3):

∂t (ρdrv)+∇ · (uρdrv)= ρdṙv. (A6)

Combining Eq. (A5) with the definition of potential temper-

ature θ?

ds = c?pd(lnθ?) (A7)

gives

c?p
dθ?

dt
=
θ?

T
q̇. (A8)

At this point, no assumption is made about the exact form of

θ? or c?p. Summing Eq. (A3) ·θ?c?p and Eq. (A8) ·ρd and ρdθ
?
·

D
Dt
c?p = ρdθ

?ċ?p results in a continuity equation for ρdc
?
pθ

?

(akin to energy density):

∂t (ρdc
?
pθ

?)+∇ · (uρdc
?
pθ

?)= ρdθ
?
[
ċ?p + q̇/T

]
. (A9)

The resultant Eqs. (A6) and (A9) share the form of

a generalised transport equation (see Smolarkiewicz, 2006,

Sect. 4.1):

∂t (ρdφ)+∇ · (ρduφ)= ρdφ̇, (A10)

representing transport of a quantity φ (equal to rv or c?pθ
?)

by a dry-air carrier flow.

Dry air potential temperature

The way the potential temperature was defined in the preced-

ing section gives a degree of freedom in the choice of θ? and

q̇. For moist air containing suspended water aerosol, assum-

ing thermodynamic equilibrium and neglecting the expan-

sion work of liquid water, ds may be expressed as (Eqs. 6.10

and 6.11 in Curry and Webster, 1999)

ds =

cpdd(lnθ)︷ ︸︸ ︷
cpdd(lnT )−Rdd(lnpd)

+
[
lvdrv+

(
rvcpv+ rlcl+ rvlv/T

)
dT
]︸ ︷︷ ︸

−dq

/
T , (A11)

where pd = ρdRdT is the partial pressure of dry air, and the

potential temperature θ is defined here as

θ = T

(
p1000

pd

) Rd
cpd

(A12)

(p1000 = 1000hPa; note that the definition features the dry

air pressure as opposed to the total pressure; see e.g. Bryan,

2008; Duarte et al., 2014).

Substituting c?p = cpd = const and θ? = θ into Eq. (A9)

and employing the form of q̇ hinted with −dq in Eq. (A11)

gives

∂t (ρdθ)+∇ · (uρdθ)=
−ρdθ

cpdT

[
lvṙv+

����������
Ṫ

(
rvcpv+ rlcl+

rvlv

T

)]
.

(A13)

Neglecting all but the lvṙ terms on the right-hand side results

in an approximation akin to the one employed in Grabowski

and Smolarkiewicz (1996) and used herein as well.

Another common choice of θ? and q̇ is obtained by putting

θ? = θ ·exp
(
−rvlv
cpdT

)
, which results in the lvdrv term becoming

a part of cpdd(lnθ?) instead of −dq in Eq. (A11) (see e.g.

Grabowski and Smolarkiewicz, 1990, Sect. 3).
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Diagnosing T and p from state variables

The principal role of any cloud-microphysics scheme is to

close the equation system defined by Eqs. (A6) and (A13)

with a definition of ṙv linked to a representation of liquid wa-

ter within the model domain. This requires representation of

various thermodynamic processes that depend on tempera-

ture and pressure which are diagnosed from the model state

variables (i.e. the quantities for which the transport equations

are solved). With the approach outlined above, the model

state variables are

rv water vapour mixing ratio, and

θ potential temperature.

Assuming ρd is known (solved by a dynamical core of

a model), temperature and pressure may be diagnosed from

rv and θ with

T =

θ(ρdRd

p1000

) Rd
cpd

cpd/(cpd−Rd)

(A14)

p = ρd (Rd+ rvRv)T . (A15)
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Appendix B: Example program: “icicle”

The example simulations discussed in the text were per-

formed with icicle – an implementation of all elements of

the example modelling framework presented in Sect. 2, that

is, the transport equation solver, the 2-D kinematic frame-

work and the simulation set-up.

Dependencies

The code of icicle depends on libcloudph++, lib-

cloudph++’s sister project libmpdata++ (Jaruga et al.,

2015) and several components of the Boost7 collection. The

libmpdata++ components solve the transport equations for

the Eulerian fields using the MPDATA algorithm (Smo-

larkiewicz, 2006) and provide a data output facility us-

ing the HDF5 library8. Figure B1 presents a dependency

tree of icicle. Source code of icicle, libmpdata++ and lib-

cloudph++ is available for download at http://foss.igf.fuw.

edu.pl/. The 1.0.0 release tarballs for both libcloudph++ and

icicle are provided as an electronic supplement to the paper.

All other icicle dependencies are available, for instance, as

Debian9 packages. All icicle dependencies are free (gratis)

software, and all but CUDA (which is an optional depen-

dency) are additionally libre–open sourced and released un-

der freedom-ensuring licenses.

Compilation

Build automation for icicle, libmpdata++ and libcloudph++

is handled in a standard way using CMake10. Compilation

instructions are provided in the README file.

icicle

Boost
(program options,

Spirit,
. . . )

libmpdata++

Boost
(. . . )

OpenMP
(or Boost.Thread)

HDF5Blitz++

libcloudph++

Boost
(Units,
odeint,
. . . )

Thrust

CUDA
or OpenMP

Figure B1. A tree of libcloudph++’s and icicle’s major dependencies. In addition to these libraries, several components require the C++11

compiler and CMake at build time.

7http://boost.org/
8http://hdfgroup.org/
9http://debian.org/

10http://cmake.org/

Usage

Control over simulation options of icicle is available via

command-line parameters. Most of the options correspond to

the fields of the opts_t structures of the three microphysics

schemes discussed in the paper. A list of general options

may be obtained by calling

$ icicle -help

and includes, in particular, the - -micro option that se-

lects the microphysics scheme. Options specific to each of

the three available schemes are listed as in the following

example:

$ icicle -micro=lgrngn -help.

For the particle-based scheme, the options include such

settings as the backend type (serial, OpenMP or CUDA)

and the size ranges for which to output the moments of the

particle size distribution.

Simulations may be stopped at any time by sending the

process a SIGTERM or SIGINT signal (e.g. using the kill

utility or with Ctrl+C). It causes the solver to continue inte-

gration up to the end of the current time step, close the output

file, and exit. After executing the simulation, its progress may

be monitored for example with top -H as the process threads’

names are continuously updated with the percentage of work

completed.
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Appendix C: List of symbols

Symbol SI unit Description

A= 2σw/(RvT ρw) (m) Kelvin term exponent parameter

βM , βT (1) Transition régime correction factors

1t , 1x, 1z, 1V (s) or (m) or (m3) Time step, grid cell dimensions and volume

θl (K) Liquid water potential temperature (cf. Sect. 2.2)

θ (K) Potential temperature

κ (1) Hygroscopicity parameter

ρi Depends on i Any state variable (density)

ρd, ρv (kg m−3) Densities of dry air and vapour vapour

ρc, ρr (kg m−3) Cloud and rain water densities/content

ρw = 1000 (kg m−3) Density of liquid water

ρvs (kg m−3) Saturation vapour density

ρ◦ (kg m−3) Vapour density at drop surface

ρ̇i , ρ̇c, ρ̇r Depends on i rhs terms (any, cloud water, rain water)

σm (1) Geometric standard deviation (log-normal spectrum)

σw = 0.072 (J m−2) Surface tension coefficient of water

τ , τrlx (s) Relaxation timescale (cf. Sect. 2.2)

φi Depends on i Any advected specific quantity (e.g. mixing ratio)

ψ (kg m−1 s−1) Stream function

aw = (r
3
w− r

3
d
)/(r3

w− r
3
d
· (1− κ)) (1) Water activity

a, b (m2) Initial interval for bisection algorithm

cpd = 1005, cpv = 1850, cl = 4218 (J kg−1 K−1) Specific heat at const. pressure (dry air, vapour and liquid water)

C (1) Courant number

dm, rm (m) Mode diameter and radius (log-normal spectrum)

D, Deff, D0 (m2 s−1) Diffusion coefficients for water vapour in air

Er (kg m−3 s−1) Evaporation rate of rain (single-moment scheme)

E(ri , rj ) (1) Collection efficiency

Fin, Fout (kg m−3 s−1) Fluxes of ρr through the grid cell edges

K , K0 (J m−1 s−1 K−1) Thermal conductivities of air

K(ri , rj ) (m3 s−1) Collection kernel

lv0 = 2.5× 106 (J kg−1) Latent heat of evaporation at the triple point

lv(T )= lv0+ (cpv− cl) · (T − T0) (J kg−1) Latent heat of evaporation at a given temperature

M[k] (m-3+k) kth moment of size spectrum

n (1) Total number of computational particles

nc, nr (m−3) Cloud droplet and rain drop concentrations

N (1) Multiplicity (attribute of computational particle)

Nm (m−3) Particle concentration (log-normal spectrum)

p, pd (Pa) Pressure, dry air partial pressure

Pij (1) Probability of collisions

Q, q (J m−3), (J kg−1) Heat per unit volume and mass

rd, rw (m) Particle dry and wet radii

rc0 (kgkg−1) Autoconversion threshold (mixing ratio)

rv, rl, rt = rv+ rl (kgkg−1) Mixing ratios (vapour, liquid, total)

Rv, Rd (J K−1 kg−1) Gas constants for water vapour and dry air

S, s (J K−1 m−3), (J K−1 kg−1) Entropy per unit volume and mass

T (K) Temperature

u= (u,v) (m s−1) Velocity field

vt, vi , vj (m s−1) Terminal velocity

wmax (m s−1) Maximum velocity (cf. amplitude of ψ)

w (1) Averaging weight in particle advection scheme

x, z (m) Spatial coordinate

X, Z (m) Domain extent
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Code availability

The library is released under GNU General Public License

v3.0. The 1.0 release of the library accompanying this publi-

cation is available for download as an electronic supplement

to the paper and is tagged as “1.0.0” at the project repository.

See project website for a list of pointers to relevant resources:

http://libcloudphxx.igf.fuw.edu.pl/.

In the current development workflow, we employ con-

tinuous integration on Linux with GNU g++11 and LLVM

clang++12 compilers and on Apple OSX with the Apple

clang++13 compiler. Consequently, these are considered the

supported platforms.

The Supplement related to this article is available online

at doi:10.5194/gmd-8-1677-2015-supplement.

Acknowledgements. S. Arabas thanks Shin-ichiro Shima (Univer-

sity of Hyogo, Japan) for introducing the particle-based simulations.

We thank D. Jarecka (University of Warsaw) and G. Feingold

(NOAA) for insightful discussions and comments on the initial

version of the manuscript. We acknowledge contributions to lib-

cloudph++ code from P. Dziekan, D. Jarecka and M. Waruszewski.

Development of libcloudph++, libmpdata++ and icicle has

been supported by Poland’s National Science Centre (Narodowe

Centrum Nauki) (decisions nos. 2011/01/N/ST10/01483 and

2012/06/M/ST10/00434). Additional support was provided by

the European Union 7 FP ACTRIS (Aerosol, Clouds, and Trace

gases Research InfraStructure) network no. 262254. WWG’s

institution NCAR is operated by the University Corporation for

Atmospheric Research under sponsorship of the US National

Science Foundation. The authors express their appreciation for

the work of the developers of the free/libre/open-source software

which served as a basis for the implementation of the presented

library (see Sect. B for a list). We would like to express our

admiration for the way the Clang14 C++ compiler improved the

comfort of development and debugging of heavily templated code

based on libraries such as Boost.units and Blitz++. All figures

were generated using gnuplot15. Development of libcloudph++

continuously benefits from the computational services offered by

Travis at their continuous-integration platform.

Edited by: K. Gierens

11http://gcc.gnu.org/
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