Articles | Volume 8, issue 5
https://doi.org/10.5194/gmd-8-1547-2015
https://doi.org/10.5194/gmd-8-1547-2015
Model description paper
 | 
27 May 2015
Model description paper |  | 27 May 2015

NEMO–ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at eddy-permitting resolution

R. Marsh, V. O. Ivchenko, N. Skliris, S. Alderson, G. R. Bigg, G. Madec, A. T. Blaker, Y. Aksenov, B. Sinha, A. C. Coward, J. Le Sommer, N. Merino, and V. B. Zalesny

Related authors

Risk of compound flooding substantially increases in the future Mekong River delta
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, and Joël J.-M. Hirschi
Nat. Hazards Earth Syst. Sci., 24, 3627–3649, https://doi.org/10.5194/nhess-24-3627-2024,https://doi.org/10.5194/nhess-24-3627-2024, 2024
Short summary
Weakening and warming of the European Slope Current since the late 1990s attributed to basin-scale density changes
Matthew Clark, Robert Marsh, and James Harle
Ocean Sci., 18, 549–564, https://doi.org/10.5194/os-18-549-2022,https://doi.org/10.5194/os-18-549-2022, 2022
Short summary
S2P3-R v2.0: computationally efficient modelling of shelf seas on regional to global scales
Paul R. Halloran, Jennifer K. McWhorter, Beatriz Arellano Nava, Robert Marsh, and William Skirving
Geosci. Model Dev., 14, 6177–6195, https://doi.org/10.5194/gmd-14-6177-2021,https://doi.org/10.5194/gmd-14-6177-2021, 2021
Short summary
Interannual variability in contributions of the Equatorial Undercurrent (EUC) to Peruvian upwelling source water
Gandy Maria Rosales Quintana, Robert Marsh, and Luis Alfredo Icochea Salas
Ocean Sci., 17, 1385–1402, https://doi.org/10.5194/os-17-1385-2021,https://doi.org/10.5194/os-17-1385-2021, 2021
Short summary
A 30-year reconstruction of the Atlantic meridional overturning circulation shows no decline
Emma L. Worthington, Ben I. Moat, David A. Smeed, Jennifer V. Mecking, Robert Marsh, and Gerard D. McCarthy
Ocean Sci., 17, 285–299, https://doi.org/10.5194/os-17-285-2021,https://doi.org/10.5194/os-17-285-2021, 2021
Short summary

Related subject area

Oceanography
A new global high-resolution wave model for the tropical ocean using WAVEWATCH III version 7.14
Axelle Gaffet, Xavier Bertin, Damien Sous, Héloïse Michaud, Aron Roland, and Emmanuel Cordier
Geosci. Model Dev., 18, 1929–1946, https://doi.org/10.5194/gmd-18-1929-2025,https://doi.org/10.5194/gmd-18-1929-2025, 2025
Short summary
sedInterFoam 1.0: a three-phase numerical model for sediment transport applications with free surfaces
Antoine Mathieu, Yeulwoo Kim, Tian-Jian Hsu, Cyrille Bonamy, and Julien Chauchat
Geosci. Model Dev., 18, 1561–1573, https://doi.org/10.5194/gmd-18-1561-2025,https://doi.org/10.5194/gmd-18-1561-2025, 2025
Short summary
The Ross Sea and Amundsen Sea Ice–Sea Model (RAISE v1.0): a high-resolution ocean–sea ice–ice shelf coupling model for simulating the Dense Shelf Water and Antarctic Bottom Water in the Ross Sea, Antarctica
Zhaoru Zhang, Chuan Xie, Chuning Wang, Yuanjie Chen, Heng Hu, and Xiaoqiao Wang
Geosci. Model Dev., 18, 1375–1393, https://doi.org/10.5194/gmd-18-1375-2025,https://doi.org/10.5194/gmd-18-1375-2025, 2025
Short summary
Sensitivity of the tropical Atlantic to vertical mixing in two ocean models (ICON-O v2.6.6 and FESOM v2.5)
Swantje Bastin, Aleksei Koldunov, Florian Schütte, Oliver Gutjahr, Marta Agnieszka Mrozowska, Tim Fischer, Radomyra Shevchenko, Arjun Kumar, Nikolay Koldunov, Helmuth Haak, Nils Brüggemann, Rebecca Hummels, Mia Sophie Specht, Johann Jungclaus, Sergey Danilov, Marcus Dengler, and Markus Jochum
Geosci. Model Dev., 18, 1189–1220, https://doi.org/10.5194/gmd-18-1189-2025,https://doi.org/10.5194/gmd-18-1189-2025, 2025
Short summary
HIDRA3: a deep-learning model for multipoint ensemble sea level forecasting in the presence of tide gauge sensor failures
Marko Rus, Hrvoje Mihanović, Matjaž Ličer, and Matej Kristan
Geosci. Model Dev., 18, 605–620, https://doi.org/10.5194/gmd-18-605-2025,https://doi.org/10.5194/gmd-18-605-2025, 2025
Short summary

Cited articles

Atkinson, C. P., Wells, N. C., Blaker, A. T., Sinha, B., and Ivchenko, V. O.: Rapid ocean wave teleconnections linking Antarctic sea salinity anomalies to the equatorial ocean-atmosphere system, Geophys. Res. Lett., 36, L08603, https://doi.org/10.1029/2008GL036976, 2009.
Bigg, G. R. and Wadley, M. R.: Prediction of iceberg trajectories for the North Atlantic and Arctic Oceans, Geophys. Res. Lett., 23, 3587–3590, 1996.
Bigg, G. R., Wadley, M. R., Stevens, D. P., and Johnson, J. A.: Modelling dynamics and thermodynamics of icebergs, Cold Reg. Sci. Technol., 26, 113–135, 1997.
Bigg, G. R., Wei, H. L., Wilton, D. J., Zhao, Y., Billings, S. A., Hanna, E., and Kadirkamanathan, V.: A century of variation in the dependence of Greenland iceberg calving on ice sheet surface mass balance and regional climate change, P. R. Soc. A, 470, https://doi.org/10.1098/rspa.2013.0662, 2014a.
Bigg, G. R., Marsh, R., Wilton, D., and Ivchenko, V. O.: B31 – a giant iceberg in the Southern Ocean, Ocean Challenge, 20, 32–34, 2014b.
Download
Short summary
Calved icebergs account for around 50% of total freshwater input to the ocean from the Greenland and Antarctic ice sheets. As they melt, icebergs interact with the ocean. We have developed and tested interactive icebergs in a state-of-the-art global ocean model, showing how sea ice, temperatures, and currents are disturbed by iceberg melting. With this new model capability, we are better prepared to predict how future increases in iceberg numbers might influence the oceans and climate.
Share