Articles | Volume 8, issue 5
https://doi.org/10.5194/gmd-8-1547-2015
https://doi.org/10.5194/gmd-8-1547-2015
Model description paper
 | 
27 May 2015
Model description paper |  | 27 May 2015

NEMO–ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at eddy-permitting resolution

R. Marsh, V. O. Ivchenko, N. Skliris, S. Alderson, G. R. Bigg, G. Madec, A. T. Blaker, Y. Aksenov, B. Sinha, A. C. Coward, J. Le Sommer, N. Merino, and V. B. Zalesny

Related authors

Risk of compound flooding substantially increases in the future Mekong River delta
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, and Joël J.-M. Hirschi
Nat. Hazards Earth Syst. Sci., 24, 3627–3649, https://doi.org/10.5194/nhess-24-3627-2024,https://doi.org/10.5194/nhess-24-3627-2024, 2024
Short summary
Weakening and warming of the European Slope Current since the late 1990s attributed to basin-scale density changes
Matthew Clark, Robert Marsh, and James Harle
Ocean Sci., 18, 549–564, https://doi.org/10.5194/os-18-549-2022,https://doi.org/10.5194/os-18-549-2022, 2022
Short summary
S2P3-R v2.0: computationally efficient modelling of shelf seas on regional to global scales
Paul R. Halloran, Jennifer K. McWhorter, Beatriz Arellano Nava, Robert Marsh, and William Skirving
Geosci. Model Dev., 14, 6177–6195, https://doi.org/10.5194/gmd-14-6177-2021,https://doi.org/10.5194/gmd-14-6177-2021, 2021
Short summary
Interannual variability in contributions of the Equatorial Undercurrent (EUC) to Peruvian upwelling source water
Gandy Maria Rosales Quintana, Robert Marsh, and Luis Alfredo Icochea Salas
Ocean Sci., 17, 1385–1402, https://doi.org/10.5194/os-17-1385-2021,https://doi.org/10.5194/os-17-1385-2021, 2021
Short summary
A 30-year reconstruction of the Atlantic meridional overturning circulation shows no decline
Emma L. Worthington, Ben I. Moat, David A. Smeed, Jennifer V. Mecking, Robert Marsh, and Gerard D. McCarthy
Ocean Sci., 17, 285–299, https://doi.org/10.5194/os-17-285-2021,https://doi.org/10.5194/os-17-285-2021, 2021
Short summary

Related subject area

Oceanography
An optimal transformation method for inferring ocean tracer sources and sinks
Jan D. Zika and Taimoor Sohail
Geosci. Model Dev., 17, 8049–8068, https://doi.org/10.5194/gmd-17-8049-2024,https://doi.org/10.5194/gmd-17-8049-2024, 2024
Short summary
PPCon 1.0: Biogeochemical-Argo profile prediction with 1D convolutional networks
Gloria Pietropolli, Luca Manzoni, and Gianpiero Cossarini
Geosci. Model Dev., 17, 7347–7364, https://doi.org/10.5194/gmd-17-7347-2024,https://doi.org/10.5194/gmd-17-7347-2024, 2024
Short summary
Experimental design for the Marine Ice Sheet–Ocean Model Intercomparison Project – phase 2 (MISOMIP2)
Jan De Rydt, Nicolas C. Jourdain, Yoshihiro Nakayama, Mathias van Caspel, Ralph Timmermann, Pierre Mathiot, Xylar S. Asay-Davis, Hélène Seroussi, Pierre Dutrieux, Ben Galton-Fenzi, David Holland, and Ronja Reese
Geosci. Model Dev., 17, 7105–7139, https://doi.org/10.5194/gmd-17-7105-2024,https://doi.org/10.5194/gmd-17-7105-2024, 2024
Short summary
Development of a total variation diminishing (TVD) sea ice transport scheme and its application in an ocean (SCHISM v5.11) and sea ice (Icepack v1.3.4) coupled model on unstructured grids
Qian Wang, Yang Zhang, Fei Chai, Y. Joseph Zhang, and Lorenzo Zampieri
Geosci. Model Dev., 17, 7067–7081, https://doi.org/10.5194/gmd-17-7067-2024,https://doi.org/10.5194/gmd-17-7067-2024, 2024
Short summary
Spurious numerical mixing under strong tidal forcing: a case study in the south-east Asian seas using the Symphonie model (v3.1.2)
Adrien Garinet, Marine Herrmann, Patrick Marsaleix, and Juliette Pénicaud
Geosci. Model Dev., 17, 6967–6986, https://doi.org/10.5194/gmd-17-6967-2024,https://doi.org/10.5194/gmd-17-6967-2024, 2024
Short summary

Cited articles

Atkinson, C. P., Wells, N. C., Blaker, A. T., Sinha, B., and Ivchenko, V. O.: Rapid ocean wave teleconnections linking Antarctic sea salinity anomalies to the equatorial ocean-atmosphere system, Geophys. Res. Lett., 36, L08603, https://doi.org/10.1029/2008GL036976, 2009.
Bigg, G. R. and Wadley, M. R.: Prediction of iceberg trajectories for the North Atlantic and Arctic Oceans, Geophys. Res. Lett., 23, 3587–3590, 1996.
Bigg, G. R., Wadley, M. R., Stevens, D. P., and Johnson, J. A.: Modelling dynamics and thermodynamics of icebergs, Cold Reg. Sci. Technol., 26, 113–135, 1997.
Bigg, G. R., Wei, H. L., Wilton, D. J., Zhao, Y., Billings, S. A., Hanna, E., and Kadirkamanathan, V.: A century of variation in the dependence of Greenland iceberg calving on ice sheet surface mass balance and regional climate change, P. R. Soc. A, 470, https://doi.org/10.1098/rspa.2013.0662, 2014a.
Bigg, G. R., Marsh, R., Wilton, D., and Ivchenko, V. O.: B31 – a giant iceberg in the Southern Ocean, Ocean Challenge, 20, 32–34, 2014b.
Download
Short summary
Calved icebergs account for around 50% of total freshwater input to the ocean from the Greenland and Antarctic ice sheets. As they melt, icebergs interact with the ocean. We have developed and tested interactive icebergs in a state-of-the-art global ocean model, showing how sea ice, temperatures, and currents are disturbed by iceberg melting. With this new model capability, we are better prepared to predict how future increases in iceberg numbers might influence the oceans and climate.