Articles | Volume 8, issue 4
https://doi.org/10.5194/gmd-8-1085-2015
https://doi.org/10.5194/gmd-8-1085-2015
Development and technical paper
 | 
21 Apr 2015
Development and technical paper |  | 21 Apr 2015

Technical challenges and solutions in representing lakes when using WRF in downscaling applications

M. S. Mallard, C. G. Nolte, T. L. Spero, O. R. Bullock, K. Alapaty, J. A. Herwehe, J. Gula, and J. H. Bowden

Related authors

Examining Spin-Up Behaviour within WRF Dynamical Downscaling Applications
Megan S. Mallard, Tanya Spero, Jared Bowden, Jeff Willison, Christopher G. Nolte, and Anna M. Jalowska
EGUsphere, https://doi.org/10.5194/egusphere-2025-2352,https://doi.org/10.5194/egusphere-2025-2352, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Estimating the variability of deep ocean particle flux collected by sediment traps using satellite data and machine learning
Théo Picard, Chelsey A. Baker, Jonathan Gula, Ronan Fablet, Laurent Mémery, and Richard Lampitt
EGUsphere, https://doi.org/10.5194/egusphere-2024-3292,https://doi.org/10.5194/egusphere-2024-3292, 2024
Short summary
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024,https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Predicting particle catchment areas of deep-ocean sediment traps using machine learning
Théo Picard, Jonathan Gula, Ronan Fablet, Jeremy Collin, and Laurent Mémery
Ocean Sci., 20, 1149–1165, https://doi.org/10.5194/os-20-1149-2024,https://doi.org/10.5194/os-20-1149-2024, 2024
Short summary
Lightning assimilation in the WRF model (Version 4.1.1): technique updates and assessment of the applications from regional to hemispheric scales
Daiwen Kang, Nicholas K. Heath, Robert C. Gilliam, Tanya L. Spero, and Jonathan E. Pleim
Geosci. Model Dev., 15, 8561–8579, https://doi.org/10.5194/gmd-15-8561-2022,https://doi.org/10.5194/gmd-15-8561-2022, 2022
Short summary

Related subject area

Climate and Earth system modeling
Enhancing winter climate simulations of the Great Lakes: insights from a new coupled lake–ice–atmosphere (CLIAv1) system on the importance of integrating 3D hydrodynamics with a regional climate model
Pengfei Xue, Chenfu Huang, Yafang Zhong, Michael Notaro, Miraj B. Kayastha, Xing Zhou, Chuyan Zhao, Christa Peters-Lidard, Carlos Cruz, and Eric Kemp
Geosci. Model Dev., 18, 4293–4316, https://doi.org/10.5194/gmd-18-4293-2025,https://doi.org/10.5194/gmd-18-4293-2025, 2025
Short summary
Modelling emission and transport of key components of primary marine organic aerosol using the global aerosol–climate model ECHAM6.3–HAM2.3
Anisbel Leon-Marcos, Moritz Zeising, Manuela van Pinxteren, Sebastian Zeppenfeld, Astrid Bracher, Elena Barbaro, Anja Engel, Matteo Feltracco, Ina Tegen, and Bernd Heinold
Geosci. Model Dev., 18, 4183–4213, https://doi.org/10.5194/gmd-18-4183-2025,https://doi.org/10.5194/gmd-18-4183-2025, 2025
Short summary
Assessing the climate impact of an improved volcanic sulfate aerosol representation in E3SM
Ziming Ke, Qi Tang, Jean-Christophe Golaz, Xiaohong Liu, and Hailong Wang
Geosci. Model Dev., 18, 4137–4153, https://doi.org/10.5194/gmd-18-4137-2025,https://doi.org/10.5194/gmd-18-4137-2025, 2025
Short summary
Advanced climate model evaluation with ESMValTool v2.11.0 using parallel, out-of-core, and distributed computing
Manuel Schlund, Bouwe Andela, Jörg Benke, Ruth Comer, Birgit Hassler, Emma Hogan, Peter Kalverla, Axel Lauer, Bill Little, Saskia Loosveldt Tomas, Francesco Nattino, Patrick Peglar, Valeriu Predoi, Stef Smeets, Stephen Worsley, Martin Yeo, and Klaus Zimmermann
Geosci. Model Dev., 18, 4009–4021, https://doi.org/10.5194/gmd-18-4009-2025,https://doi.org/10.5194/gmd-18-4009-2025, 2025
Short summary
ICON-HAM-lite 1.0: simulating the Earth system with interactive aerosols at kilometer scales
Philipp Weiss, Ross Herbert, and Philip Stier
Geosci. Model Dev., 18, 3877–3894, https://doi.org/10.5194/gmd-18-3877-2025,https://doi.org/10.5194/gmd-18-3877-2025, 2025
Short summary

Cited articles

Anyah, R. O. and Semazzi, F. H. M.: Simulation of the sensitivity of Lake Victoria basin climate to lake surface temperatures, Theor. Appl. Climatol., 79, 55–69, 2004.
Argent, R. E.: Customisation of the WRF model over the Lake Victoria basin in east Africa, MS thesis, North Carolina State University, Raleigh, NC, 124 pp., 2014.
Artale, V., Calmanti, S., Carillo, A., Dell'Aquila, A., Herrmann, M., Pisacane, G., Ruti, P. M., Sannino, G., Struglia, M. V., Giorgi, F., Bi, X., Pal, J. S., Rauscher, S., and The PROTHEUS Group: An atmosphere–ocean regional climate model for the Mediterranean area: assessment of a present climate simulation, Clim. Dynam., 35, 721–740, 2010.
Asnani, G. C.: Tropical Meteorology, Vol. 1 and 2, Indian Institute of Tropical Meteorology, Pashan, Pune, 1012 pp., 1993.
Assel, R. A. and Robertson, D. M.: Changes in winter air temperatures near Lake Michigan, 1851–1993, as determined from regional lake-ice records, Limnol. Oceanogr., 40, 165–176, 1995.
Download
Short summary
Because global climate models (GCMs) are typically run at coarse spatial resolution, lakes are often poorly resolved in their global fields. When downscaling such GCMs using the Weather Research & Forecasting (WRF) model, use of WRF’s default interpolation methods can result in unrealistic lake temperatures and ice cover, which can impact simulated air temperatures and precipitation. Here, alternative methods for setting lake variables in WRF downscaling applications are presented and compared.
Share