Articles | Volume 8, issue 4
https://doi.org/10.5194/gmd-8-1085-2015
https://doi.org/10.5194/gmd-8-1085-2015
Development and technical paper
 | 
21 Apr 2015
Development and technical paper |  | 21 Apr 2015

Technical challenges and solutions in representing lakes when using WRF in downscaling applications

M. S. Mallard, C. G. Nolte, T. L. Spero, O. R. Bullock, K. Alapaty, J. A. Herwehe, J. Gula, and J. H. Bowden

Related authors

Examining Spin-Up Behaviour within WRF Dynamical Downscaling Applications
Megan S. Mallard, Tanya Spero, Jared Bowden, Jeff Willison, Christopher G. Nolte, and Anna M. Jalowska
EGUsphere, https://doi.org/10.5194/egusphere-2025-2352,https://doi.org/10.5194/egusphere-2025-2352, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Estimating the variability of deep ocean particle flux collected by sediment traps using satellite data and machine learning
Théo Picard, Chelsey A. Baker, Jonathan Gula, Ronan Fablet, Laurent Mémery, and Richard Lampitt
EGUsphere, https://doi.org/10.5194/egusphere-2024-3292,https://doi.org/10.5194/egusphere-2024-3292, 2024
Short summary
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024,https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Predicting particle catchment areas of deep-ocean sediment traps using machine learning
Théo Picard, Jonathan Gula, Ronan Fablet, Jeremy Collin, and Laurent Mémery
Ocean Sci., 20, 1149–1165, https://doi.org/10.5194/os-20-1149-2024,https://doi.org/10.5194/os-20-1149-2024, 2024
Short summary
Lightning assimilation in the WRF model (Version 4.1.1): technique updates and assessment of the applications from regional to hemispheric scales
Daiwen Kang, Nicholas K. Heath, Robert C. Gilliam, Tanya L. Spero, and Jonathan E. Pleim
Geosci. Model Dev., 15, 8561–8579, https://doi.org/10.5194/gmd-15-8561-2022,https://doi.org/10.5194/gmd-15-8561-2022, 2022
Short summary

Related subject area

Climate and Earth system modeling
SURFER v3.0: a fast model with ice sheet tipping points and carbon cycle feedbacks for short- and long-term climate scenarios
Victor Couplet, Marina Martínez Montero, and Michel Crucifix
Geosci. Model Dev., 18, 3081–3129, https://doi.org/10.5194/gmd-18-3081-2025,https://doi.org/10.5194/gmd-18-3081-2025, 2025
Short summary
NMH-CS 3.0: a C# programming language and Windows-system-based ecohydrological model derived from Noah-MP
Yong-He Liu and Zong-Liang Yang
Geosci. Model Dev., 18, 3157–3174, https://doi.org/10.5194/gmd-18-3157-2025,https://doi.org/10.5194/gmd-18-3157-2025, 2025
Short summary
A method for quantifying uncertainty in spatially interpolated meteorological data with application to daily maximum air temperature
Conor T. Doherty, Weile Wang, Hirofumi Hashimoto, and Ian G. Brosnan
Geosci. Model Dev., 18, 3003–3016, https://doi.org/10.5194/gmd-18-3003-2025,https://doi.org/10.5194/gmd-18-3003-2025, 2025
Short summary
Baseline Climate Variables for Earth System Modelling
Martin Juckes, Karl E. Taylor, Fabrizio Antonio, David Brayshaw, Carlo Buontempo, Jian Cao, Paul J. Durack, Michio Kawamiya, Hyungjun Kim, Tomas Lovato, Chloe Mackallah, Matthew Mizielinski, Alessandra Nuzzo, Martina Stockhause, Daniele Visioni, Jeremy Walton, Briony Turner, Eleanor O'Rourke, and Beth Dingley
Geosci. Model Dev., 18, 2639–2663, https://doi.org/10.5194/gmd-18-2639-2025,https://doi.org/10.5194/gmd-18-2639-2025, 2025
Short summary
PaleoSTeHM v1.0: a modern, scalable spatiotemporal hierarchical modeling framework for paleo-environmental data
Yucheng Lin, Robert E. Kopp, Alexander Reedy, Matteo Turilli, Shantenu Jha, and Erica L. Ashe
Geosci. Model Dev., 18, 2609–2637, https://doi.org/10.5194/gmd-18-2609-2025,https://doi.org/10.5194/gmd-18-2609-2025, 2025
Short summary

Cited articles

Anyah, R. O. and Semazzi, F. H. M.: Simulation of the sensitivity of Lake Victoria basin climate to lake surface temperatures, Theor. Appl. Climatol., 79, 55–69, 2004.
Argent, R. E.: Customisation of the WRF model over the Lake Victoria basin in east Africa, MS thesis, North Carolina State University, Raleigh, NC, 124 pp., 2014.
Artale, V., Calmanti, S., Carillo, A., Dell'Aquila, A., Herrmann, M., Pisacane, G., Ruti, P. M., Sannino, G., Struglia, M. V., Giorgi, F., Bi, X., Pal, J. S., Rauscher, S., and The PROTHEUS Group: An atmosphere–ocean regional climate model for the Mediterranean area: assessment of a present climate simulation, Clim. Dynam., 35, 721–740, 2010.
Asnani, G. C.: Tropical Meteorology, Vol. 1 and 2, Indian Institute of Tropical Meteorology, Pashan, Pune, 1012 pp., 1993.
Assel, R. A. and Robertson, D. M.: Changes in winter air temperatures near Lake Michigan, 1851–1993, as determined from regional lake-ice records, Limnol. Oceanogr., 40, 165–176, 1995.
Download
Short summary
Because global climate models (GCMs) are typically run at coarse spatial resolution, lakes are often poorly resolved in their global fields. When downscaling such GCMs using the Weather Research & Forecasting (WRF) model, use of WRF’s default interpolation methods can result in unrealistic lake temperatures and ice cover, which can impact simulated air temperatures and precipitation. Here, alternative methods for setting lake variables in WRF downscaling applications are presented and compared.
Share