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Abstract. The Weather Research and Forecasting (WRF)

model is commonly used to make high-resolution future pro-

jections of regional climate by downscaling global climate

model (GCM) outputs. Because the GCM fields are typically

at a much coarser spatial resolution than the target regional

downscaled fields, lakes are often poorly resolved in the driv-

ing global fields, if they are resolved at all. In such an appli-

cation, using WRF’s default interpolation methods can result

in unrealistic lake temperatures and ice cover at inland water

points. Prior studies have shown that lake temperatures and

ice cover impact the simulation of other surface variables,

such as air temperatures and precipitation, two fields that are

often used in regional climate applications to understand the

impacts of climate change on human health and the environ-

ment. Here, alternative methods for setting lake surface vari-

ables in WRF for downscaling simulations are presented and

contrasted.

1 Introduction

When using global climate model (GCM) fields to drive

finer-scale regional climate model (RCM) runs, typically the

RCM does not have an oceanic or lake physics component

and relies on the GCM output to provide all water surface

temperatures and ice cover. Within a downscaling simula-

tion, by design, the GCM is at a coarser spatial resolution

than the RCM, so inland water bodies in the region being

simulated are either poorly resolved or not resolved by the

GCM. Prior to 2013, the Weather Research and Forecasting

(WRF) model (Skamarock et al., 2008) required exogenously

prescribed water surface temperatures, as there was no capa-

bility to prognosticate water temperatures. WRF has included

an optional coupled ocean component since version 3.5 was

released in April 2013 (WRF User’s Guide, 2014). Other

RCMs have been coupled to ocean models in order to sim-

ulate regions around the Arctic, Mediterranean Sea, and In-

dian Ocean (e.g., Rinke et al., 2003; Ratnam et al., 2009;

Artale et al., 2010; Gualdi et al., 2013). However, when us-

ing WRF’s default configuration, the sea surface tempera-

ture (SST) fields used during the simulation are calculated

from the driving data during the preprocessing steps per-

formed before WRF runs the simulation; during the model

run, these prescribed water temperatures are input at a user-

specified frequency which is usually daily or sub-daily. Sim-

ilarly, lake surface temperatures (LSTs) and lake ice cover

are prescribed by spatial interpolation from the SST and sea

ice fields in the driving data. In this study, we examine the

use of the Advanced Research WRF (Skamarock and Klemp,

2008) model applied as an RCM in regions where the driving

larger-scale data have a poor representation of lakes.

When the WRF Preprocessing System (WPS) interpolates

skin temperatures from the coarser global data set (where

both land and water temperatures are included in a single

field), masks are applied such that water temperatures from

the GCM are used to set water temperatures on the finer,

target grid. Using the standard methods in WPS, interpola-

tion is first attempted using 16 surrounding grid cells in the

coarser grid; if this method fails due to a lack of the requi-

site 16 valid data points, WPS attempts other interpolation
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Figure 1. The ocean mask from the 1◦ CESM data (which is used by WPS to determine the locations of land and water points from CESM),

as shown in the area corresponding to a WRF 36 km continental US domain (left), and the 36 km WRF grid’s land–water mask (right).

Labels are placed to indicate the locations of Lake Superior (“S”), Lake Michigan (“M”), Lake Huron (“H”), Lake Erie (“E”) and Lake

Ontario (“O”), as well as Hudson Bay (“HB”).

Figure 2. The skin temperature (K) processed from CESM to the

36 km WRF grid using WPS and valid at 00:00 UTC, 1 Decem-

ber 1994. White circles indicate the locations of Pyramid Lake,

Great Salt Lake, and Lake Sakakawea, from west to east, respec-

tively.

techniques using as many as four grid cells and as few as

one. While a full description of all WPS interpolation tech-

niques is beyond the scope of this study, more information is

available in the WRF User’s Guide (2014, pp. 3–56 to 3–59).

When all other methods fail due to the lack of nearby water

grid cells, WPS defaults to the “search” approach, in which

the nearest water point is used to set LSTs. When employing

the search option, water cells in the driving data are often dis-

tant from and unrepresentative of the target cell in the WRF

domain. The search option in WPS performs no interpola-

tion or averaging, sometimes resulting in abrupt, nonphysical

temperature discontinuities.

Here we show the result of using this default methodology

to downscale 1◦ Community Earth System Model (CESM)

fields to a 36 km WRF domain (199×127) covering the conti-

nental US, and subsequently similar examples in other down-

scaling studies are discussed. However, it should be noted

that the use of CESM as an example is arbitrary because sim-

ilar results have been obtained with other global data sets as

well. The CESM ocean mask, used to interpolate the GCM’s

SST fields to the WRF grid, has no water grid cells over

the North American interior (Fig. 1). As a result, water tem-

peratures in Hudson Bay are used to set temperatures over

the larger westernmost areas of the Laurentian Great Lakes,

while LSTs in the southeastern areas of the Great Lakes are

set by Atlantic SSTs (Fig. 2). At the time shown in Fig. 2,

the LSTs interpolated from CESM onto the 36 km WRF grid

contain discontinuities of approximately 17 K between ad-

jacent grid cells in Lake Michigan and Lake Huron, while a

smaller discontinuity of approximately 3 K is created in Lake

Superior. It should be noted that various interpolation options

are available in WPS and can be specified by the user. The de-

scription in the paragraph above is representative of the inter-

polation process as defined by WPS’s default settings. Even

though this process could be changed by the model user, the

key issue remains that when lakes are poorly represented or

completely absent, the problem of how to specify the lake

state is not amenable to any interpolation method.

The problems of using larger-scale data to define LSTs

with the default options in WPS are not limited to the Great

Lakes. None of the lakes resolved by WRF at 36 km have

valid LSTs in the CESM ocean mask (Fig. 1). Using the

search option in WPS results in setting the LSTs to unrealis-

tic values throughout the domain. Temperatures in Pyramid

Lake, Great Salt Lake, as well as several smaller lakes east of

the Rocky Mountains in both Canada and the US are assigned

from the Pacific Ocean (Fig. 2), while lake temperatures in
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the southeastern and central US are set from SSTs in the Gulf

of Mexico and Atlantic Ocean. Two adjacent grid cells repre-

senting Lake Sakakawea in North Dakota are assigned LSTs

differing by approximately 10 K because the western cell is

set from the Pacific while the eastern cell is prescribed from

Hudson Bay (Fig. 2). Using any interpolation method to as-

sign LSTs when no suitable data are available will adversely

affect the accuracy of downscaled simulations that are based

on forcing from those LSTs.

Mallard et al. (2014; hereafter M14) also discuss problems

that arise when downscaling coarse global data to a 12 km

grid covering the eastern US. In M14, the National Centers

for Environmental Prediction (NCEP) – Department of En-

ergy Atmospheric Model Intercomparison Project (AMIP-II)

reanalysis (hereafter R2; Kanamitsu et al., 2002) is used to

drive historical simulations as a proxy or stand-in for a sim-

ilarly coarse GCM. In contrast to the CESM example dis-

cussed above, R2 has at least a partial representation of the

western Great Lakes, but nevertheless has only three inland

water points to represent all five of the Great Lakes (Fig. 1

of M14). Therefore, using the standard interpolation methods

with R2 results in unrealistically large, abrupt, and nonphys-

ical LST discontinuities in eastern Lake Erie and Lake On-

tario, where water temperatures are set using Atlantic SSTs,

while the LSTs in western Lake Erie and in the three western

Great Lakes are interpolated from the three lake cells in R2

(M14).

In WRF, ice cover can either be interpolated from the driv-

ing data and assigned to cover some fraction of a grid cell,

or it can be treated as a binary field that is set to 100 % at

grid cells where the water surface temperature drops below a

specified threshold. The default threshold value was 271 K

(slightly below the freshwater freezing temperature of ap-

proximately 273 K), but it was changed to 100 K as of ver-

sion 3.5.1 to avoid the unintended creation of ice by this

method when using WRF’s default settings (Table 1). When

fractional ice values are prescribed from the driving data set,

the WPS methods applied to interpolate sea and lake ice dif-

fer from those used for SSTs and LSTs. If there are no sur-

rounding water grid cells in the driving data set, an ice cover

value of zero is assigned rather than employing the search

method. When M14 downscaled ice cover from R2, it was

shown that ice concentrations of zero were applied to points

through Lake Huron, Lake Erie and Lake Ontario through-

out a 2-year simulation (Fig. 3 of M14), even though partial

ice coverage was observed on all three lakes during that his-

torical period. Moreover, almost complete ice coverage of

Lake Superior and Lake Michigan occurred in a single day

(M14). Wang et al. (2012b) conducted a climatology of ice

cover in the Great Lakes over the period 1973 to 2010 and

showed that, in the average seasonal cycle of ice cover, the

maximum fractional coverage of Lake Superior was approx-

imately 50 % (their Fig. 3). Although Wang et al. noted that

the standard deviation of ice cover is quite large (exceeding

the mean values in some of the Great Lakes), the seasonal cy-

cles in their study showed the accumulation of ice coverage

over months, not the abrupt appearance of lake-wide ice over

daily periods. Ultimately, M14 improved the representation

of the Great Lakes in their downscaled simulations by apply-

ing a coupled lake model, which will be discussed further in

a subsequent section. Whereas M14 showed the results of us-

ing a single lake model, the current work presents a broader

range of approaches, recognizing that the most preferable

method to represent lake fields may vary between different

RCM applications.

Prior studies downscaling other global data sets and GCMs

have also noted findings similar to the example shown here

(Fig. 2) and the results of M14. Using WRF as an RCM over

eastern Africa, Argent (2014) showed that the use of WPS’s

default interpolation methods resulted in oceanic tempera-

tures from a global SST data set applied to set LSTs through-

out Lake Victoria. Discontinuities in LSTs with WRF were

noted in the Great Lakes basin by Bullock et al. (2014), who

downscaled R2 to 12 km, and by Gao et al. (2012), who

downscaled CESM to a 4 km grid. Within the downscaled

simulations produced for the North American Regional Cli-

mate Change Assessment Program (NARCCAP; Mearns et

al., 2012), problems with producing realistic LSTs and ice

cover for the Great Lakes region are documented using sev-

eral approaches with various RCMs, including WRF (NAR-

CCAP, 2014). For some NARCCAP model configurations,

caution is recommended when using surface variables in the

region surrounding the Great Lakes. Previous work examin-

ing the value of dynamical downscaling has noted that down-

scaled simulations have the most potential to add value rela-

tive to GCM simulations in areas of complex topography and

along coastlines because of increased resolution in regional

models (e.g., Feser et al., 2011). Although RCMs better re-

solve the coastlines (and therefore the presence of lakes) than

the driving GCMs, using erroneous LSTs and lake ice cover

could impair the simulation of interactions between lakes and

overlying air masses. The potential benefits gained by down-

scaling to a grid spacing that better resolves land–water in-

terfaces may not be realized if the lake state (defined here

by LSTs and ice) is unrealistically represented. Even as ad-

ditional computing resources allow GCMs to increase in res-

olution and better represent lakes, RCMs will also be run at

finer scales; therefore, it can be expected that smaller lakes

with important effects on mesoscale and microscale climatol-

ogy will continue to be unresolved by the driving data sets.

The purposes of this paper are to describe various tech-

niques that can be used to set LSTs and lake ice cover in

the WRF model for downscaling, and to discuss the benefits

and possible shortcomings of each approach. The effects of

these techniques on simulated lake–atmosphere interactions,

both in the present climate and in future climate states, are

discussed in context with relevant previous literature.
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Table 1. List of WRF versions discussed in the text, ordered chronologically by the date of release and with relevant model updates summa-

rized.

WRF version Released Updates of interest

3.3 April 2011 “Alternative initialization of lake SSTs” option included in WPS so users can set

LSTs from temporally averaged 2 m temperatures.

3.5 April 2013 CLM available as an LSM within WRF, but with its lake model disabled.

3.5.1 September 2013 Default surface water temperature at which WRF prescribes ice

(“seaice_threshold”) is lowered from 271 to 100 K.

3.6 April 2014 CLM lake model available with any choice of LSM. Lake depths can be prescribed

as a constant or as a spatially varying 2-D field.

2 Comparison of methods

As will be shown below, choice of the appropriate methodol-

ogy for representing a lake in a downscaling configuration is

dependent on what interactions must be simulated between

the atmospheric fields and the lake state and how the lake

state is expected to be impacted by climate change when

downscaling future GCM projections. In regional climate

simulations conducted over the continental US, the Lauren-

tian Great Lakes are a prominent feature, as Lake Supe-

rior is the largest freshwater lake in the world (by surface

area) at over 82 000 km2. Several studies have concluded that

the Great Lakes strongly influence the surrounding regional

climate, moderating extremes in near-surface temperatures,

and affecting precipitation and passing cyclones and anti-

cyclones on an annual cycle (e.g., Wilson, 1977; Bates et

al., 1993; Scott and Huff, 1996; Notaro et al., 2013). Cli-

matologically, the greater heat capacity of the lakes serves

to enhance precipitation and convection during September to

March, when warmer surface water (relative to low-level at-

mospheric temperatures) reduces atmospheric stability (e.g.,

Notaro et al., 2013). Conversely, the slower warming of the

lakes in boreal spring results in the opposite effect during

the April–August period, when the relatively cool lakes en-

hance atmospheric stability and reduce precipitation and con-

vection. These periods are referred to as the lake unstable

and lake stable seasons, respectively. Lake-effect precipita-

tion has also been documented outside the Great Lakes as

well, such as in Lake Champlain (Tardy, 2000; Laird et al.,

2009), Lake Tahoe (Cairns et al., 2001), and the Great Salt

Lake (Carpenter, 1993; Steenburgh and Onton, 2001). A re-

view by Schultz et al. (2004) states that lake-effect snowfall

has been observed to occur over lakes with fetches of only

30 to 50 km, citing prior studies over Bull Shoals Lake of

Arkansas (Wilken, 1997) as well as Lake Tahoe and Pyramid

Lake in Nevada (Cairns et al., 2001; Huggins et al., 2001).

Interactions between the lakes and surrounding regions are

also strong in tropical environments as well. For example,

the immediate region surrounding Lake Victoria in Africa

has the highest recorded frequency of thunderstorms in the

world with approximately 300 storm days per year (Asnani,

1993). Overall, while a comprehensive review of the impact

of each lake on regional climate is beyond the scope of this

study, prior work indicates that even lakes that are smaller

than the Great Lakes can be anticipated to have substantial

effects on regional climate.

Prior studies have also illustrated that even relatively small

errors in prescribed LSTs in a downscaling configuration

can adversely affect simulated precipitation in regions sur-

rounding lakes. The sensitivity study of Wright et al. (2013)

showed significant changes in lake-effect snowfall over the

Great Lakes in idealized simulations where LSTs were uni-

formly warmed by 3 ◦C. Anyah and Semazzi (2004) simu-

lated changes in the spatial patterns and intensity of precipi-

tation, as well as the amount of evaporation, over Lake Victo-

ria in a modeling study where LSTs were uniformly changed

by only 1.5 ◦C.

Interactions between the lakes and overlying air masses

are also governed by the amount of lake ice in climates

that permit lakes to freeze. Previous studies have found the

presence of ice suppresses turbulent latent and sensible heat

fluxes from the lake to the air mass (e.g., Zulauf and Krueger,

2003; Gerbush et al., 2008). As shown in the lake-effect snow

case studies simulated by Wright et al. (2013), the presence

of ice coverage over the lake’s surface inhibits downstream

precipitation. As a result, lake-effect snowfall decreases in

some areas surrounding the Great Lakes during the later por-

tion of the lake unstable season, as the water’s surface freezes

during the winter and early spring months. Overall, past stud-

ies indicate that if LSTs and ice are not properly prescribed,

inaccurate values of precipitation and temperature in the lee

of lakes result from a downscaled simulation.

2.1 WRF’s alternative lake setting

Since the release of WRF version 3.3 in April 2011, an “alter-

native initialization of lake SSTs” option is provided in WPS

to set LSTs (WRF User’s Guide, 2014; Table 1). When em-

ploying this method, LSTs can be set using temporally aver-

aged 2 m air temperatures from the driving data set, with the

averaging period set by the user. Bullock et al. (2014), when
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downscaling a proxy GCM (R2) over a 12 km grid covering

the Great Lakes, attempted to use the alternative lake set-

ting to account for the greater thermal inertia of the Great

Lakes by incorporating seasonal temperature changes after

a 1-month time lag. Following the procedure of Bullock et

al., if a user were to perform a simulation over the month of

May, a single LST field would first be generated by tempo-

rally averaging air temperatures during the previous month

of April; subsequently this static LST field would be used to

set inland water temperatures throughout the month of May.

Because Bullock et al. (2014) preprocessed the driving data

in monthly segments, the LST field was prescribed to vary

with time on a monthly basis. Using this method may im-

itate the seasonal changes observed over the Great Lakes,

producing a lake stable and unstable season during the ap-

propriate months. A drawback to this methodology is that the

same lag time is used throughout the model grid, regardless

of lake depth. Therefore, in this approach, large, deep lakes

are implied to heat and cool on the same timescale as small,

shallow lakes. Meanwhile, it is expected that observed sea-

sonal temperature changes over smaller and shallower lakes

would more closely follow atmospheric temperature changes

than in large, deep lakes. If employed for simulations outside

the Great Lakes, the procedure used by Bullock et al. (2014)

should be modified to imitate the observed relationship be-

tween changing air temperatures and LSTs.

In its default configuration used prior to the release of ver-

sion 3.5.1, WRF prescribes ice cover at grid cells where LST

is less than 271 K (Table 1). This value is applied at all water

points regardless of salinity. As winter 2 m air temperatures

are frequently below freezing in the Great Lakes area, Bul-

lock et al. (2014) found that unrealistically large spatial cov-

erage of ice occurred when using the alternative lake setting

in WRF version 3.4.1, with all five Great Lakes completely

frozen for most of the winter. Such erroneous ice cover would

be expected to negatively impact the simulation of precipi-

tation, 2 m temperatures, and other variables influenced by

sensible and latent heat fluxes supplied by the Great Lakes.

Therefore, the use of the alternative lake setting in WRF may

not be appropriate in some regions where sub-freezing air

temperatures would result in unrealistic temporal and spatial

coverage of sub-freezing LSTs and ice.

However, this is not a concern for tropical lakes where air

temperatures would not be sufficiently low enough to result

in frozen lakes. Argent (2014, Sect. 3) demonstrated the util-

ity of the alternative lake setting in WRF simulations over

Lake Victoria in eastern Africa, finding that it improved the

accuracy of simulated rainfall relative to the use of the de-

fault interpolation in which oceanic SSTs were used to set

Lake Victoria’s LSTs.

2.2 Climatological LSTs and ice

Another approach for setting LSTs and lake ice coverage

when downscaling with WRF is to prescribe these variables

from higher-resolution data sets of climatologically averaged

quantities. This can be viewed as assuming stationarity for

the lake state as is frequently done for other input variables

in an RCM, such as land use and vegetation. Even for ret-

rospective climate simulations, using this approach could be

detrimental because the interannual variability of LSTs and

ice – and its effects on the prediction of extreme events –

would not be captured using this method. When making fu-

ture projections, it must be considered that prior studies have

shown that LSTs cannot be assumed to be stationary in fu-

ture warmer climates; in fact, some studies conclude that

nonlinear feedbacks exist between regional climate change

and LSTs and ice for some lakes. An observational study

by Austin and Colman (2007) found that the multi-decadal

warming trend in the Great Lakes region was amplified in the

lake temperatures, relative to surrounding inland tempera-

tures, because of the earlier breakup of ice and earlier spring-

time warming of surface water. In the downscaling simula-

tions of Gula and Peltier (2012), increased snowfall was sim-

ulated in the lee of the Great Lakes in a warmer, mid-century

climate because lake ice forms later in the winter. Gula and

Peltier conclude that the impact of having the lakes remain

free of ice is that increased latent and sensible heat fluxes

are present for a longer time period during the lake unsta-

ble season, lessening the stability of the overlying air mass

and enhancing precipitation. Magnuson et al. (2000) con-

cluded that observed ice coverage is decreasing in lakes and

rivers throughout the Northern Hemisphere. Such a decrease

in ice coverage has been linked by observational studies to in-

creases in lake-effect precipitation in the Great Lakes region

(Assel and Robertson, 1995; Burnett et al., 2003; Kunkel et

al., 2009). Because ice suppresses fluxes of latent and sen-

sible heat (e.g., Zulauf and Krueger, 2003; Gerbush et al.,

2008), decreasing ice cover in a warmer climate allows larger

fluxes of latent and sensible heat to modify the overlying air

mass, increasing downstream precipitation during the lake

unstable season. None of the impacts on the lake state re-

viewed here (the warming of LSTs and more open water from

which to produce fluxes) would be considered in the WRF

model using LSTs and ice based on present-day climatology,

and the effects of changing lake conditions on atmospheric

stability, humidity, precipitation and convection would not

be simulated.

This approach could be improved by adding a linear in-

crease to observed LSTs over time, which may be a valid ap-

proximation for the effect of climate change on some lakes.

However, such an approach would not capture the nonlin-

ear impacts of climate change (as described by Austin and

Colman, 2007) on the Great Lakes. Overall, the efficacy

of using a climatologically based approach is dependent on

the amount of interannual variability, as well as the impacts

of climate change on the lake state and whether those ef-

fects can be accounted for by the inclusion of a linear LST

anomaly.
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2.3 Land mask modification

To avoid the issues with LSTs discussed in Sect. 1 and illus-

trated in Fig. 2, Gao et al. (2012) modified the GCM land

mask in the Great Lakes area so that skin temperatures from

land points in the GCM were used to set LSTs on the WRF

grid in their downscaled simulations. This treatment success-

fully eliminated the abrupt temperature discontinuities (such

as those in Fig. 2) produced by interpolating a coarse data set.

However, the effects of the lakes themselves are lost if GCM

land temperatures are used to prescribe RCM water temper-

atures and the lake–land temperature contrasts, with their

associated mesoscale phenomena such as lake breezes and

lake-effect precipitation, are eliminated. Notaro et al. (2013)

conducted an idealized modeling experiment in which the

Great Lakes were replaced with forest and field land cover

types. They found that the presence of the lakes affected pre-

cipitation, 2 m air temperatures and their variability, water

vapor, cloud cover, incoming shortwave radiation, the hydro-

logical budget, and the intensity of passing cyclones and an-

ticyclones. The approach used by Gao et al. (2012), in which

land surface temperatures from the GCM are used to spec-

ify water temperatures, partially accounts for some lake ef-

fects (such as changes in surface friction and albedo) because

WRF would recognize the presence of a water surface. How-

ever, all processes related to the LST (e.g., ice formation,

latent and sensible heat flux, 2 m temperature and moisture

values, outgoing longwave radiation from the surface) would

be negatively impacted by this treatment. Additionally, some

impacts of climate change on the future lake state could be

lost. For example, the amplification of Great Lakes LSTs,

relative to over-land temperatures, observed by Austin and

Colman (2007) will not be captured if land temperatures are

used to set LSTs.

2.4 Use of simulated lake fields from GCM

A more sophisticated class of approaches for better repre-

senting the lake state in a downscaling configuration involves

the use of a lake model. This can be done either by using

outputs from the GCM’s lake model (if available), driving

a stand-alone lake model offline with GCM fields to simu-

late LSTs and ice, or by coupling a lake model to the RCM

when downscaling. The CESM has a lake model embedded

within its land surface model (LSM), version 4 of the Com-

munity Land Model (CLM4). CLM4 accounts for the pres-

ence of subgrid-scale lakes using the one-dimensional lake

model described in Oleson et al. (2010). It is a column model

partially based on the Hostetler lake model (e.g., Hostetler

and Bartlein, 1990; Hostetler et al., 1993, 1994), and it sim-

ulates 10 water layers through the depth of the lake, as well

as additional layers for thermally active soil underneath and

snow and ice above. However, when producing the down-

scaled simulation shown in Fig. 2, output from CLM’s lake

model was not easily accessible with other CESM outputs

from the same simulation within archiving systems such as

the Earth System Grid Federation. Lake temperatures and

ice from CESM, and other GCMs with embedded lake mod-

els, could be leveraged by RCMs such as WRF to account

for the impact of climate change on the lake state. In areas

where lakes are at least partially resolved by the GCM, this

approach would be effective at driving the RCM with sim-

ulated changes in LSTs and ice cover consistent with future

projections and at keeping the RCM solution in the regions

affected by lakes consistent with the GCM simulation. How-

ever, some small lakes may remain unrepresented by GCM

data.

2.5 Use of a stand-alone lake model

If lake model outputs from the GCM are unavailable, one al-

ternative is to use a stand-alone lake model driven by GCM

fields to downscale the lake state in a manner which is consis-

tent with the GCM’s atmospheric fields. In the downscaling

experiments performed by Gula and Peltier (2012) over the

period 2050–2060, the Freshwater Lake (FLake) model was

utilized to provide simulated LSTs and lake ice to WRF in the

Great Lakes basin. GCM fields from the Community Climate

System Model, with a spectral resolution of T85 (∼ 1.4◦ grid

spacing), were used to drive a FLake simulation on a 10 km

regional grid, and the LSTs and ice cover simulated by FLake

were subsequently used to drive the downscaled WRF sim-

ulation. In this one-way WRF-FLake model configuration,

changes in LSTs and ice respond to changes in atmospheric

variables in the driving GCM, but the lake model output is

produced on the higher-resolution regional WRF grid. FLake

is a 1-D column model which is highly reliant on empirical

relationships and has been used in several studies with other

RCMs (e.g., Mironov, 2008; Kourzeneva et al., 2008; Mar-

tynov et al., 2008; Mironov et al., 2010; Samuelsson et al.,

2010). FLake requires a 2-D field of lake depths and the 1-D

column model is called at each point. Therefore, the simu-

lated LSTs are sensitive to lake depth, as well as the driving

GCM fields.

2.6 Use of a coupled lake model within an RCM

In WRF version 3.6 a CLM-based lake model can be uti-

lized with other non-CLM land surface models (WRF User’s

Guide, 2014; Table 1). This lake model is taken from CLM

version 4.5 (Subin et al., 2012; Oleson et al., 2013) with some

modifications by Gu et al. (2015) as discussed further be-

low. Although a version of CLM4 was available as an LSM

option within WRF version 3.5, the lake model in CLM4

was disabled in WRF (Table 1). In WRF version 3.6, CLM’s

Hostetler-based lake model can be applied by using horizon-

tally varying lake depths (which are available in WPS ver-

sion 3.6) or a uniform lake depth can be assigned to all lakes

at runtime. Gu et al. (2015) demonstrated WRF-CLM’s per-

formance in the Great Lakes region using a previous version
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Figure 3. Surface temperature from the initial year of a 10-year FLake spin-up simulation, taken from a point near the north shore of Lake

Superior (48.47◦ N, 87.54◦ W) and shown hourly from 1 January to 31 December 2005 (top). LSTs at all lake cells are initialized with a

default value of 274.15 K, and the time series shows either ice or water surface temperatures depending on whether ice is present. Simulated

ice thickness (m) taken from day 30 of the same FLake simulation, valid 30 January 2005 (bottom left). Fractional ice values observed on

this date plotted from the NIC ice analysis (bottom right).

of this model configuration (WRF 3.2 and CLM 3.5) to sim-

ulate a 16-month period from 2001 to 2002 at 10 km grid

spacing. It was shown that the lake model simulated LSTs

well in Lake Erie but generated large biases in LSTs when

compared to buoy observations in Lake Superior. However,

the LST bias was reduced by reformulating the eddy diffu-

sivity parameter in the CLM lake model, and it was con-

cluded that the updated lake model within WRF-CLM was

reasonably able to reproduce observed LSTs. However, no

ice was observed during the period and the ability of WRF-

CLM to accurately simulate ice cover was not examined in

Gu et al. (2015).

In an alternative coupled approach, the prior work of Gula

and Peltier (2012) has been updated with the option of us-

ing WRF-FLake as a two-way coupled model, where atmo-

spheric variables simulated by WRF are used by FLake at

each time step in the WRF model, and simulated LSTs and

ice thicknesses are provided back to WRF by FLake. M14

concluded that the use of WRF-FLake resulted in a more ac-

curate representation of LSTs and lake ice, relative to inter-

polation from the R2. Substantial improvements were shown

in the simulation of the temporal and spatial variability of

ice cover, and errors in LSTs were reduced by the use of

the coupled model. Similar to Martynov et al. (2010), M14

found that FLake performed worst in the largest and deepest

lake (Lake Superior) and best for the smallest and shallowest

(Lake Erie).

When using an embedded lake model within an RCM, it

can be anticipated that the period of time needed for spin-up

could be larger than it is when all water conditions are sim-

ply prescribed. To spin up the WRF-FLake model in M14,

the stand-alone version of the FLake model was driven with
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Figure 4. Simulated ice cover (%) taken from a WRF simulation (valid 2 March 2006, after ∼ 4 months of simulation time) with the same

model configuration as described in M14, but simulated with WRF version 3.6 and the use of the CLM lake model in place of FLake (left). A

2-D field of lake depths (instead of a single default value) was used from WPS to set the lake depth in this simulation. Ice coverage observed

on this date is plotted from the NIC ice analysis (right).

atmospheric conditions from the proxy GCM in a spin-up

procedure recommended by Mironov et al. (2010) when us-

ing FLake. In this methodology, the initial year of the simu-

lation is “looped” over 10 annual cycles with meteorological

variables from the initial year repeatedly used to force the

lake model, and the lake state at the end of each year used

to initialize FLake for the start of the next year, ensuring

that the simulated lake state converges to equilibrium with

these atmospheric conditions by the end of the 10-cycle sim-

ulation. Output from the first year of this offline simulation

is shown in Fig. 3 illustrating the adverse effects of using

FLake output without adequate spin-up time. A time series

taken from a representative point in Lake Superior shows un-

realistically cool LSTs (below 200 K) occurring during the

initial months of the simulation. Also during this period, un-

realistically large ice coverage formed, freezing over all five

Great Lakes. The observed ice cover plotted in Fig. 3 is much

more limited in its spatial extent. Observed ice cover is plot-

ted from National Ice Center (NIC) ice charts, which are pro-

cessed and provided by the Great Lakes Environmental Re-

search Laboratory (GLERL; Wang et al., 2012a). The FLake

model results obtained after the spin-up period showed real-

istic values of LSTs and ice cover (M14).

To examine how WRF-CLM reacts during the initial

months of a simulation, without any spin-up time, output

from a 12 km WRF-CLM simulation (version 3.6) is shown

in Fig. 4. In this simulation, the same methods as in M14 are

followed but with the following changes: the model version

is updated from 3.4.1 to 3.6, the CLM lake model is used in

place of FLake, and no spin-up procedure is employed for

initialization of the lake model (initial LSTs are interpolated

from R2). As in M14, the Noah LSM (Chen and Dudhia,

2001) is used. Similar to the example shown in Fig. 3, signif-

icant overestimation of ice coverage occurs during the first

year (Fig. 4). Although some adverse effects in this simula-

tion are introduced due to the use of LSTs interpolated from

the coarse R2 data to provide an initial state, the similarity of

these results to FLake’s fields in Fig. 3 suggests that the lack

of spin-up time is a common problem to both model runs. It

is also implied by the methodologies of other CLM-based

studies, which do use spin-up or initialization procedures.

Previous work by Subin et al. (2012) with the lake model

in CLM4 used a 110-year period for the spin-up of their ref-

erence simulation. In their experiments with WRF-CLM, Gu

et al. (2015) used an observed LST field for initialization.

The nine sub-surface layers in their model were initialized

based on the shape of an observed profile of lake temper-

atures, valid during that period of the year and taken from

Lake Superior. Using this initialization methodology for a

future downscaled simulation is not possible due to lack of

observations, but simulated future lake profiles could possi-

bly be utilized for initialization of downscaled runs. Overall,

when using an embedded lake model in a downscaling ap-

plication, users should consider how the lake model is being

initialized or spun up in order to achieve results with accu-

racy similar to the prior studies discussed above. If the lake

state is initially poorly prescribed from the GCM (with re-

sults similar to those shown in Fig. 2), a protracted spin-up

could be required to reach equilibrium with the driving fields

in the RCM and obtain more realistic results.

It has been noted previously that both WRF-FLake and

WRF-CLM, as well as other 1-D lake models, tend to exhibit
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Table 2. A summary of the pros and cons of each method of treating lake surface temperatures and ice coverage described in the text. All

approaches were found to eliminate unrealistic temperature discontinuities resulting from WRF’s default interpolation methods as shown in

Fig. 2.

Methodology Positives Potential drawbacks

WRF’s alternative lake

setting

Effective at representing LSTs when lake temper-

atures are closely coupled with atmospheric tem-

peratures.

Unrealistic ice formation possible when 2 m tem-

peratures are below freezing.

Cannot account for varying lake depths and differ-

ing timescales of warming and cooling throughout

lakes.

Climatological Observed LSTs and ice taken from high-resolution

analyses.

For long-term simulations, user must include tem-

perature trend or LSTs will not be in equilibrium

with future climate state.

Does not represent interannual variability of lake

state.

Land mask modification Future LSTs can be taken from projected GCM

temperatures.

Eliminates land–lake temperature contrasts.

Lake model component Models have ability to simulate future changes in

LSTs and ice.

Additional preprocessing needed to provide lake

model spin-up for RCM run or to use lake fields

simulated by GCM.

difficulty in simulating deep lakes (e.g., Martynov et al.,

2010; Stepanenko et al., 2010; Gu et al., 2015; M14). Some

model error can be attributed to the fact that one-dimensional

column models cannot represent 2- and 3-D processes (e.g.,

currents, drifting ice, and formation of a thermal bar). While

more sophisticated lake models could be coupled with WRF,

using computationally efficient 1-D models is advantageous

in downscaling applications, where computational resources

are taxed by the use of finer resolution. Additionally, Mar-

tynov et al. (2010) noted that more complex 3-D lake mod-

els are generally run with much finer grid spacing (∼ 2 km)

than typical RCMs. Martynov et al. (2010) also compared

the simulated water temperatures and ice coverage from

the Hostetler and FLake models, finding that FLake gen-

erally performed better, but that the Hostetler model pro-

vides more opportunity to improve model performance be-

cause it utilizes more vertical layers and is less reliant on pa-

rameterization. A comparison of 1-D lake models by Thiery

et al. (2014) showed favorable results for both FLake and

Hostetler-based models (including the lake model found in

CLM4) and noted their computational efficiency. When mak-

ing regional climate projections with these models it should

be noted that both WRF-FLake and WRF-CLM assume that

lake depths are constant in time, which could be a poor as-

sumption depending on the lake being modeled and the fu-

ture period. Also, more complex lake models may be appro-

priate for higher-resolution (∼ 2 km grid spacing) RCM sim-

ulations focused on regions where lake dynamics are not ad-

equately captured by the column lake models discussed here.

3 Conclusion

It has been shown in the present study and in previous work

(e.g., Gao et al., 2012; Bullock et al., 2014; M14) that down-

scaling typically coarse GCM data, using WRF’s default in-

terpolation methods, to finer-resolution WRF grids results in

LST discontinuities and spurious ice formation in the Great

Lakes (Fig. 2). Although the default interpolation methods

in WRF can easily be modified to alter the interpolation

scheme or to eliminate the search option, none of these sim-

ple changes will overcome the challenges of setting the LSTs

for inland water bodies that are not resolved by driving data

when WRF is used as an RCM. Various alternate methods

have been presented, and a summary of the positives and

potential drawbacks to each approach is shown in Table 2.

Using WRF’s “alternative” lake setting instead of the de-

fault interpolation method in WPS eliminates unrealistically

large and abrupt spatial discontinuities in temperature, but

it causes large, deep lakes (such as Lake Superior) to erro-

neously freeze when ice is set based on an air-temperature

threshold. All the other approaches discussed above can sim-

ulate more realistic ice cover than the default interpolation.

However, the simulation of ice cover is obviously not a factor

in downscaling studies where the environment does not be-

come sufficiently cold to produce lake ice, such as those fo-

cusing on tropical regions. For example, the alternative lake

setting has been used to improve rainfall results (relative to

the use of WRF’s default interpolation techniques) over Lake

Victoria in eastern Africa by Argent (2014). Using climato-

logical values in a future warmer climate will adversely af-

fect results because LSTs cannot be assumed to be station-

ary over time. A warming trend could be applied to observed
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LST fields in order to improve this approach; however, a real-

istic trend may be complex to derive for some lakes as Austin

and Colman (2007) have shown an observed nonlinear am-

plification of warming LSTs relative to inland temperatures

in the Great Lakes region. The land mask alteration method

of Gao et al. (2012) is effective at preventing discontinuities

in surface temperatures, but the use of temperatures from

land grid cells in the GCM to set LSTs in the RCM elimi-

nates the presence of land–lake temperature contrasts which

impact precipitation, winds (i.e., land–sea breeze), and other

near-surface fields. The use of a lake model (either coupling

a lake model to the RCM or using outputs from the GCM’s

lake model to drive the RCM) can improve the representation

of the lakes in retrospective simulations and has the ability to

simulate nonlinear impacts of climate change on LSTs and

ice cover (e.g., Gula and Peltier, 2012, M14).

For downscaling applications using WRF, we recommend

setting LSTs and ice cover from either an RCM- or GCM-

driven lake model, especially when simulating mid-latitude

regions. In their studies focused on the Great Lakes, Notaro

et al. (2013) and Wright et al. (2013) state that accurate pre-

dictions of changes in LSTs and ice cover from lake mod-

els are needed when simulating changes in regional climate.

Zhao et al. (2012) also recommended the use of a lake model

for simulating changes in regional precipitation in the Great

Lakes basin. Including prognostic changes in the lake state is

also possible if GCM data sets include predicted lake surface

temperatures and ice within their publicly available outputs.

For regional climate modeling efforts in which the RCM data

is being archived for various end-user applications, we rec-

ommend the use of GCM- or RCM-driven lake modeling ap-

proaches. If such an approach is not used, the potential ad-

verse effects of setting LSTs and ice cover using interpola-

tion from the GCM should be documented, as is currently

done in NARCCAP (2014).

The accuracy of the various approaches presented here is

sensitive to the characteristics of the lakes to which they are

being applied. Approaches which set LSTs as a function of

over-land temperatures (such as the land mask modification

approach or WRF’s alternative lake setting) may perform ad-

equately when applied to smaller, shallower lakes where LST

changes are more closely coupled to air temperature changes.

Investigators performing RCM experiments should consider

both the present-day interactions between the lake and over-

lying air masses as well as the potential climate change im-

pacts on the lakes within their model domain when choosing

an approach.

Code availability

WPS and the WRF model can be downloaded from

http://www2.mmm.ucar.edu/wrf/users/downloads.html.

Source code for the FLake model can be obtained at

http://www.flake.igb-berlin.de/sourcecodes.shtml, and code

needed to run the coupled WRF-FLake model is available

for download at http://web.atmos.ucla.edu/~gula/wrfflake.
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