Articles | Volume 7, issue 6
https://doi.org/10.5194/gmd-7-3037-2014
https://doi.org/10.5194/gmd-7-3037-2014
Development and technical paper
 | 
18 Dec 2014
Development and technical paper |  | 18 Dec 2014

Evaluation of North Eurasian snow-off dates in the ECHAM5.4 atmospheric general circulation model

P. Räisänen, A. Luomaranta, H. Järvinen, M. Takala, K. Jylhä, O. N. Bulygina, K. Luojus, A. Riihelä, A. Laaksonen, J. Koskinen, and J. Pulliainen

Related authors

Polar winter climate change: strong local effects from sea ice loss, widespread consequences from warming seas
Tuomas Naakka, Daniel Köhler, Kalle Nordling, Petri Räisänen, Marianne Tronstad Lund, Risto Makkonen, Joonas Merikanto, Bjørn H. Samset, Victoria A. Sinclair, Jennie L. Thomas, and Annica M. L. Ekman
Atmos. Chem. Phys., 25, 8127–8145, https://doi.org/10.5194/acp-25-8127-2025,https://doi.org/10.5194/acp-25-8127-2025, 2025
Short summary
The future North Atlantic jet stream and storm track: relative contributions from sea ice and sea surface temperature changes
Daniel Köhler, Petri Räisänen, Tuomas Naakka, Kalle Nordling, and Victoria A. Sinclair
Weather Clim. Dynam., 6, 669–694, https://doi.org/10.5194/wcd-6-669-2025,https://doi.org/10.5194/wcd-6-669-2025, 2025
Short summary
Response of Northern Hemisphere Rossby wave breaking to changes in sea surface temperature and sea ice cover
Sara Tahvonen, Daniel Köhler, Petri Räisänen, and Victoria Anne Sinclair
EGUsphere, https://doi.org/10.5194/egusphere-2025-2212,https://doi.org/10.5194/egusphere-2025-2212, 2025
Short summary
Technical note: Emulation of a large-eddy simulator for stratocumulus clouds in a general circulation model
Kalle Nordling, Jukka-Pekka Keskinen, Sami Romakkaniemi, Harri Kokkola, Petri Räisänen, Antti Lipponen, Antti-Ilari Partanen, Jaakko Ahola, Juha Tonttila, Muzaffer Ege Alper, Hannele Korhonen, and Tomi Raatikainen
Atmos. Chem. Phys., 24, 869–890, https://doi.org/10.5194/acp-24-869-2024,https://doi.org/10.5194/acp-24-869-2024, 2024
Short summary
Mapping the dependence of black carbon radiative forcing on emission region and season
Petri Räisänen, Joonas Merikanto, Risto Makkonen, Mikko Savolahti, Alf Kirkevåg, Maria Sand, Øyvind Seland, and Antti-Ilari Partanen
Atmos. Chem. Phys., 22, 11579–11602, https://doi.org/10.5194/acp-22-11579-2022,https://doi.org/10.5194/acp-22-11579-2022, 2022
Short summary

Related subject area

Climate and Earth system modeling
SASIEv.1: a framework for seasonal and multi-centennial Arctic sea ice emulation
Sian Megan Chilcott, Malte Meinshausen, and Dirk Notz
Geosci. Model Dev., 18, 4965–4982, https://doi.org/10.5194/gmd-18-4965-2025,https://doi.org/10.5194/gmd-18-4965-2025, 2025
Short summary
COSP-RTTOV-1.0: flexible radiation diagnostics to enable new science applications in model evaluation, climate change detection, and satellite mission design
Jonah K. Shaw, Dustin J. Swales, Sergio DeSouza-Machado, David D. Turner, Jennifer E. Kay, and David P. Schneider
Geosci. Model Dev., 18, 4935–4950, https://doi.org/10.5194/gmd-18-4935-2025,https://doi.org/10.5194/gmd-18-4935-2025, 2025
Short summary
Assessing modifications to the Abdul-Razzak and Ghan aerosol activation parameterization (version ARG2000) to improve simulated aerosol–cloud radiative effects in the UK Met Office Unified Model (UM version 13.0)
Pratapaditya Ghosh, Katherine J. Evans, Daniel P. Grosvenor, Hyun-Gyu Kang, Salil Mahajan, Min Xu, Wei Zhang, and Hamish Gordon
Geosci. Model Dev., 18, 4899–4913, https://doi.org/10.5194/gmd-18-4899-2025,https://doi.org/10.5194/gmd-18-4899-2025, 2025
Short summary
Correction of sea surface biases in the NEMO ocean general circulation model using neural networks
Andrea Storto, Sergey Frolov, Laura Slivinski, and Chunxue Yang
Geosci. Model Dev., 18, 4789–4804, https://doi.org/10.5194/gmd-18-4789-2025,https://doi.org/10.5194/gmd-18-4789-2025, 2025
Short summary
Representing lateral groundwater flow from land to river in Earth system models
Chang Liao, L. Ruby Leung, Yilin Fang, Teklu Tesfa, and Robinson Negron-Juarez
Geosci. Model Dev., 18, 4601–4624, https://doi.org/10.5194/gmd-18-4601-2025,https://doi.org/10.5194/gmd-18-4601-2025, 2025
Short summary

Cited articles

AMIP Project Office: AMIP II Guidelines, AMIP Newsletter, 8, available at: http://www-pcmdi.llnl.gov/projects/amip/NEWS/amipnl8.php (last access: 6 November 2014), 1996.
Arino, O., Ramos Perez, J. J., Kalogirou, V., Bontemps, S., Defourny, P., and Van Bogaert, E.: Global land cover map for 2009 (GlobCover 2009), European Space Agency (ESA) and Université Catholique de Louvain (UCL), https://doi.org/10.1594/PANGAEA.787668, 2012.
Armstrong, R. L., Knowles, K. W., Brodzik, M. J., and Hardman, M. A.: DMSP SSM/I Pathfinder Daily EASE-Grid Brightness Temperatures, January 1987–July 2008, National Snow and Ice Data Center, Boulder, Colorado, USA, digital media, 1994.
Bontemps, S., Defourny, P., Van Bogaert, E., Arino, O., Kalogirou, V., and Ramos Perez, J. J.: GLOBCOVER 2009 Products description and validation report. Université Catholique de Louvain (UCL) and European Space Agency (ESA), Vers. 2.2, 53 pp., available at: http://epic.awi.de/31014/16/GLOBCOVER2009_Validation_Report_2-2.pdf (last access: 6 November 2014), 2011.
Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B., and Jones, P. D.: Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850, J. Geophys. Res., 111, D12106, https://doi.org/10.1029/2005JD006548, 2006.
Download
Short summary
Snowmelt influences greatly the climatic conditions in spring. This study evaluates the timing of springtime end of snowmelt in the ECHAM5 model. A key finding is that, in much of northern Eurasia, snow disappears too early in ECHAM5, in spite of a slight cold bias in spring. This points to the need for a more comprehensive treatment of the surface energy budget. In particular, the surface temperature for the snow-covered and snow-free parts of a climate model grid cell should be separated.
Share