Articles | Volume 7, issue 5
https://doi.org/10.5194/gmd-7-2303-2014
https://doi.org/10.5194/gmd-7-2303-2014
Development and technical paper
 | 
10 Oct 2014
Development and technical paper |  | 10 Oct 2014

A robust method for inverse transport modeling of atmospheric emissions using blind outlier detection

M. Martinez-Camara, B. Béjar Haro, A. Stohl, and M. Vetterli

Related authors

LARA: a Lagrangian Reanalysis based on ERA5 spanning from 1940 to 2023
Lucie Bakels, Michael Blaschek, Marina Dütsch, Andreas Plach, Vincent Lechner, Georg Brack, Leopold Haimberger, and Andreas Stohl
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-26,https://doi.org/10.5194/essd-2025-26, 2025
Revised manuscript accepted for ESSD
Short summary
A thousand inversions to determine European SF6 emissions from 2005 to 2021
Martin Vojta, Andreas Plach, Rona L. Thompson, Pallav Purohit, Kieran Stanley, Simon O’Doherty, Dickon Young, Joe Pitt, Xin Lan, and Andreas Stohl
EGUsphere, https://doi.org/10.5194/egusphere-2025-1095,https://doi.org/10.5194/egusphere-2025-1095, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Efficient use of a Lagrangian Particle Dispersion Model for atmospheric inversions using satellite observations of column mixing ratios
Rona Louise Thompson, Nalini Krishnankutty, Ignacio Pisso, Philipp Schneider, Kerstin Stebel, Motoki Sasakawa, Andreas Stohl, and Stephen Platt
EGUsphere, https://doi.org/10.5194/egusphere-2025-147,https://doi.org/10.5194/egusphere-2025-147, 2025
Short summary
The atmospheric settling of commercially sold microplastics
Alina Sylvia Waltraud Reininger, Daria Tatsii, Taraprasad Bhowmick, Gholamhossein Bagheri, and Andreas Stohl
EGUsphere, https://doi.org/10.5194/egusphere-2025-605,https://doi.org/10.5194/egusphere-2025-605, 2025
Short summary
Measurement Report: Changes in ammonia emissions since the 18th century in south-eastern Europe inferred from an Elbrus (Caucasus, Russia) ice-core record
Michel Legrand, Mstislav Vorobyev, Daria Bokuchava, Stanislav Kutuzov, Andreas Plach, Andreas Stohl, Alexandra Khairedinova, Vladimir Mikhalenko, Maria Vinogradova, Sabine Eckhardt, and Susanne Preunkert
Atmos. Chem. Phys., 25, 1385–1399, https://doi.org/10.5194/acp-25-1385-2025,https://doi.org/10.5194/acp-25-1385-2025, 2025
Short summary

Related subject area

Atmospheric sciences
The sensitivity of aerosol data assimilation to vertical profiles: case study of dust storm assimilation with LOTOS-EUROS v2.2
Mijie Pang, Jianbing Jin, Ting Yang, Xi Chen, Arjo Segers, Batjargal Buyantogtokh, Yixuan Gu, Jiandong Li, Hai Xiang Lin, Hong Liao, and Wei Han
Geosci. Model Dev., 18, 3781–3798, https://doi.org/10.5194/gmd-18-3781-2025,https://doi.org/10.5194/gmd-18-3781-2025, 2025
Short summary
Knowledge-inspired fusion strategies for the inference of PM2.5 values with a neural network
Matthieu Dabrowski, José Mennesson, Jérôme Riedi, Chaabane Djeraba, and Pierre Nabat
Geosci. Model Dev., 18, 3707–3733, https://doi.org/10.5194/gmd-18-3707-2025,https://doi.org/10.5194/gmd-18-3707-2025, 2025
Short summary
Tuning the ICON-A 2.6.4 climate model with machine-learning-based emulators and history matching
Pauline Bonnet, Lorenzo Pastori, Mierk Schwabe, Marco Giorgetta, Fernando Iglesias-Suarez, and Veronika Eyring
Geosci. Model Dev., 18, 3681–3706, https://doi.org/10.5194/gmd-18-3681-2025,https://doi.org/10.5194/gmd-18-3681-2025, 2025
Short summary
A novel method for quantifying the contribution of regional transport to PM2.5 in Beijing (2013–2020): combining machine learning with concentration-weighted trajectory analysis
Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao
Geosci. Model Dev., 18, 3623–3634, https://doi.org/10.5194/gmd-18-3623-2025,https://doi.org/10.5194/gmd-18-3623-2025, 2025
Short summary
Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet
Geosci. Model Dev., 18, 3607–3622, https://doi.org/10.5194/gmd-18-3607-2025,https://doi.org/10.5194/gmd-18-3607-2025, 2025
Short summary

Cited articles

Bocquet, M.: High-resolution reconstruction of a tracer dispersion event: application to ETEX, Q. J. Roy. Meteorol. Soc., 133, 1013–1026, 2007.
Cook, R. D.: Detection of Influential Observation in Linear Regression, Technometrics, 19, 15–18, 1977.
CTBTO: Preparatory Commision for the Comprehensive Nuclear-Test-Ban Treaty Organization, available at: www.ctbto.org (last access: 8 October 2014), 2014.
Draxler, R., Dietz, R., Lagomarsino, R., and Start, G.: Across North America tracer experiment (ANATEX): Sampling and analysis, Atmos. Environ. A-Gen., 25, 2815–2836, 1991.
Fischler, M. A. and Bolles, R. C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography, Comm. ACM, 24, 381–395, 1981.
Download
Share