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Abstract. Emissions of harmful substances into the atmo-
sphere are a serious environmental concern. In order to un-
derstand and predict their effects, it is necessary to estimate
the exact quantity and timing of the emissions from sen-
sor measurements taken at different locations. There are a
number of methods for solving this problem. However, these
existing methods assume Gaussian additive errors, making
them extremely sensitive to outlier measurements. We first
show that the errors in real-world measurement data sets
come from a heavy-tailed distribution, i.e., include outliers.
Hence, we propose robustifying the existing inverse meth-
ods by adding a blind outlier-detection algorithm. The im-
proved performance of our method is demonstrated on a
real data set and compared to previously proposed methods.
For the blind outlier detection, we first use an existing al-
gorithm, RANSAC, and then propose a modification called
TRANSAC, which provides a further performance improve-
ment.

1 Introduction

1.1 Motivation

Emissions of harmful substances into the atmosphere occur
all the time. Examples include nuclear power plant accidents,
volcano eruptions, and releases of greenhouse gases. How-
ever, these emissions are difficult to quantify. Depending on
the scenario, measurement networks on scales from local
to global may be needed. A robust technical framework to

estimate the emissions properly from such measurements is
also necessary.

This technical framework consists of three elements:
measurements, atmospheric dispersion models, and inverse
methods tailored to this specific linear inverse problem.

There has been a clear effort in deploying more reli-
able, precise, and extended sensor networks (CTBTO, 2014).
Also, there has been an evident development of precise atmo-
spherical dispersion models (Holmes and Morawska, 2006).
However, inverse methods are still at a relatively early stage
of development.

These inverse methods are technically complex, and re-
quire a multidisciplinary approach; collaboration among re-
searchers from different fields is necessary for further ad-
vances.

1.2 Related work

Atmospheric dispersion models, such as Eulerian, or La-
grangian particle dispersion models (LPDMs) (Zannetti,
1990) allow us to relate the source to the measurements in
a linear way:

y = Āx+n, (1)

wherey is the measurement vector,x is the source term,̄A
is the transport matrix, andn is the measurement error.

LPDMs have some advantages with respect to the Eulerian
ones: they can have infinite temporal and spatial resolution;
they avoid the artificial initial diffusion of a point source in
the corresponding cell and the advection numerical errors;
they are computationally more efficient (Zannetti, 1990).
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There are only a few freely available, open source im-
plementations of LPDMs. The Flexible Particle dispersion
model (FLEXPART) (Stohl et al., 2005) is one of them. It has
been used and validated in a large number of studies about
long-range atmospheric transport (Stohl et al., 1998). Here,
we use it to deriveA, which is an estimate of the true trans-
port matrixĀ.

It is clear from Eq. (1) that estimating the source means
solving a linear inverse problem. Most environmental sci-
entists use a least-squares approach with the Tikhonov (`2-
norm) regularization, or variants of this method, to recover
an estimatêx of the source:

x̂ = arg min
x

‖ Ax− y ‖2+λ ‖ x ‖2, (2)

whereλ≥ 0 is the regularization parameter.
For example, inSeibert(2001), the Tikhonov regulariza-

tion is combined with a smooth first derivative constraint:

x̂ = arg min
x

‖ Ax− y ‖2+λ ‖ x ‖2+β ‖Dx ‖2 . (3)

Also, a priori solution xa can be introduced to the
Tikhonov regularization, as inStohl et al.(2012):

x̂ = arg min
x

‖ Ax− y ‖2+λ ‖ x− xa ‖2 . (4)

In Winiarek et al.(2012), the Tikhonov regularization is
used with a non-negative constraint. A slightly different ap-
proach is the use of a sparsity constraint, together with a
non-negative constraint, as inMartinez-Camara et al.(2013).
Yet, another point of view is given inBocquet(2007), where
both the source and the error distributions are estimated at
the same time.

All of these approaches minimize the energy of the dis-
agreement between the model and the observations, while at
the same time keeping the energy of the solution in check.
While this is a reasonable approach, no metrics of real perfor-
mance are (or can be) given in most of these studies, simply
because no knowledge of the ground truth is available. This
fact made it impossible to evaluate the true performance of
any of these approaches.

However, a few controlled tracer experiments have been
performed, the most important ones in Europe and in the
US (Nodop et al., 1998; Draxler et al., 1991). They present
exceptional opportunities to study model and measurement
errors, as well as to develop and test the various source-
recovery algorithms.

The European Tracer EXperiment (ETEX) (Nodop et al.,
1998) was established to evaluate the validity of long-range
transport models. Perfluorocarbon (PFC) tracers were re-
leased into the atmosphere in Monterfil, Brittany, in 1994.
Air samples were taken at 168 stations in 17 European coun-
tries for 72 h after the release. The data collected in the
ETEX experiment and the correspondent matrix estimated
by FLEXPART are used for several purposes in this paper.

We will refer to this data as the “ETEX data set”. In every in-
verse problem, a time window must be defined, during which
the activity of the source is to be recovered. In this particu-
lar case, we define a window of 5 days (although we, in fact,
know that the ETEX emissions took place over only 12 h) or
5 ·24=120 h. Since the time resolution is 1 h, we have 120
unknowns in the system.

1.3 Contributions

In this paper, we show that the errors present in a source-
estimation problem come from a heavy-tailed distribution,
which implies the presence of outliers in the measurement
data set. Typical source-estimation algorithms like Eq. (2) as-
sume Gaussian additive errors (Rousseeuw and Leroy, 1987).
This incorrect assumption makes them highly sensitive to
outliers. In fact, if the outliers are removed, the source es-
timation using Eq. (2) improves substantially.

Hence, we propose combining Eq. (2) with algorithms to
detect and remove outliers “blindly”, i.e., without any knowl-
edge of the ground truth. First, we use a well-known algo-
rithm for this task, RANdom SAmple Consensus (RANSAC)
(Fischler and Bolles, 1981), and study its performance. Next,
we propose a new algorithm which overcomes some of the
weaknesses of RANSAC and tests its performance. The ef-
ficiency of both algorithms is demonstrated in a real-world
data set, and their performance is evaluated and compared to
other existing methods.

Our presented algorithm is generic, in the sense that it is
suitable for all classes of input signals. Of the four key ele-
ments that constitute our algorithm – the least-squares term,
the regularization, the outlier detection, and voting – only
the regularization is affected by the type of input signal. We
chose to use the regularizations given in Eqs. (2) and (3)
because they are the most generic and are known to apply
relatively well to a broad range of realistic signals (impulse,
continuous, piece-wise constant, sparse, etc.). As always, im-
proved performance can be achieved when the structure of
the signal is known by using an appropriate, more specific
regularization suited to that structure. Our approach is, in
fact, independent of the regularization that is used, and is ap-
plicable to any regularization found in the literature.

2 Non-Gaussian noise

Given A, the estimate of the transport matrix produced by
FLEXPART, the forward model (Eq.1) now becomes

y = Ax+ e, (5)

wheree is an additive error term that encompasses both the
model and measurement errors.

In the ETEX experiment, we have access to the measure-
mentsy, the true sourcex, and the estimated transport ma-
trix A. This permits us to study the errorse. Let us model the
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Figure 1. Histogram of the additive errore. For clarity, the zero-
error bin has been omitted here.

componentsei of the vectore as random, independent, and
identically distributed. Some degree of correlation may ex-
ist among the errors, but this correlation is unknown. Thus,
it cannot be considered in the problem. We can approximate
the empirical probability distribution ofe by plotting the his-
togram of the elementsei .

Figure1graphically shows that the error has a heavy-tailed
distribution. The distribution clearly deviates from a Gaus-
sian one. This is confirmed by calculating the excess kurtosis
of the sample distribution. The value ofg = 123.64 indicates
that the underlying distribution is strongly super-Gaussian.

Using the`2 norm in the loss function in Eq. (2) is opti-
mal when the additive errors are Gaussian, which is not our
case. Even worse, this loss function is very sensitive to out-
liers, just like those present in the heavy-tailed distribution
shown in Fig.1. Hence, the performance of Eq. (2) and its
variants could be improved by additional processing, aimed
at removing and/or marginalizing the outliers. In the present
paper, we propose and demonstrate a novel scheme for this
additional processing.

3 Outlier detection

Imagine that we have an oracle which reveals to us the mea-
surements corresponding to the largest errors (i.e., the out-
liers). If we remove these measurements from the data set,
the performance of Eq. (2), in terms of the reconstruction er-
ror or mean square error (MSE), improves significantly.1 In
order to illustrate this, we remove the measurements asso-
ciated with the largest errors (sorted by magnitude) and ob-
serve the effect on the MSE. Figure2 shows how the MSE
decreases as more and more outliers are removed. Some os-
cillations may occur due to outlier compensation effects.

1The MSE is defined as1n ‖ x− x̂ ‖22, wherex̂ is the estimated
source,x is the real source (ground truth), andn is the number of
elements inx.

Figure 2. MSE of reconstruction obtained using Eq. (2). The
strongest outlier measurements (the ones associated with the largest
errors) have been removed manually. Notice that the MSE decreases
as more outliers are removed.

However, in a real-world problem, we do not have such an
oracle. The question becomes thus: how could one locate the
outliers blindly?

3.1 RANSAC

One of the simplest and most popular algorithms to local-
ize outliers blindly is RANSAC. RANSAC has been widely
and successfully used, mainly by the computer vision com-
munity (Stewart, 1999). Figure3 illustrates the operation of
RANSAC, and algorithm 1 describes it in pseudocode.

Given a data sety with m measurements, select randomly
a subsety′ containingp measurements. Typically,n < p <

m, wheren is the number of unknowns in the problem. In
Fig. 3, m= 8 andp = 2, and the subset is shown in red dia-
monds. Using Eq. (2) andy′, estimatex̂, and then compute
the residualr = Ax̂−y. Now, we can count how many of the
original samples are “inliers”. For a given toleranceη, the set
of inliers is defined asL= {q ∈ {1,2, . . . ,m} | η ≥ (r[q])2

}.
Repeat this processN times and declare the final solution
x∗ to be that estimatêx which produced the most inliers. In
Fig. 3, N = 2.

Note that other regularizations can be used instead of
Eq. (2). Here, we use the Tikhonov regularization because
it is simple, general, and most other existing approaches are
based on it. Nevertheless, if some properties of the source are
known a priori (e.g., sparsity or smoothness), this step of the
algorithm can be adapted accordingly.

At the stage where theN possible solutionŝx have been
generated, what RANSAC actually tries to do is select the
solutionx∗ with the smallest MSE. However, in a real-world
problem, the ground truth is unknown, so we do not have ac-
cess to the MSE itself. So, as mentioned above, RANSAC
overcomes this difficulty by using an indirect metric of the
MSE: it assumes that the number of inliers is inversely pro-
portional to the MSE. Figure3 depicts the intuition behind
this in a simple 1-D problem: the superior solution (subset 2)
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Algorithm 1 RANSAC

INPUT: y ∈ Rm, A ∈ Rm×n, λ, η, N , p

Require: λ≥ 0,N > 0,η ≥ 0,p ≤m

L∗←∅
x∗← 0∈ Rn

r← 0∈ Rm

k← 0∈ Np

y′← 0∈ Rp

A′← 0∈ Rp×n

for s = 1 to N do
k← p unique random integers from[1,m]

y′← y[k]
A′← A[k, :]

x̂← arg min
x

‖ A′x− y′ ‖22+λ ‖ x ‖22

r← Ax̂− y

L← {q ∈ {1,2, · · · ,m} | η ≥ (r[q])2}

if #L> #L∗ then
L∗← L
x∗← x̂

end if
end for
return x∗

produces more inliers than the inferior solution (subset 1).
Thus, RANSAC maximizes the number of inliers in the hope
that this also minimizes the estimation error.

As we will see in the following sections, if the optimal
value for the threshold parameterη is known and used, us-
ing RANSAC as a pre-processing stage for outlier removal
before applying Eq. (2) significantly improves the overall
performance (compared to using only Eq.2 with no outlier
removal pre-processing). Unfortunately, the performance of
RANSAC depends strongly on the parameterη, and finding
the optimal value ofη is an open problem.

Furthermore, the assumed inverse proportionality between
the number of inliers and the MSE does not always hold in
the presence of “critical measurements”. This is the case in
the ETEX data set, as we can see in Fig.4a.

3.2 Critical measurements

We identify critical measurements as those which have the
largest influence in the source-estimation process. A quanti-
tative measure of this influence is the Cook’s distance (Cook,
1977). Figure5 shows the Cook’s distance of the ETEX mea-
surements. It is easy to observe the peak that identifies the
critical measurements.

Let us consider again the ETEX data set, the set ofN

solutionsx̂ that RANSAC generates, and their correspond-
ing residualsr. It is interesting to note that the solutionsx̂

with the most inliers (the superior solutions, according to
RANSAC) have high residuals at exactly the critical mea-
surements. This is shown in Fig.6. In other words, by con-
sidering the critical measurements as outliers, these solutions
achieve more inliers.

Figure 3. Visual representation of the functioning of RANSAC.
Subset 1 and 2 represent two RANSAC iterations. The subset of
measurements selected by RANSAC in each iteration is represented
by red diamonds. Subset 1 contains one outlier. Hence, the solution
corresponding with this subset generates fewer inliers than subset 2,
which is free of outliers.

RANSAC assumes that all the measurements have the
same influence; it just wants to maximize the number of in-
liers, and does not care about which exact measurements are
the inliers. This is why it fails, in this case, and the inverse
proportionality between the number of inliers and the MSE
does not hold.

In summary, RANSAC operates reliably when all of the
measurements are of similar importance, because the in-
verse proportionality between MSE and the number of inliers
holds. However, when critical measurements are present, this
proportionality does not hold, and RANSAC fails.

3.3 RANdom SAmple Consensus (TRANSAC)

In order to avoid the weakness of the standard RANSAC
algorithm, we propose an alternative indirect metric to
discriminate solutions with small MSE: the total residual
ε = ‖ A x̂ − y ‖2. By replacing the number of inliers by
the total residual metric, we create the first step of the To-
tal residual RANdom SAmple Consensus (TRANSAC) al-
gorithm. The second step consists of a “voting” stage. Both
are described in algorithm 2 in pseudocode.

The total residual is directly proportional to the MSE of re-
construction. Unlike the number of inliers, this proportional-
ity is also conserved when critical measurements are present
in the data set (Fig.4c and d). In a real-life problem, where
we do not have access to the ground truth, we do not know if
critical measurements are present. Hence, we need a robust
algorithm like TRANSAC. In addition, TRANSAC does not
depend on the thresholdη.

The proportionality between the total residual and the re-
construction error is not perfect, as we can see in the scatter
plot of Fig. 4d. Even if a candidate solution has the small-
est total residual, it is not guaranteed to be the solution with
the smallest MSE. The intention of the voting stage is, using
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Figure 4. Performance of RANSAC and TRANSAC.(a) and(b) show graphically the correlation between MSE of reconstruction and the
number of inliers.(c) and(d) show graphically the correlation between MSE of reconstruction and the total residual. To build(a) and(c)
the complete data set was used, to build(b) and(d) the data set without critical measurements was used. The diamond indicates the solution
obtained by the traditional Tikhonov regularization in Eq. (2), the star indicates the solution chosen by TRANSAC before the voting stage,
the square indicates the final solution of TRANSAC, and the hexagon the solution chosen by RANSAC.

Figure 5. Cook’s distance of the measurements in the ETEX data
set.

the candidate solutions with a total residual under a certain
threshold, to come up with the best possible final solution.

Intuitively, the solutions with the smallest total residual
(i.e., smallest MSE) are generated using almost outlier-free
random subsets of measurementsy′. We refer to these as
the “good” subsets. Outliers can appear sporadicly in some
of these good subsets, but the same outlier is extremely un-
likely to appear in all of them. Hence, in the voting stage,
we select the measurements that all the good subsets have in
common, or, in other words, exclude any measurements that
appear very infrequently.

Thus, we first select the subsetsy′ associated with can-
didate solutions with a total residual smaller than a certain
threshold,ε < β. Then, for each measurement we count how
many times it appears in these good subsets. Finally, we se-
lect theM measurements with the largest frequency of oc-
currence.

4 Results

4.1 Performance analysis of TRANSAC

We now perform two experiments to demonstrate various as-
pects of TRANSAC.

4.1.1 Sanity check

In Sect.3.3, we confirmed the expected behavior of the first
stage of TRANSAC: we showed that the total residual is di-
rectly proportional to the MSE. Let us now check the second
stage: the voting. To do so, let us suppose that, during the
voting, we have access to the MSE of every candidate solu-
tion x̂. Then, we would of course select the solutions which,
in fact, have the smallest MSE, and use them to build the his-
togram. We run this modified TRANSAC with the data set
without critical measurements.

Figure 7a shows the MSE obtained for different values
of the parameterM. The dashed line on the right indicates
the maximum possible value ofM, such thatM =m, which
corresponds to using the whole measurement data set. The
dashed line on the left indicates the minimum possible value,
M = n, and corresponds to using as many measurements as
there are unknowns. The red horizontal line indicates the
MSE of the solution obtained by using just the Tikhonov reg-
ularization without TRANSAC, i.e., whenM =m.

www.geosci-model-dev.net/7/2303/2014/ Geosci. Model Dev., 7, 2303–2311, 2014
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Algorithm 2 TRANSAC

INPUT: y ∈ Rm, A ∈ Rm×n, λ, N , p, M, β

Require: λ≥ 0,N > 0,p ≤m,n≤M ≤m,β ≥ 0
ε← 0∈ RN

k← 0∈ Np

K ← 0∈ Np×N

y′← 0∈ Rp

A′← 0∈ Rp×n

G←∅
h← 0∈ Rm

b← 0∈ RM

for s = 1 to N do
k← p unique random integers from[1,m]

y′← y[k]

A′← A[k, :]

x̂← arg min
x

‖ A′x− y′ ‖22+λ ‖ x ‖22

ε[s] ←‖ Ax̂− y ‖2
K [ :, s] ← k

end for
G← {q ∈ {1,2, · · · ,N} | ε[q] ≤ β}

KG← K [:,G]
h[k] ← how many timesk appears inKG , ∀k ∈ {1,2, · · · ,m}

b← indices of theM largest elements ofh
y∗← y[b]

A∗← A[b, :]

x∗← arg min
x

‖ A∗x− y∗ ‖22+λ ‖ x ‖22

return x∗

We can observe that the MSE of the solution increases as
M increases. This is to be expected: asM grows, more out-
liers are included in the data set that is used to obtainx∗,
and its MSE increases. We note that the result curve is non-
decreasing, because, in this particular experiment, we have
access to the MSE, and the histogramh is built from the ac-
tual best-candidate solutions.

4.1.2 Actual ETEX

In this subsection, the performance of the complete
TRANSAC algorithm is examined. Let us consider first the
data set without critical measurements. As in the sanity check
above, TRANSAC is run for different values ofM. The re-
sults are shown in Fig.7b. We observe that the MSE increases
asM increases, as before, and the maximum MSE still oc-
curs atM =m. This is reassuring: even if we do not find the
optimal value for the parameterM, we will improve the solu-
tion (with respect to using only the Tikhonov regularization)
by taking anyn < M < m. Notice that the minimum MSE
occurs again whenM = n.

Figure7c shows the results from the examination of the
whole data set, including the critical measurements. We can
observe that, again, the maximum MSE occurs atM =m. On
the other hand, the minimum MSE does not occur atn, but
rather atM = 330. Also, although the exact performance of
the algorithm varies with the value chosen for the parameter

Figure 6. Residuals of two different source estimations: The blue
peaks correspond to the residual produced by the solutionx̂ with
the largest number of inliers in Fig.4a. The black arrows on the top
indicate where the two most critical measurements are localized.
Clearly, the residual corresponding to these two measurements is
much larger than the rest. The red peaks corresponds to the residual
produced by the solution̂x with the smallest MSE in Fig.4a.

β, as shown in Fig.8, we note that, for practically any value
of β, there is an improvement in performance.

These results show that TRANSAC clearly improves the
performance of the Tikhonov regularization in both cases
(with and without critical measurements).

4.2 Outlier removal

As explained in Sect.3, RANSAC and TRANSAC are blind
outlier-detection algorithms that can be combined with dif-
ferent regularizations in order to improve their results. In
this section we combine RANSAC and TRANSAC with
two different regularizations previously used in the literature,
Eqs. (2) and (3), and study their performance. As before, we
use the ETEX data set with and without the critical measure-
ments.

The results are shown in Fig.9. It is important to note that
all of these results were generated using the optimal values
for all of the parameters (λ, η, β, M) that were found experi-
mentally. The blue bars correspond to the original algorithms
(Eqs.2, 3). The violet bars indicate that RANSAC is used for
outlier removal, and the green ones that TRANSAC is used
for outlier removal. First, we note that, with and without crit-
ical measurements, the outlier removal stage improves the
performance of both regularizations. Hence, our idea of re-
moving outliers, outlined in Sect. 2, does indeed lead to im-
proved performance, regardless of critical measurements or
type of regularization. Next, in all cases, TRANSAC shows
higher performance than RANSAC. Therefore, our proposed
modification of the metric and the addition of the voting stage
result in improved performance, as expected. Finally, we note
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Figure 7. Performance of TRANSAC combined with Tikhonov regularization. In the three plots, the red dashed line indicates the estimation
error given by typical Tikhonov (Eq.2). The dashed line on the right indicatesM =m, the one on the left indicatesM = n. Plot (a) shows
the results of the sanity check. As the selected number of measurementsM increases, the MSE of the estimation decreases. Notice that
the maximum MSE corresponds withM =m. Plot (b) shows the results of applying TRANSAC to the ETEX data set without critical
measurements. Again, the MSE increases in general with M, and the maximum MSE appears inM =m. Plot (c) shows the results of
applying TRANSAC to the whole ETEX data set, critical measurements included. In this case, the MSE does not always increase withM,
but the maximum MSE still corresponds withM =m.

Figure 8. Sensibility of TRANSAC combined with Tikhonov regu-
larization to the parameterβ. The red line indicates the estimation
error given by typical Tikhonov (Eq.2). The algorithm is sensitive
to beta, but, for practically all beta values, the performance is im-
proved.

that the MSE is higher, i.e., the reconstruction is poorer when
the critical measurements are not used, which is, again, con-
sistent with our analysis.

Figure10 gives a more qualitative assessment of these re-
sults by representing the estimated source. We first notice
that the reconstructed sources using Eq. (3) are generally
smoother than those reconstructed using Eq. (2), due to the
added smoothness (derivative) term in the objective function.
Next, we note that the reconstructions using the critical mea-
surements are closer to the ground truth than the reconstruc-
tions without the use of the critical measurements, which is
consistent with the results shown in Fig.9. Finally, we note
that in all four cases, the recovered source using TRANSAC
for the outlier detection produces the closest match to the
ground truth, as expected.

Figure 9. MSE of source estimated by different algorithms. The
blue bars correspond with the original algorithms (Eqs.2, 3). The
violet bars indicate that RANSAC is used for outlier removal, and
the green ones shows that TRANSAC is used for outlier removal.
The plot on the left was generated using the whole ETEX data set.
The plot on the right was generated using the ETEX data set without
critical measurements.

5 Conclusions

In this work we showed that the additive errors present in the
ETEX data set come from a heavy-tailed distribution. This
implies the presence of outliers. Existing source-estimation
algorithms typically assume Gaussian additive errors. This
assumption makes such existing algorithms highly sensitive
to outliers. We showed that, if the outliers are removed from
the data set, the estimation given by these algorithms im-
proves substantially.

However, in a real-life problem, we do not know which
of the measurements are outliers. Hence, we do have to re-
move them in a blind fashion. For this purpose, we proposed
RANSAC, a well-known blind-outlier-detection algorithm.
We then showed that RANSAC unfortunately strongly de-
pends on the chosen tolerance parameter, and it is sensitive

www.geosci-model-dev.net/7/2303/2014/ Geosci. Model Dev., 7, 2303–2311, 2014
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Figure 10.Source reconstructions given by the different algorithms. The plots on the left were generated combining Eq. (2) with RANSAC
and TRANSAC. The plots on the right were generated combining Eq. (3) with TRANSAC and RANSAC. The plots on the top were generated
using the ETEX data set without critical measurements. The plots on the bottom were generated using the whole ETEX data set.

to critical measurements. To overcome these difficulties, we
created TRANSAC, a modification of RANSAC, which also
includes a voting stage.

To demonstrate the efficiency of these methods in a real-
world problem, we used the ETEX tracer experiment data set.
The source was first recovered with two previously proposed
source-estimation algorithms that assume Gaussian additive
errors – Eqs. (2) and (3). Then, it was recovered again with
our algorithms that use RANSAC and TRANSAC. The re-
sults clearly display how the source estimation improves if an
outlier-detection algorithm is used. They also show that the
performance of our proposed algorithm TRANSAC clearly
exceeds the performance of RANSAC in every case.
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