Articles | Volume 7, issue 3
Geosci. Model Dev., 7, 1069–1092, 2014
https://doi.org/10.5194/gmd-7-1069-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue: Nucleus for European Modelling of the Ocean - NEMO
Model description paper
06 Jun 2014
Model description paper
| 06 Jun 2014
GO5.0: the joint NERC–Met Office NEMO global ocean model for use in coupled and forced applications
A. Megann et al.
Related authors
David Storkey, Adam T. Blaker, Pierre Mathiot, Alex Megann, Yevgeny Aksenov, Edward W. Blockley, Daley Calvert, Tim Graham, Helene T. Hewitt, Patrick Hyder, Till Kuhlbrodt, Jamie G. L. Rae, and Bablu Sinha
Geosci. Model Dev., 11, 3187–3213, https://doi.org/10.5194/gmd-11-3187-2018, https://doi.org/10.5194/gmd-11-3187-2018, 2018
Short summary
Short summary
We document the latest version of the shared UK global configuration of the
NEMO ocean model. This configuration will be used as part of the climate
models for the UK contribution to the IPCC 6th Assessment Report.
30-year integrations forced with atmospheric forcing show that the new
configurations have an improved simulation in the Southern Ocean with the
near-surface temperatures and salinities and the sea ice all matching the
observations more closely.
Yanan Wang, Byongjun Hwang, Adam William Bateson, Yevgeny Aksenov, and Christopher Horvat
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-130, https://doi.org/10.5194/tc-2022-130, 2022
Preprint under review for TC
Short summary
Short summary
Sea ice is composed of small, discrete pieces of ice called floes, whose size distribution plays a critical role in the interactions between the sea ice, ocean, and atmosphere. This study provides an assessment of sea ice models using new high-resolution floe size distribution observations, revealing considerable differences between them. These findings not only point to the limitations in models, but also the need for more high-resolution observations to validate and calibrate models.
Rachael N. C. Sanders, Daniel C. Jones, Simon A. Josey, Bablu Sinha, and Gael Forget
Ocean Sci., 18, 953–978, https://doi.org/10.5194/os-18-953-2022, https://doi.org/10.5194/os-18-953-2022, 2022
Short summary
Short summary
In 2015, record low temperatures were observed in the North Atlantic. Using an ocean model, we show that surface heat loss in December 2013 caused 75 % of the initial cooling before this "cold blob" was trapped below the surface. The following summer, the cold blob re-emerged due to a strong temperature difference between the surface ocean and below, driving vertical diffusion of heat. Lower than average surface warming then led to the coldest temperature anomalies in August 2015.
Adam William Bateson, Daniel L. Feltham, David Schröder, Yanan Wang, Byongjun Hwang, Jeff K. Ridley, and Yevgeny Aksenov
The Cryosphere, 16, 2565–2593, https://doi.org/10.5194/tc-16-2565-2022, https://doi.org/10.5194/tc-16-2565-2022, 2022
Short summary
Short summary
Numerical models are used to understand the mechanisms that drive the evolution of the Arctic sea ice cover. The sea ice cover is formed of pieces of ice called floes. Several recent studies have proposed variable floe size models to replace the standard model assumption of a fixed floe size. In this study we show the need to include floe fragmentation processes in these variable floe size models and demonstrate that model design can determine the impact of floe size on size ice evolution.
Oscar Dimdore-Miles, Lesley Gray, Scott Osprey, Jon Robson, Rowan Sutton, and Bablu Sinha
Atmos. Chem. Phys., 22, 4867–4893, https://doi.org/10.5194/acp-22-4867-2022, https://doi.org/10.5194/acp-22-4867-2022, 2022
Short summary
Short summary
This study examines interactions between variations in the strength of polar stratospheric winds and circulation in the North Atlantic in a climate model simulation. It finds that the Atlantic Meridional Overturning Circulation (AMOC) responds with oscillations to sets of consecutive Northern Hemisphere winters, which show all strong or all weak polar vortex conditions. The study also shows that a set of strong vortex winters in the 1990s contributed to the recent slowdown in the observed AMOC.
Amy Solomon, Céline Heuzé, Benjamin Rabe, Sheldon Bacon, Laurent Bertino, Patrick Heimbach, Jun Inoue, Doroteaciro Iovino, Ruth Mottram, Xiangdong Zhang, Yevgeny Aksenov, Ronan McAdam, An Nguyen, Roshin P. Raj, and Han Tang
Ocean Sci., 17, 1081–1102, https://doi.org/10.5194/os-17-1081-2021, https://doi.org/10.5194/os-17-1081-2021, 2021
Short summary
Short summary
Freshwater in the Arctic Ocean plays a critical role in the global climate system by impacting ocean circulations, stratification, mixing, and emergent regimes. In this review paper we assess how Arctic Ocean freshwater changed in the 2010s relative to the 2000s. Estimates from observations and reanalyses show a qualitative stabilization in the 2010s due to a compensation between a freshening of the Beaufort Gyre and a reduction in freshwater in the Amerasian and Eurasian basins.
Pablo Ortega, Jon I. Robson, Matthew Menary, Rowan T. Sutton, Adam Blaker, Agathe Germe, Jöel J.-M. Hirschi, Bablu Sinha, Leon Hermanson, and Stephen Yeager
Earth Syst. Dynam., 12, 419–438, https://doi.org/10.5194/esd-12-419-2021, https://doi.org/10.5194/esd-12-419-2021, 2021
Short summary
Short summary
Deep Labrador Sea densities are receiving increasing attention because of their link to many of the processes that govern decadal climate oscillations in the North Atlantic and their potential use as a precursor of those changes. This article explores those links and how they are represented in global climate models, documenting the main differences across models. Models are finally compared with observational products to identify the ones that reproduce the links more realistically.
Adam T. Blaker, Manoj Joshi, Bablu Sinha, David P. Stevens, Robin S. Smith, and Joël J.-M. Hirschi
Geosci. Model Dev., 14, 275–293, https://doi.org/10.5194/gmd-14-275-2021, https://doi.org/10.5194/gmd-14-275-2021, 2021
Short summary
Short summary
FORTE 2.0 is a flexible coupled atmosphere–ocean general circulation model that can be run on modest hardware. We present two 2000-year simulations which show that FORTE 2.0 is capable of producing a stable climate. Earlier versions of FORTE were used for a wide range of studies, ranging from aquaplanet configurations to investigating the cold European winters of 2009–2010. This paper introduces the updated model for which the code and configuration are now publicly available.
Vidya Varma, Olaf Morgenstern, Paul Field, Kalli Furtado, Jonny Williams, and Patrick Hyder
Atmos. Chem. Phys., 20, 7741–7751, https://doi.org/10.5194/acp-20-7741-2020, https://doi.org/10.5194/acp-20-7741-2020, 2020
Short summary
Short summary
The present generation of global climate models has an insufficiently reflected short-wave radiation, especially over the Southern Ocean. This leads to an excessive heating of the ocean surface in the model, creating sea surface temperature biases and subsequent problems with atmospheric dynamics. Misrepresentation of clouds could be attributed to this radiation bias; we try to address this issue by slowing the growth rate of ice crystals and improving the supercooled liquid clouds in the model.
Adam W. Bateson, Daniel L. Feltham, David Schröder, Lucia Hosekova, Jeff K. Ridley, and Yevgeny Aksenov
The Cryosphere, 14, 403–428, https://doi.org/10.5194/tc-14-403-2020, https://doi.org/10.5194/tc-14-403-2020, 2020
Short summary
Short summary
The Arctic sea ice cover has been observed to be decreasing, particularly in summer. We use numerical models to gain insight into processes controlling its seasonal and decadal evolution. Sea ice is made of pieces of ice called floes. Previous models have set these floes to be the same size, which is not supported by observations. In this study we show that accounting for variable floe size reveals the importance of sea ice regions close to the open ocean in driving seasonal retreat of sea ice.
Malcolm J. Roberts, Alex Baker, Ed W. Blockley, Daley Calvert, Andrew Coward, Helene T. Hewitt, Laura C. Jackson, Till Kuhlbrodt, Pierre Mathiot, Christopher D. Roberts, Reinhard Schiemann, Jon Seddon, Benoît Vannière, and Pier Luigi Vidale
Geosci. Model Dev., 12, 4999–5028, https://doi.org/10.5194/gmd-12-4999-2019, https://doi.org/10.5194/gmd-12-4999-2019, 2019
Short summary
Short summary
We investigate the role that horizontal grid spacing plays in global coupled climate model simulations, together with examining the efficacy of a new design of simulation experiments that is being used by the community for multi-model comparison. We found that finer grid spacing in both atmosphere and ocean–sea ice models leads to a general reduction in bias compared to observations, and that once eddies in the ocean are resolved, several key climate processes are greatly improved.
Marina Tonani, Peter Sykes, Robert R. King, Niall McConnell, Anne-Christine Péquignet, Enda O'Dea, Jennifer A. Graham, Jeff Polton, and John Siddorn
Ocean Sci., 15, 1133–1158, https://doi.org/10.5194/os-15-1133-2019, https://doi.org/10.5194/os-15-1133-2019, 2019
Short summary
Short summary
A new high-resolution ocean model at 1.5 km has replaced the 7 km system for delivering short-term forecasts of the North-West European Shelf seas. The products (temperature, salinity, currents, and sea surface height) are available on the Copernicus Marine Service catalogue. This study focuses on the high-resolution impact on the quality of the products delivered to the users. Results show that the high-resolution model is better at resolving the variability of the physical variables.
Huw W. Lewis, John Siddorn, Juan Manuel Castillo Sanchez, Jon Petch, John M. Edwards, and Tim Smyth
Ocean Sci., 15, 761–778, https://doi.org/10.5194/os-15-761-2019, https://doi.org/10.5194/os-15-761-2019, 2019
Short summary
Short summary
Oceans are modified at the surface by winds and by the exchange of heat with the atmosphere. The effect of changing atmospheric information that is available to drive an ocean model of north-west Europe, which can simulate small-scale details of the ocean state, is tested. We show that simulated temperatures agree better with observations located near the coast around the south-west UK when using data from a high-resolution atmospheric model, and when atmosphere and ocean feedbacks are included.
Huw W. Lewis, Juan Manuel Castillo Sanchez, Alex Arnold, Joachim Fallmann, Andrew Saulter, Jennifer Graham, Mike Bush, John Siddorn, Tamzin Palmer, Adrian Lock, John Edwards, Lucy Bricheno, Alberto Martínez-de la Torre, and James Clark
Geosci. Model Dev., 12, 2357–2400, https://doi.org/10.5194/gmd-12-2357-2019, https://doi.org/10.5194/gmd-12-2357-2019, 2019
Short summary
Short summary
In the real world the atmosphere, oceans and land surface are closely interconnected, and yet the prediction systems used for weather and ocean forecasting tend to treat them in isolation. This paper describes the third version of a regional modelling system which aims to represent the feedback processes between sky, sea and land. The main innovation introduced in this version enables waves to affect the underlying ocean. Coupled results from four different month-long simulations are analysed.
Huw W. Lewis, Juan Manuel Castillo Sanchez, John Siddorn, Robert R. King, Marina Tonani, Andrew Saulter, Peter Sykes, Anne-Christine Pequignet, Graham P. Weedon, Tamzin Palmer, Joanna Staneva, and Lucy Bricheno
Ocean Sci., 15, 669–690, https://doi.org/10.5194/os-15-669-2019, https://doi.org/10.5194/os-15-669-2019, 2019
Short summary
Short summary
Forecasts of ocean temperature, salinity, currents, and sea height can be improved by linking state-of-the-art ocean and wave models, so that they can interact to better represent the real world. We test this approach in an ocean model of north-west Europe which can simulate small-scale details of the ocean state. The intention is to implement the system described in this study for operational use so that improved information can be provided to users of ocean forecast data.
David Storkey, Adam T. Blaker, Pierre Mathiot, Alex Megann, Yevgeny Aksenov, Edward W. Blockley, Daley Calvert, Tim Graham, Helene T. Hewitt, Patrick Hyder, Till Kuhlbrodt, Jamie G. L. Rae, and Bablu Sinha
Geosci. Model Dev., 11, 3187–3213, https://doi.org/10.5194/gmd-11-3187-2018, https://doi.org/10.5194/gmd-11-3187-2018, 2018
Short summary
Short summary
We document the latest version of the shared UK global configuration of the
NEMO ocean model. This configuration will be used as part of the climate
models for the UK contribution to the IPCC 6th Assessment Report.
30-year integrations forced with atmospheric forcing show that the new
configurations have an improved simulation in the Southern Ocean with the
near-surface temperatures and salinities and the sea ice all matching the
observations more closely.
Fabrice Ardhuin, Yevgueny Aksenov, Alvise Benetazzo, Laurent Bertino, Peter Brandt, Eric Caubet, Bertrand Chapron, Fabrice Collard, Sophie Cravatte, Jean-Marc Delouis, Frederic Dias, Gérald Dibarboure, Lucile Gaultier, Johnny Johannessen, Anton Korosov, Georgy Manucharyan, Dimitris Menemenlis, Melisa Menendez, Goulven Monnier, Alexis Mouche, Frédéric Nouguier, George Nurser, Pierre Rampal, Ad Reniers, Ernesto Rodriguez, Justin Stopa, Céline Tison, Clément Ubelmann, Erik van Sebille, and Jiping Xie
Ocean Sci., 14, 337–354, https://doi.org/10.5194/os-14-337-2018, https://doi.org/10.5194/os-14-337-2018, 2018
Short summary
Short summary
The Sea surface KInematics Multiscale (SKIM) monitoring mission is a proposal for a future satellite that is designed to measure ocean currents and waves. Using a Doppler radar, the accurate measurement of currents requires the removal of the mean velocity due to ocean wave motions. This paper describes the main processing steps needed to produce currents and wave data from the radar measurements. With this technique, SKIM can provide unprecedented coverage and resolution, over the global ocean.
Huw W. Lewis, Juan Manuel Castillo Sanchez, Jennifer Graham, Andrew Saulter, Jorge Bornemann, Alex Arnold, Joachim Fallmann, Chris Harris, David Pearson, Steven Ramsdale, Alberto Martínez-de la Torre, Lucy Bricheno, Eleanor Blyth, Victoria A. Bell, Helen Davies, Toby R. Marthews, Clare O'Neill, Heather Rumbold, Enda O'Dea, Ashley Brereton, Karen Guihou, Adrian Hines, Momme Butenschon, Simon J. Dadson, Tamzin Palmer, Jason Holt, Nick Reynard, Martin Best, John Edwards, and John Siddorn
Geosci. Model Dev., 11, 1–42, https://doi.org/10.5194/gmd-11-1-2018, https://doi.org/10.5194/gmd-11-1-2018, 2018
Short summary
Short summary
In the real world the atmosphere, oceans and land surface are closely interconnected, and yet prediction systems tend to treat them in isolation. Those feedbacks are often illustrated in natural hazards, such as when strong winds lead to large waves and coastal damage, or when prolonged rainfall leads to saturated ground and high flowing rivers. For the first time, we have attempted to represent some of the feedbacks between sky, sea and land within a high-resolution forecast system for the UK.
Enda O'Dea, Rachel Furner, Sarah Wakelin, John Siddorn, James While, Peter Sykes, Robert King, Jason Holt, and Helene Hewitt
Geosci. Model Dev., 10, 2947–2969, https://doi.org/10.5194/gmd-10-2947-2017, https://doi.org/10.5194/gmd-10-2947-2017, 2017
Short summary
Short summary
An update to an ocean modelling configuration for the European North West Shelf is described. It is assessed against observations and climatologies for 1981–2012. Sensitivities in the model configuration updates are assessed to understand changes in the model system. The model improves upon an existing model of the region, although there remain some areas with significant biases. The paper highlights the dependence upon the quality of the river inputs.
Daniel B. Williamson, Adam T. Blaker, and Bablu Sinha
Geosci. Model Dev., 10, 1789–1816, https://doi.org/10.5194/gmd-10-1789-2017, https://doi.org/10.5194/gmd-10-1789-2017, 2017
Short summary
Short summary
We present a method from the statistical science literature to assist in the tuning of global climate models submitted to CMIP. We apply the method to the NEMO ocean model and find choices of its free parameters that lead to improved representations of depth integrated global mean temperature and salinity. We argue against automatic tuning procedures that involve optimising certain outputs of a model and explain why our method avoids common difficulties with/arguments against automatic tuning.
Jason Holt, Patrick Hyder, Mike Ashworth, James Harle, Helene T. Hewitt, Hedong Liu, Adrian L. New, Stephen Pickles, Andrew Porter, Ekaterina Popova, J. Icarus Allen, John Siddorn, and Richard Wood
Geosci. Model Dev., 10, 499–523, https://doi.org/10.5194/gmd-10-499-2017, https://doi.org/10.5194/gmd-10-499-2017, 2017
Short summary
Short summary
Accurately representing coastal and shelf seas in global ocean models is one of the grand challenges of Earth system science. Here, we explore what the options are for improving this by exploring what the important physical processes are that need to be represented. We use a simple scale analysis to investigate how large the resulting models would need to be. We then compare this with how computer power is increasing to provide estimates of when this might be feasible in the future.
Helene T. Hewitt, Malcolm J. Roberts, Pat Hyder, Tim Graham, Jamie Rae, Stephen E. Belcher, Romain Bourdallé-Badie, Dan Copsey, Andrew Coward, Catherine Guiavarch, Chris Harris, Richard Hill, Joël J.-M. Hirschi, Gurvan Madec, Matthew S. Mizielinski, Erica Neininger, Adrian L. New, Jean-Christophe Rioual, Bablu Sinha, David Storkey, Ann Shelly, Livia Thorpe, and Richard A. Wood
Geosci. Model Dev., 9, 3655–3670, https://doi.org/10.5194/gmd-9-3655-2016, https://doi.org/10.5194/gmd-9-3655-2016, 2016
Short summary
Short summary
We examine the impact in a coupled model of increasing atmosphere and ocean horizontal resolution and the frequency of coupling between the atmosphere and ocean. We demonstrate that increasing the ocean resolution from 1/4 degree to 1/12 degree has a major impact on ocean circulation and global heat transports. The results add to the body of evidence suggesting that ocean resolution is an important consideration when developing coupled models for weather and climate applications.
Jun She, Icarus Allen, Erik Buch, Alessandro Crise, Johnny A. Johannessen, Pierre-Yves Le Traon, Urmas Lips, Glenn Nolan, Nadia Pinardi, Jan H. Reißmann, John Siddorn, Emil Stanev, and Henning Wehde
Ocean Sci., 12, 953–976, https://doi.org/10.5194/os-12-953-2016, https://doi.org/10.5194/os-12-953-2016, 2016
Short summary
Short summary
This white paper addresses key scientific challenges and research priorities for the development of operational oceanography in Europe for the next 5–10 years. Knowledge gaps and deficiencies are identified in relation to common scientific challenges in four EuroGOOS knowledge areas: European ocean observations, modelling and forecasting technology, coastal operational oceanography, and operational ecology.
Heather Cannaby, Matthew D. Palmer, Tom Howard, Lucy Bricheno, Daley Calvert, Justin Krijnen, Richard Wood, Jonathan Tinker, Chris Bunney, James Harle, Andrew Saulter, Clare O'Neill, Clare Bellingham, and Jason Lowe
Ocean Sci., 12, 613–632, https://doi.org/10.5194/os-12-613-2016, https://doi.org/10.5194/os-12-613-2016, 2016
Short summary
Short summary
The Singapore government commissioned a modelling study of regional projections of changes in (i) long-term mean sea level and (ii) the frequency of extreme storm surge and wave events. We find that changes to long-term mean sea level constitute the dominant signal of change to the projected inundation risk for Singapore during the 21st century, these being 0.52 m(0.74 m) under the RCP 4.5(8.5) scenario.
J. R. Siddorn, S. A. Good, C. M. Harris, H. W. Lewis, J. Maksymczuk, M. J. Martin, and A. Saulter
Ocean Sci., 12, 217–231, https://doi.org/10.5194/os-12-217-2016, https://doi.org/10.5194/os-12-217-2016, 2016
Short summary
Short summary
The Met Office provides a range of services in the marine environment. To support these services, and to ensure they evolve to meet the demands of users and are based on the best available science, a number of scientific challenges need to be addressed. The paper summarises the key challenges, and highlights some priorities for the ocean monitoring and forecasting research group at the Met Office.
M. Haller, F. Janssen, J. Siddorn, W. Petersen, and S. Dick
Ocean Sci., 11, 879–896, https://doi.org/10.5194/os-11-879-2015, https://doi.org/10.5194/os-11-879-2015, 2015
Short summary
Short summary
Automated measurement systems called FerryBox are installed on cargo ships in the North Sea. Operational model forecasts have been compared to FerryBox data of water temperature and salinity. We wanted to know how well the simulations agree with the observations. We found out that water temperature simulation gives satisfying results, while salinity simulation still could be improved. It turned out that assimilation of observational data into operational models gives strong benefits.
C. Heuzé, J. K. Ridley, D. Calvert, D. P. Stevens, and K. J. Heywood
Geosci. Model Dev., 8, 3119–3130, https://doi.org/10.5194/gmd-8-3119-2015, https://doi.org/10.5194/gmd-8-3119-2015, 2015
Short summary
Short summary
Most ocean models, including NEMO, have unrealistic Southern Ocean deep convection. That is, through extensive areas of the Southern Ocean, they exhibit convection from the surface of the ocean to the sea floor. We find this convection to be an issue as it impacts the whole ocean circulation, notably strengthening the Antarctic Circumpolar Current. Using sensitivity experiments, we show that counter-intuitively the vertical mixing needs to be enhanced to reduce this spurious convection.
R. Marsh, V. O. Ivchenko, N. Skliris, S. Alderson, G. R. Bigg, G. Madec, A. T. Blaker, Y. Aksenov, B. Sinha, A. C. Coward, J. Le Sommer, N. Merino, and V. B. Zalesny
Geosci. Model Dev., 8, 1547–1562, https://doi.org/10.5194/gmd-8-1547-2015, https://doi.org/10.5194/gmd-8-1547-2015, 2015
Short summary
Short summary
Calved icebergs account for around 50% of total freshwater input to the ocean from the Greenland and Antarctic ice sheets. As they melt, icebergs interact with the ocean. We have developed and tested interactive icebergs in a state-of-the-art global ocean model, showing how sea ice, temperatures, and currents are disturbed by iceberg melting. With this new model capability, we are better prepared to predict how future increases in iceberg numbers might influence the oceans and climate.
K. D. Williams, C. M. Harris, A. Bodas-Salcedo, J. Camp, R. E. Comer, D. Copsey, D. Fereday, T. Graham, R. Hill, T. Hinton, P. Hyder, S. Ineson, G. Masato, S. F. Milton, M. J. Roberts, D. P. Rowell, C. Sanchez, A. Shelly, B. Sinha, D. N. Walters, A. West, T. Woollings, and P. K. Xavier
Geosci. Model Dev., 8, 1509–1524, https://doi.org/10.5194/gmd-8-1509-2015, https://doi.org/10.5194/gmd-8-1509-2015, 2015
E. W. Blockley, M. J. Martin, A. J. McLaren, A. G. Ryan, J. Waters, D. J. Lea, I. Mirouze, K. A. Peterson, A. Sellar, and D. Storkey
Geosci. Model Dev., 7, 2613–2638, https://doi.org/10.5194/gmd-7-2613-2014, https://doi.org/10.5194/gmd-7-2613-2014, 2014
I. A. Dmitrenko, S. A. Kirillov, N. Serra, N. V. Koldunov, V. V. Ivanov, U. Schauer, I. V. Polyakov, D. Barber, M. Janout, V. S. Lien, M. Makhotin, and Y. Aksenov
Ocean Sci., 10, 719–730, https://doi.org/10.5194/os-10-719-2014, https://doi.org/10.5194/os-10-719-2014, 2014
F. Wobus, G. I. Shapiro, J. M. Huthnance, M. A. M. Maqueda, and Y. Aksenov
Ocean Sci., 9, 885–899, https://doi.org/10.5194/os-9-885-2013, https://doi.org/10.5194/os-9-885-2013, 2013
J. J.-M. Hirschi, A. T. Blaker, B. Sinha, A. Coward, B. de Cuevas, S. Alderson, and G. Madec
Ocean Sci., 9, 805–823, https://doi.org/10.5194/os-9-805-2013, https://doi.org/10.5194/os-9-805-2013, 2013
G. Shapiro, M. Luneva, J. Pickering, and D. Storkey
Ocean Sci., 9, 377–390, https://doi.org/10.5194/os-9-377-2013, https://doi.org/10.5194/os-9-377-2013, 2013
Related subject area
Oceanography
Wind work at the air-sea interface: a modeling study in anticipation of future space missions
Improved upper-ocean thermodynamical structure modeling with combined effects of surface waves and M2 internal tides on vertical mixing: a case study for the Indian Ocean
The bulk parameterizations of turbulent air–sea fluxes in NEMO4: the origin of sea surface temperature differences in a global model study
NeverWorld2: an idealized model hierarchy to investigate ocean mesoscale eddies across resolutions
Observing system simulation experiments reveal that subsurface temperature observations improve estimates of circulation and heat content in a dynamic western boundary current
GULF18, a high-resolution NEMO-based tidal ocean model of the Arabian/Persian Gulf
Parallel implementation of the SHYFEM (System of HydrodYnamic Finite Element Modules) model
Block-structured, equal-workload, multi-grid-nesting interface for the Boussinesq wave model FUNWAVE-TVD (Total Variation Diminishing)
Evaluation of an emergent feature of sub-shelf melt oscillations from an idealized coupled ice sheet–ocean model using FISOC (v1.1) – ROMSIceShelf (v1.0) – Elmer/Ice (v9.0)
The Baltic Sea model inter-comparison project BMIP – a platform for model development, evaluation, and uncertainty assessment
GNOM v1.0: an optimized steady-state model of the modern marine neodymium cycle
Implementation and evaluation of open boundary conditions for sea ice in a regional coupled ocean (ROMS) and sea ice (CICE) modeling system
ROMSPath v1.0: offline particle tracking for the Regional Ocean Modeling System (ROMS)
DINCAE 2.0: multivariate convolutional neural network with error estimates to reconstruct sea surface temperature satellite and altimetry observations
RADIv1: a non-steady-state early diagenetic model for ocean sediments in Julia and MATLAB/GNU Octave
IBI-CCS: a regional high-resolution model to simulate sea level in western Europe
Empirical Lagrangian parametrization for wind-driven mixing of buoyant particles at the ocean surface
An ensemble Kalman filter system with the Stony Brook Parallel Ocean Model v1.0
Improving ocean modeling software NEMO 4.0 benchmarking and communication efficiency
Improvements in the regional South China Sea Operational Oceanography Forecasting System (SCSOFSv2)
Reconsideration of wind stress, wind waves, and turbulence in simulating wind-driven currents of shallow lakes in the Wave and Current Coupled Model (WCCM) version 1.0
ISWFoam: a numerical model for internal solitary wave simulation in continuously stratified fluids
PyCO2SYS v1.8: marine carbonate system calculations in Python
Plume spreading test case for coastal ocean models
The interpretation of temperature and salinity variables in numerical ocean model output and the calculation of heat fluxes and heat content
S2P3-R v2.0: computationally efficient modelling of shelf seas on regional to global scales
The Lagrangian-based Floating Macroalgal Growth and Drift Model (FMGDM v1.0): application to the Yellow Sea green tide
Nemo-Nordic 2.0: operational marine forecast model for the Baltic Sea
Australian tidal currents – assessment of a barotropic model (COMPAS v1.3.0 rev6631) with an unstructured grid
Sedapp v2021: a nonlinear diffusion-based forward stratigraphic model for shallow marine environments
A discrete interaction numerical model for coagulation and fragmentation of marine detritic particulate matter (Coagfrag v.1)
Parallel computing efficiency of SWAN 40.91
Integrating CVMix into GOTM (v6.0): a consistent framework for testing, comparing, and applying ocean mixing schemes
A NEMO-based model of Sargassum distribution in the tropical Atlantic: description of the model and sensitivity analysis (NEMO-Sarg1.0)
Evaluating the physical and biogeochemical state of the global ocean component of UKESM1 in CMIP6 historical simulations
Iron and sulfur cycling in the cGENIE.muffin Earth system model (v0.9.21)
BFM17 v1.0: a reduced biogeochemical flux model for upper-ocean biophysical simulations
A mechanistic analysis of tropical Pacific dynamic sea level in GFDL-OM4 under OMIP-I and OMIP-II forcings
Comparison of ocean vertical mixing schemes in the Max Planck Institute Earth System Model (MPI-ESM1.2)
MESMO 3: Flexible phytoplankton stoichiometry and refractory dissolved organic matter
HIDRA 1.0: deep-learning-based ensemble sea level forecasting in the northern Adriatic
Towards multiscale modeling of ocean surface turbulent mixing using coupled MPAS-Ocean v6.3 and PALM v5.0
Improved representation of river runoff in Estimating the Circulation and Climate of the Ocean Version 4 (ECCOv4) simulations: implementation, evaluation, and impacts to coastal plume regions
The Regional Ice Ocean Prediction System v2: a pan-Canadian ocean analysis system using an online tidal harmonic analysis
Global storm tide modeling with ADCIRC v55: unstructured mesh design and performance
Development of a MetUM (v 11.1) and NEMO (v 3.6) coupled operational forecast model for the Maritime Continent – Part 1: Evaluation of ocean forecasts
Advanced parallel implementation of the coupled ocean–ice model FEMAO (version 2.0) with load balancing
The Meridionally Averaged Model of Eastern Boundary Upwelling Systems (MAMEBUSv1.0)
Model-driven optimization of coastal sea observatories through data assimilation in a finite element hydrodynamic model (SHYFEM v. 7_5_65)
A simplified atmospheric boundary layer model for an improved representation of air–sea interactions in eddying oceanic models: implementation and first evaluation in NEMO (4.0)
Hector S. Torres, Patrice Klein, Jinbo Wang, Alexander Wineteer, Bo Qiu, Andrew F. Thompson, Lionel Renault, Ernesto Rodriguez, Dimitris Menemenlis, Andrea Molod, Christopher N. Hill, Ehud Strobach, Hong Zhang, Mar Flexas, and Dragana Perkovic-Martin
Geosci. Model Dev., 15, 8041–8058, https://doi.org/10.5194/gmd-15-8041-2022, https://doi.org/10.5194/gmd-15-8041-2022, 2022
Short summary
Short summary
Wind work at the air-sea interface is the scalar product of winds and currents and is the transfer of kinetic energy between the ocean and the atmosphere. Using a new global coupled ocean-atmosphere simulation performed at kilometer resolution, we show that all scales of winds and currents impact the ocean dynamics at spatial and temporal scales. The consequential interplay of surface winds and currents in the numerical simulation motivates the need for a winds and currents satellite mission.
Zhanpeng Zhuang, Quanan Zheng, Yongzeng Yang, Zhenya Song, Yeli Yuan, Chaojie Zhou, Xinhua Zhao, Ting Zhang, and Jing Xie
Geosci. Model Dev., 15, 7221–7241, https://doi.org/10.5194/gmd-15-7221-2022, https://doi.org/10.5194/gmd-15-7221-2022, 2022
Short summary
Short summary
We evaluate the impacts of surface waves and internal tides on the upper-ocean mixing in the Indian Ocean. The surface-wave-generated turbulent mixing is dominant if depth is < 30 m, while the internal-tide-induced mixing is larger than surface waves in the ocean interior from 40
to 130 m. The simulated thermal structure, mixed layer depth and surface current are all improved when the mixing schemes are jointly incorporated into the ocean model because of the strengthened vertical mixing.
Giulia Bonino, Doroteaciro Iovino, Laurent Brodeau, and Simona Masina
Geosci. Model Dev., 15, 6873–6889, https://doi.org/10.5194/gmd-15-6873-2022, https://doi.org/10.5194/gmd-15-6873-2022, 2022
Short summary
Short summary
The sea surface temperature (SST) is highly influenced by the transfer of energy driven by turbulent air–sea fluxes (TASFs). In the NEMO ocean general circulation model, TASFs are computed by means of bulk formulas. Bulk formulas require the choice of a given bulk parameterization, which influences the magnitudes of the TASFs. Our results show that parameterization-related SST differences are primarily sensitive to the wind stress differences across parameterizations.
Gustavo M. Marques, Nora Loose, Elizabeth Yankovsky, Jacob M. Steinberg, Chiung-Yin Chang, Neeraja Bhamidipati, Alistair Adcroft, Baylor Fox-Kemper, Stephen M. Griffies, Robert W. Hallberg, Malte F. Jansen, Hemant Khatri, and Laure Zanna
Geosci. Model Dev., 15, 6567–6579, https://doi.org/10.5194/gmd-15-6567-2022, https://doi.org/10.5194/gmd-15-6567-2022, 2022
Short summary
Short summary
We present an idealized ocean model configuration and a set of simulations performed using varying horizontal grid spacing. While the model domain is idealized, it resembles important geometric features of the Atlantic and Southern oceans. The simulations described here serve as a framework to effectively study mesoscale eddy dynamics, to investigate the effect of mesoscale eddies on the large-scale dynamics, and to test and evaluate eddy parameterizations.
David E. Gwyther, Colette Kerry, Moninya Roughan, and Shane R. Keating
Geosci. Model Dev., 15, 6541–6565, https://doi.org/10.5194/gmd-15-6541-2022, https://doi.org/10.5194/gmd-15-6541-2022, 2022
Short summary
Short summary
The ocean current flowing along the southeastern coast of Australia is called the East Australian Current (EAC). Using computer simulations, we tested how surface and subsurface observations might improve models of the EAC. Subsurface observations are particularly important for improving simulations, and if made in the correct location and time, can have impact 600 km upstream. The stability of the current affects model estimates could be capitalized upon in future observing strategies.
Diego Bruciaferri, Marina Tonani, Isabella Ascione, Fahad Al Senafi, Enda O'Dea, Helene Theresa Hewitt, and Andrew Saulter
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-189, https://doi.org/10.5194/gmd-2022-189, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
More accurate predictions of the Gulf ocean dynamics are needed. We investigate the impact of changing few key aspects of a numerical shelf-sea model of the Gulf on its predictive skills. Increasing the lateral and vertical resolution and optimising the vertical coordinate system to best represent the leading physical processes at stakes significantly improves the accuracy of the simulated dynamics. Additional work may be needed to get real benefit from using a more realistic bathymetry.
Giorgio Micaletto, Ivano Barletta, Silvia Mocavero, Ivan Federico, Italo Epicoco, Giorgia Verri, Giovanni Coppini, Pasquale Schiano, Giovanni Aloisio, and Nadia Pinardi
Geosci. Model Dev., 15, 6025–6046, https://doi.org/10.5194/gmd-15-6025-2022, https://doi.org/10.5194/gmd-15-6025-2022, 2022
Short summary
Short summary
The full exploitation of supercomputing architectures requires a deep revision of the current climate models. This paper presents the parallelization of the three-dimensional hydrodynamic model SHYFEM (System of HydrodYnamic Finite Element Modules). Optimized numerical libraries were used to partition the model domain and solve the sparse linear system of equations in parallel. The performance assessment demonstrates a good level of scalability with a realistic configuration used as a benchmark.
Young-Kwang Choi, Fengyan Shi, Matt Malej, Jane M. Smith, James T. Kirby, and Stephan T. Grilli
Geosci. Model Dev., 15, 5441–5459, https://doi.org/10.5194/gmd-15-5441-2022, https://doi.org/10.5194/gmd-15-5441-2022, 2022
Short summary
Short summary
The multi-grid-nesting technique is an important methodology used for modeling transoceanic tsunamis and coastal effects. In this study, we developed a two-way nesting interface in a multi-grid-nesting system for the Boussinesq wave model FUNWAVE-TVD. The interface acts as a
backboneof the nesting framework, handling data input, output, time sequencing, and internal interactions between grids at different scales.
Chen Zhao, Rupert Gladstone, Benjamin Keith Galton-Fenzi, David Gwyther, and Tore Hattermann
Geosci. Model Dev., 15, 5421–5439, https://doi.org/10.5194/gmd-15-5421-2022, https://doi.org/10.5194/gmd-15-5421-2022, 2022
Short summary
Short summary
We use a coupled ice–ocean model to explore an oscillation feature found in several contributing models to MISOMIP1. The oscillation is closely related to the discretized grounding line retreat and likely strengthened by the buoyancy–melt feedback and/or melt–geometry feedback near the grounding line, and frequent ice–ocean coupling. Our model choices have a non-trivial impact on mean melt and ocean circulation strength, which might be interesting for the coupled ice–ocean community.
Matthias Gröger, Manja Placke, Markus Meier, Florian Börgel, Sandra-Esther Brunnabend, Cyril Dutheil, Ulf Gräwe, Magnus Hieronymus, Thomas Neumann, Hagen Radtke, Semjon Schimanke, Jian Su, and Germo Väli
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-160, https://doi.org/10.5194/gmd-2022-160, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
Comparison of oceanographic climate data from different models often suffer from different model setups, forcing fields and output of variables. This paper provides a protocol to harmonize these setup, forcing data and model outputs to setup up multi-decadal simulations for the Baltic Sea, a marginal sea in Europe. First results are shown from 6 different model simulations from 4 different model platforms. Topical studies for upwelling, marine heatwaves and stratification are also assessed.
Benoît Pasquier, Sophia K. V. Hines, Hengdi Liang, Yingzhe Wu, Steven L. Goldstein, and Seth G. John
Geosci. Model Dev., 15, 4625–4656, https://doi.org/10.5194/gmd-15-4625-2022, https://doi.org/10.5194/gmd-15-4625-2022, 2022
Short summary
Short summary
Neodymium isotopes in seawater have the potential to provide key information about ocean circulation, both today and in the past. This can shed light on the underlying drivers of global climate, which will improve our ability to predict future climate change, but uncertainties in our understanding of neodymium cycling have limited use of this tracer. We present a new model of neodymium in the modern ocean that runs extremely fast, matches observations, and is freely available for development.
Pedro Duarte, Jostein Brændshøi, Dmitry Shcherbin, Pauline Barras, Jon Albretsen, Yvonne Gusdal, Nicholas Szapiro, Andreas Martinsen, Annette Samuelsen, Keguang Wang, and Jens Boldingh Debernard
Geosci. Model Dev., 15, 4373–4392, https://doi.org/10.5194/gmd-15-4373-2022, https://doi.org/10.5194/gmd-15-4373-2022, 2022
Short summary
Short summary
Sea ice models are often implemented for very large domains beyond the regions of sea ice formation, such as the whole Arctic or all of Antarctica. In this study, we implement changes in the Los Alamos Sea Ice Model, allowing it to be implemented for relatively small regions within the Arctic or Antarctica and yet considering the presence and influence of sea ice outside the represented areas. Such regional implementations are important when spatially detailed results are required.
Elias J. Hunter, Heidi L. Fuchs, John L. Wilkin, Gregory P. Gerbi, Robert J. Chant, and Jessica C. Garwood
Geosci. Model Dev., 15, 4297–4311, https://doi.org/10.5194/gmd-15-4297-2022, https://doi.org/10.5194/gmd-15-4297-2022, 2022
Short summary
Short summary
ROMSPath is an offline particle tracking model tailored for use with output from Regional Ocean Modeling System (ROMS) simulations. It is an update to an established system, the Lagrangian TRANSport (LTRANS) model, including a number of improvements. These include a modification of the model coordinate system which improved accuracy and numerical efficiency, and added functionality for nested grids and Stokes drift.
Alexander Barth, Aida Alvera-Azcárate, Charles Troupin, and Jean-Marie Beckers
Geosci. Model Dev., 15, 2183–2196, https://doi.org/10.5194/gmd-15-2183-2022, https://doi.org/10.5194/gmd-15-2183-2022, 2022
Short summary
Short summary
Earth-observing satellites provide routine measurement of several ocean parameters. However, these datasets have a significant amount of missing data due to the presence of clouds or other limitations of the employed sensors. This paper describes a method to infer the value of the missing satellite data based on a convolutional autoencoder (a specific type of neural network architecture). The technique also provides a reliable error estimate of the interpolated value.
Olivier Sulpis, Matthew P. Humphreys, Monica M. Wilhelmus, Dustin Carroll, William M. Berelson, Dimitris Menemenlis, Jack J. Middelburg, and Jess F. Adkins
Geosci. Model Dev., 15, 2105–2131, https://doi.org/10.5194/gmd-15-2105-2022, https://doi.org/10.5194/gmd-15-2105-2022, 2022
Short summary
Short summary
A quarter of the surface of the Earth is covered by marine sediments rich in calcium carbonates, and their dissolution acts as a giant antacid tablet protecting the ocean against human-made acidification caused by massive CO2 emissions. Here, we present a new model of sediment chemistry that incorporates the latest experimental findings on calcium carbonate dissolution kinetics. This model can be used to predict how marine sediments evolve through time in response to environmental perturbations.
Alisée A. Chaigneau, Guillaume Reffray, Aurore Voldoire, and Angélique Melet
Geosci. Model Dev., 15, 2035–2062, https://doi.org/10.5194/gmd-15-2035-2022, https://doi.org/10.5194/gmd-15-2035-2022, 2022
Short summary
Short summary
Climate-change-induced sea level rise is a major threat for coastal and low-lying regions. Projections of coastal sea level changes are thus of great interest for coastal risk assessment and have significantly developed in recent years. In this paper, the objective is to provide high-resolution (6 km) projections of sea level changes in the northeastern Atlantic region bordering western Europe. For that purpose, a regional model is used to refine existing coarse global projections.
Victor Onink, Erik van Sebille, and Charlotte Laufkötter
Geosci. Model Dev., 15, 1995–2012, https://doi.org/10.5194/gmd-15-1995-2022, https://doi.org/10.5194/gmd-15-1995-2022, 2022
Short summary
Short summary
Turbulent mixing is a vital process in 3D modeling of particle transport in the ocean. However, since turbulence occurs on very short spatial scales and timescales, large-scale ocean models generally have highly simplified turbulence representations. We have developed parametrizations for the vertical turbulent transport of buoyant particles that can be easily applied in a large-scale particle tracking model. The predicted vertical concentration profiles match microplastic observations well.
Shun Ohishi, Tsutomu Hihara, Hidenori Aiki, Joji Ishizaka, Yasumasa Miyazawa, Misako Kachi, and Takemasa Miyoshi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-40, https://doi.org/10.5194/gmd-2022-40, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
We develop an ensemble Kalman filter-based regional ocean data assimilation system, in which satellite and in-situ observations are assimilated at a daily frequency. We find the best setting for dynamical balance and analysis accuracy based on sensitivity experiments on how to inflate the ensemble spread and how to apply the analysis update to the model evolution. This study has a broader impact on more general data assimilation systems in which the initial shocks are a significant issue.
Gaston Irrmann, Sébastien Masson, Éric Maisonnave, David Guibert, and Erwan Raffin
Geosci. Model Dev., 15, 1567–1582, https://doi.org/10.5194/gmd-15-1567-2022, https://doi.org/10.5194/gmd-15-1567-2022, 2022
Short summary
Short summary
To be efficient on supercomputers, software must be high-performance at computing many concurrent tasks. Communications between tasks is often necessary but time consuming, and ocean modelling software NEMO 4.0 is no exception.
In this work we describe approaches enabling fewer communications, an optimization to share the workload more equally between tasks and a new flexible configuration to assess NEMO's performance easily.
Xueming Zhu, Ziqing Zu, Shihe Ren, Miaoyin Zhang, Yunfei Zhang, Hui Wang, and Ang Li
Geosci. Model Dev., 15, 995–1015, https://doi.org/10.5194/gmd-15-995-2022, https://doi.org/10.5194/gmd-15-995-2022, 2022
Short summary
Short summary
SCSOFS has provided daily updated marine forecasting in the South China Sea for the next 5 d since 2013. Comprehensive updates have been conducted to the configurations of SCSOFS's physical model and data assimilation scheme in order to improve its forecasting skill. The three most sensitive updates are highlighted. Scientific comparison and accuracy assessment results indicate that remarkable improvements have been achieved in SCSOFSv2 with respect to the original version SCSOFSv1.
Tingfeng Wu, Boqiang Qin, Anning Huang, Yongwei Sheng, Shunxin Feng, and Céline Casenave
Geosci. Model Dev., 15, 745–769, https://doi.org/10.5194/gmd-15-745-2022, https://doi.org/10.5194/gmd-15-745-2022, 2022
Short summary
Short summary
Most hydrodynamic models were initially developed based in marine environments. They cannot be directly applied to large lakes. Based on field observations and numerical experiments of a large shallow lake, we developed a hydrodynamic model by adopting new schemes of wind stress, wind waves, and turbulence for large lakes. Our model can greatly improve the simulation of lake currents. This study will be a reminder to limnologists to prudently use ocean models to study lake hydrodynamics.
Jingyuan Li, Qinghe Zhang, and Tongqing Chen
Geosci. Model Dev., 15, 105–127, https://doi.org/10.5194/gmd-15-105-2022, https://doi.org/10.5194/gmd-15-105-2022, 2022
Short summary
Short summary
A numerical model, ISWFoam with a modified k–ω SST model, is developed to simulate internal solitary waves (ISWs) in continuously stratified, incompressible, viscous fluids based on a fully three-dimensional (3D) Navier–Stokes equation with the finite-volume method. ISWFoam can accurately simulate the generation and evolution of ISWs, the ISW breaking phenomenon, waveform inversion of ISWs, and the interaction between ISWs and complex topography.
Matthew P. Humphreys, Ernie R. Lewis, Jonathan D. Sharp, and Denis Pierrot
Geosci. Model Dev., 15, 15–43, https://doi.org/10.5194/gmd-15-15-2022, https://doi.org/10.5194/gmd-15-15-2022, 2022
Short summary
Short summary
The ocean helps to mitigate our impact on Earth's climate by absorbing about a quarter of the carbon dioxide (CO2) released by human activities each year. However, once absorbed, chemical reactions between CO2 and water reduce seawater pH (
ocean acidification), which may have adverse effects on marine ecosystems. Our Python package, PyCO2SYS, models the chemical reactions of CO2 in seawater, allowing us to quantify the corresponding changes in pH and related chemical properties.
Vera Fofonova, Tuomas Kärnä, Knut Klingbeil, Alexey Androsov, Ivan Kuznetsov, Dmitry Sidorenko, Sergey Danilov, Hans Burchard, and Karen Helen Wiltshire
Geosci. Model Dev., 14, 6945–6975, https://doi.org/10.5194/gmd-14-6945-2021, https://doi.org/10.5194/gmd-14-6945-2021, 2021
Short summary
Short summary
We present a test case of river plume spreading to evaluate coastal ocean models. Our test case reveals the level of numerical mixing (due to parameterizations used and numerical treatment of processes in the model) and the ability of models to reproduce complex dynamics. The major result of our comparative study is that accuracy in reproducing the analytical solution depends less on the type of applied model architecture or numerical grid than it does on the type of advection scheme.
Trevor J. McDougall, Paul M. Barker, Ryan M. Holmes, Rich Pawlowicz, Stephen M. Griffies, and Paul J. Durack
Geosci. Model Dev., 14, 6445–6466, https://doi.org/10.5194/gmd-14-6445-2021, https://doi.org/10.5194/gmd-14-6445-2021, 2021
Short summary
Short summary
We show that the way that the air–sea heat flux is treated in ocean models means that the model's temperature variable should be interpreted as being Conservative Temperature, irrespective of whether the equation of state used in an ocean model is EOS-80 or TEOS-10.
Paul R. Halloran, Jennifer K. McWhorter, Beatriz Arellano Nava, Robert Marsh, and William Skirving
Geosci. Model Dev., 14, 6177–6195, https://doi.org/10.5194/gmd-14-6177-2021, https://doi.org/10.5194/gmd-14-6177-2021, 2021
Short summary
Short summary
This paper describes the latest version of a simple model for simulating coastal oceanography in response to changes in weather and climate. The latest revision of this model makes scientific improvements but focuses on improvements that allow the model to be run simply at large scales and for long periods of time to explore the implications of (for example) future climate change along large areas of coastline.
Fucang Zhou, Jianzhong Ge, Dongyan Liu, Pingxing Ding, Changsheng Chen, and Xiaodao Wei
Geosci. Model Dev., 14, 6049–6070, https://doi.org/10.5194/gmd-14-6049-2021, https://doi.org/10.5194/gmd-14-6049-2021, 2021
Short summary
Short summary
In this study, a physical–ecological model, the Floating Macroalgal Growth and Drift Model (FMGDM), was developed to determine the dynamic growth and drifting pattern of floating macroalgae. Based on Lagrangian tracking, the macroalgae bloom is jointly controlled by ocean flows, sea surface wind, temperature, irradiation, and nutrients. The FMGDM was robust in successfully reproducing the spatial and temporal dynamics of the massive green tide around the Yellow Sea.
Tuomas Kärnä, Patrik Ljungemyr, Saeed Falahat, Ida Ringgaard, Lars Axell, Vasily Korabel, Jens Murawski, Ilja Maljutenko, Anja Lindenthal, Simon Jandt-Scheelke, Svetlana Verjovkina, Ina Lorkowski, Priidik Lagemaa, Jun She, Laura Tuomi, Adam Nord, and Vibeke Huess
Geosci. Model Dev., 14, 5731–5749, https://doi.org/10.5194/gmd-14-5731-2021, https://doi.org/10.5194/gmd-14-5731-2021, 2021
Short summary
Short summary
We present Nemo-Nordic 2.0, a novel operational marine model for the Baltic Sea. The model covers the Baltic Sea and the North Sea with approximately 1 nmi resolution. We validate the model's performance against sea level, water temperature, and salinity observations, as well as sea ice charts. The skill analysis demonstrates that Nemo-Nordic 2.0 can reproduce the hydrographic features of the Baltic Sea.
David A. Griffin, Mike Herzfeld, Mark Hemer, and Darren Engwirda
Geosci. Model Dev., 14, 5561–5582, https://doi.org/10.5194/gmd-14-5561-2021, https://doi.org/10.5194/gmd-14-5561-2021, 2021
Short summary
Short summary
In support of the developing ocean renewable energy sector, and indeed all mariners, we have developed a new tidal model for Australian waters and thoroughly evaluated it using a new compilation of tide gauge and current meter data. We show that while there is certainly room for improvement, the model provides useful predictions of tidal currents for about 80 % (by area) of Australian shelf waters. So we intend to commence publishing tidal current predictions for those regions soon.
Jingzhe Li, Piyang Liu, Shuyu Sun, Zhifeng Sun, Yongzhang Zhou, Liang Gong, Jinliang Zhang, and Dongxing Du
Geosci. Model Dev., 14, 4925–4937, https://doi.org/10.5194/gmd-14-4925-2021, https://doi.org/10.5194/gmd-14-4925-2021, 2021
Short summary
Short summary
This paper introduces Sedapp, a basin fill simulation tool. Sedapp is an open-source computer code written in R language. Using this program, one can simulate the formation of sedimentary strata, especially in shallow marine environments injected by rivers. With proper parameter settings, the simulation results are very similar to the real geological bodies. Sedapp can also be used in continental fault basin environments, which may serve as a tool for oil exploration.
Gwenaëlle Gremion, Louis-Philippe Nadeau, Christiane Dufresne, Irene R. Schloss, Philippe Archambault, and Dany Dumont
Geosci. Model Dev., 14, 4535–4554, https://doi.org/10.5194/gmd-14-4535-2021, https://doi.org/10.5194/gmd-14-4535-2021, 2021
Short summary
Short summary
An accurate description of detritic organic particles is key to improving estimations of carbon export into the ocean abyss in ocean general circulation models. Yet, most parametrization are numerically impractical due to the required number of tracers needed to resolve the particle size spectrum. Here, a new parametrization that aims to minimize the tracers number while accurately describing the particles dynamics is developed and tested in a series of idealized numerical experiments.
Christo Rautenbach, Julia C. Mullarney, and Karin R. Bryan
Geosci. Model Dev., 14, 4241–4247, https://doi.org/10.5194/gmd-14-4241-2021, https://doi.org/10.5194/gmd-14-4241-2021, 2021
Short summary
Short summary
The simulation of ocean waves is important for various reasons, e.g. ship route safety and coastal vulnerability assessments. SWAN is a popular tool with which ocean waves may be predicted. Simulations using this tool can be computationally expensive. The present study thus aimed to understand which typical parallel-computing SWAN model set-up will be most effective. There thus do exist configurations where these simulations are most time-saving and effective.
Qing Li, Jorn Bruggeman, Hans Burchard, Knut Klingbeil, Lars Umlauf, and Karsten Bolding
Geosci. Model Dev., 14, 4261–4282, https://doi.org/10.5194/gmd-14-4261-2021, https://doi.org/10.5194/gmd-14-4261-2021, 2021
Short summary
Short summary
Different ocean vertical mixing schemes are usually developed in different modeling framework, making the comparison across such schemes difficult. Here, we develop a consistent framework for testing, comparing, and applying different ocean mixing schemes by integrating CVMix into GOTM, which also extends the capability of GOTM towards including the effects of ocean surface waves. A suite of test cases and toolsets for developing and evaluating ocean mixing schemes is also described.
Julien Jouanno, Rachid Benshila, Léo Berline, Antonin Soulié, Marie-Hélène Radenac, Guillaume Morvan, Frédéric Diaz, Julio Sheinbaum, Cristele Chevalier, Thierry Thibaut, Thomas Changeux, Frédéric Menard, Sarah Berthet, Olivier Aumont, Christian Ethé, Pierre Nabat, and Marc Mallet
Geosci. Model Dev., 14, 4069–4086, https://doi.org/10.5194/gmd-14-4069-2021, https://doi.org/10.5194/gmd-14-4069-2021, 2021
Short summary
Short summary
The tropical Atlantic has been facing a massive proliferation of Sargassum since 2011, with severe environmental and socioeconomic impacts. We developed a modeling framework based on the NEMO ocean model, which integrates transport by currents and waves, and physiology of Sargassum with varying internal nutrient quota, and considers stranding at the coast. Results demonstrate the ability of the model to reproduce and forecast the seasonal cycle and large-scale distribution of Sargassum biomass.
Andrew Yool, Julien Palmiéri, Colin G. Jones, Lee de Mora, Till Kuhlbrodt, Ekatarina E. Popova, A. J. George Nurser, Joel Hirschi, Adam T. Blaker, Andrew C. Coward, Edward W. Blockley, and Alistair A. Sellar
Geosci. Model Dev., 14, 3437–3472, https://doi.org/10.5194/gmd-14-3437-2021, https://doi.org/10.5194/gmd-14-3437-2021, 2021
Short summary
Short summary
The ocean plays a key role in modulating the Earth’s climate. Understanding this role is critical when using models to project future climate change. Consequently, it is necessary to evaluate their realism against the ocean's observed state. Here we validate UKESM1, a new Earth system model, focusing on the realism of its ocean physics and circulation, as well as its biological cycles and productivity. While we identify biases, generally the model performs well over a wide range of properties.
Sebastiaan J. van de Velde, Dominik Hülse, Christopher T. Reinhard, and Andy Ridgwell
Geosci. Model Dev., 14, 2713–2745, https://doi.org/10.5194/gmd-14-2713-2021, https://doi.org/10.5194/gmd-14-2713-2021, 2021
Short summary
Short summary
Biogeochemical interactions between iron and sulfur are central to the long-term biogeochemical evolution of Earth’s oceans. Here, we introduce an iron–sulphur cycle in a model of Earth's oceans. Our analyses show that the results of the model are robust towards parameter choices and that simulated concentrations and reactions are comparable to those observed in ancient ocean analogues (anoxic lakes). Our model represents an important step forward in the study of iron–sulfur cycling.
Katherine M. Smith, Skyler Kern, Peter E. Hamlington, Marco Zavatarelli, Nadia Pinardi, Emily F. Klee, and Kyle E. Niemeyer
Geosci. Model Dev., 14, 2419–2442, https://doi.org/10.5194/gmd-14-2419-2021, https://doi.org/10.5194/gmd-14-2419-2021, 2021
Short summary
Short summary
We present a newly developed reduced-order biogeochemical flux model that is complex and flexible enough to capture open-ocean ecosystem dynamics but reduced enough to incorporate into highly resolved numerical simulations with limited additional computational cost. The model provides improved correlations between model output and field data, indicating that significant improvements in the reproduction of real-world data can be achieved with a small number of variables.
Chia-Wei Hsu, Jianjun Yin, Stephen M. Griffies, and Raphael Dussin
Geosci. Model Dev., 14, 2471–2502, https://doi.org/10.5194/gmd-14-2471-2021, https://doi.org/10.5194/gmd-14-2471-2021, 2021
Short summary
Short summary
The new surface forcing from JRA55-do (OMIP II) significantly improved the underestimated sea level trend across the entire Pacific Ocean along 10° N in the simulation forced by CORE (OMIP I). We summarize and list out the reasons for the existing sea level biases across all studied timescales as a reference for improving the sea level simulation in the future. This study on the evaluation and improvement of ocean climate models should be of broad interest to a large modeling community.
Oliver Gutjahr, Nils Brüggemann, Helmuth Haak, Johann H. Jungclaus, Dian A. Putrasahan, Katja Lohmann, and Jin-Song von Storch
Geosci. Model Dev., 14, 2317–2349, https://doi.org/10.5194/gmd-14-2317-2021, https://doi.org/10.5194/gmd-14-2317-2021, 2021
Short summary
Short summary
We compare four ocean vertical mixing schemes in 100-year coupled simulations with the Max Planck Institute Earth System Model (MPI-ESM1.2) and analyse their model biases. Overall, the mixing schemes modify biases in the ocean interior that vary with region and variable but produce a similar global bias pattern. We therefore cannot classify any scheme as superior but conclude that the chosen mixing scheme may be important for regional biases.
Katsumi Matsumoto, Tatsuro Tanioka, and Jacob Zahn
Geosci. Model Dev., 14, 2265–2288, https://doi.org/10.5194/gmd-14-2265-2021, https://doi.org/10.5194/gmd-14-2265-2021, 2021
Short summary
Short summary
MESMO is a mathematical model that represents the essential components of the Earth, such as the global ocean, atmosphere, and sea ice. It is used to study the global climate and the global carbon cycle. We describe the third version of MESMO. A novel feature of the new version is its mathematical representations of the chemical composition of marine phytoplankton and the marine dissolved organic matter, which are both recognized as important for the global ocean carbon cycle.
Lojze Žust, Anja Fettich, Matej Kristan, and Matjaž Ličer
Geosci. Model Dev., 14, 2057–2074, https://doi.org/10.5194/gmd-14-2057-2021, https://doi.org/10.5194/gmd-14-2057-2021, 2021
Short summary
Short summary
Adriatic basin sea level modelling is a challenging problem due to the interplay between terrain, weather, tides and seiches. Current state-of-the-art numerical models (e.g. NEMO) require large computational resources to produce reliable forecasts. In this study we propose HIDRA, a novel deep learning approach for sea level modeling, which drastically reduces the numerical cost while demonstrating predictive capabilities comparable to that of the NEMO model, outperforming it in many instances.
Qing Li and Luke Van Roekel
Geosci. Model Dev., 14, 2011–2028, https://doi.org/10.5194/gmd-14-2011-2021, https://doi.org/10.5194/gmd-14-2011-2021, 2021
Short summary
Short summary
Physical processes in the ocean span multiple spatial and temporal scales. Simultaneously resolving all these in a simulation is computationally challenging. Here we develop a more efficient technique to better study the interactions across scales, particularly focusing on the ocean surface turbulent mixing, by coupling a global ocean circulation model MPAS-Ocean and a large eddy simulation model PALM. The latter is customized and ported on a GPU to further accelerate the computation.
Yang Feng, Dimitris Menemenlis, Huijie Xue, Hong Zhang, Dustin Carroll, Yan Du, and Hui Wu
Geosci. Model Dev., 14, 1801–1819, https://doi.org/10.5194/gmd-14-1801-2021, https://doi.org/10.5194/gmd-14-1801-2021, 2021
Short summary
Short summary
Simulation of coastal plume regions was improved in global ECCOv4 with a series of sensitivity tests. We find modeled SSS is closer to SMAP when using daily point-source runoff as well as increasing the resolution from coarse to intermediate. The plume characteristics, freshwater transport, and critical water properties are modified greatly. But this may not happen with a further increase to high resolution. The study will advance the seamless modeling of land–ocean–atmosphere feedback in ESMs.
Gregory C. Smith, Yimin Liu, Mounir Benkiran, Kamel Chikhar, Dorina Surcel Colan, Audrey-Anne Gauthier, Charles-Emmanuel Testut, Frederic Dupont, Ji Lei, François Roy, Jean-François Lemieux, and Fraser Davidson
Geosci. Model Dev., 14, 1445–1467, https://doi.org/10.5194/gmd-14-1445-2021, https://doi.org/10.5194/gmd-14-1445-2021, 2021
Short summary
Short summary
Canada's coastlines include diverse ocean environments. In response to the strong need to support marine activities and security, we present the first pan-Canadian operational regional ocean analysis system. A novel online tidal harmonic analysis method is introduced that uses a sliding-window approach. Innovations are compared to those from the Canadian global analysis system. Particular improvements are found near the Gulf Stream due to the higher model grid resolution.
William J. Pringle, Damrongsak Wirasaet, Keith J. Roberts, and Joannes J. Westerink
Geosci. Model Dev., 14, 1125–1145, https://doi.org/10.5194/gmd-14-1125-2021, https://doi.org/10.5194/gmd-14-1125-2021, 2021
Short summary
Short summary
We improve and test a computer model that simulates tides and storm surge over all of Earth's oceans and seas. The model varies mesh resolution (triangular element sizes) freely so that coastal areas, especially storm landfall locations, are well-described. We develop systematic tests of the resolution in order to suggest good mesh design criteria that balance computational efficiency with accuracy for both global astronomical tides and coastal storm tides under extreme weather forcing.
Bijoy Thompson, Claudio Sanchez, Boon Chong Peter Heng, Rajesh Kumar, Jianyu Liu, Xiang-Yu Huang, and Pavel Tkalich
Geosci. Model Dev., 14, 1081–1100, https://doi.org/10.5194/gmd-14-1081-2021, https://doi.org/10.5194/gmd-14-1081-2021, 2021
Short summary
Short summary
This article describes the development and ocean forecast evaluation of an atmosphere–ocean coupled prediction system for the Maritime Continent domain, which includes the eastern Indian and western Pacific oceans. The coupled system comprises regional configurations of the atmospheric model MetUM and ocean model NEMO, coupled using the OASIS3-MCT libraries. The model forecast deviation of selected fields relative to observations is within acceptable error limits of operational forecast models.
Pavel Perezhogin, Ilya Chernov, and Nikolay Iakovlev
Geosci. Model Dev., 14, 843–857, https://doi.org/10.5194/gmd-14-843-2021, https://doi.org/10.5194/gmd-14-843-2021, 2021
Short summary
Short summary
We describe the parallel implementation of the FEMAO model for an ice-covered sea with 2D Hilbert-curve domain decomposition. Load balancing is crucial because performance depends on the local depth. We propose, compare, and discuss four approaches to load balancing. The parallel library allowed us to modify the original sequential algorithm as little as possible. The performance increases almost linearly (tested with up to 996 CPU cores) for the model of the shallow White Sea.
Jordyn E. Moscoso, Andrew L. Stewart, Daniele Bianchi, and James C. McWilliams
Geosci. Model Dev., 14, 763–794, https://doi.org/10.5194/gmd-14-763-2021, https://doi.org/10.5194/gmd-14-763-2021, 2021
Short summary
Short summary
This project was created to understand the across-shore distribution of plankton in the California Current System. To complete this study, we used a quasi-2-D dynamical model coupled to an ecosystem model. This paper is a preliminary study to test and validate the model against data collected by the California Cooperative Oceanic Fisheries Investigations (CalCOFI). We show the solution of our model solution compares well to the data and discuss our model as a tool for further model development.
Christian Ferrarin, Marco Bajo, and Georg Umgiesser
Geosci. Model Dev., 14, 645–659, https://doi.org/10.5194/gmd-14-645-2021, https://doi.org/10.5194/gmd-14-645-2021, 2021
Short summary
Short summary
The problem of the optimization of ocean monitoring networks is tackled through the implementation of data assimilation techniques in a numerical model. The methodology has been applied to the tide gauge network in the Lagoon of Venice (Italy). The data assimilation methods allow identifying the minimum number of stations and their distribution that correctly represent the lagoon's dynamics. The methodology is easily exportable to other environments and can be extended to other variables.
Florian Lemarié, Guillaume Samson, Jean-Luc Redelsperger, Hervé Giordani, Théo Brivoal, and Gurvan Madec
Geosci. Model Dev., 14, 543–572, https://doi.org/10.5194/gmd-14-543-2021, https://doi.org/10.5194/gmd-14-543-2021, 2021
Short summary
Short summary
A simplified model of the atmospheric boundary layer (ABL) of intermediate complexity between a bulk parameterization and a full three-dimensional atmospheric model has been developed and integrated to the NEMO ocean model.
An objective in the derivation of such a simplified model is to reach an apt representation of ocean-only numerical simulations of some of the key processes associated with air–sea interactions at the characteristic scales of the oceanic mesoscale.
Cited articles
Aagaard, K., Weingartner, T., Danielson, S. L., Woodgate, R. A., Johnson, G. C., and Whitledge, T. E.: Some controls on flow and salinity in Bering Strait, Geophys. Res. Lett., 33, L19602, https://doi.org/10.1029/2006GL026612, 2006.
Aksenov, Y., Bacon, S., Coward, A., and Holliday, N. P.: Polar Outflow from the Arctic Ocean: a high resolution model study, J. Marine Syst., 83, 14–37, 2010.
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24, 19 pp., 2009.
Arakawa, A.: Computational design of long-term numerical integration of the equations of fluid motion, J. Comput. Phys., 1, 119–143, 1966.
Arribas, A., Glover, M., Maidens, A., Peterson, K., Gordon, M., MacLachlan, C., Graham, R., Fereday, D., Camp, J., Scaife, A., Xavier, P., McLean, P., Colman, A., and Cusack, S.: The GloSea4 ensemble prediction system for seasonal forecasting, Mon. Weather Rev., 139, 1891–1910, https://doi.org/10.1175/2010MWR3615.1, 2011.
Årthun, M., Nicholls, K. W., and Boehme, L.: Wintertime Water Mass Modification near an Antarctic Ice Front, J. Phys. Oceanogr., 43, 359–365, https://doi.org/10.1175/JPO-D-12-0186.1, 2013.
Axell, L. B.: Wind-driven Internal Waves and Langmuir Circulations in a Numerical Ocean Model of the Southern Baltic Sea, J. Geophys. Res., 107, 3204, https://doi.org/10.1029/2001JC000922, 2002.
Barnier, B., Madec, G., Penduff, T., Molines, J.-M., Treguier, A.-M., Le Sommer, J., Beckmann, A., Biastoch, A., Böning, C., Dengg, J., Derval, C., Durand, E., Gulev, S., Remy, E., Talandier, C., Theetten, S., Maltrud, M., McClean, J., and De Cuevas, B.: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy permitting resolution, Ocean Dynam., 56, 543–567, https://doi.org/10.1007/s10236-006-0082-1, 2006.
Beckmann, A. and Doscher, R.: A method for improved representation of dense water spreading over topography in geopotential-coordinate models, J. Phys. Oceanogr., 27, 581–591, 1997.
Bitz, C. M. and Lipscomb, W. H.: An energy-conserving thermodynamic model of sea ice, J. Geophys. Res., 104, 15669–15677, 1999.
Bitz, C. M., Holland, M., Eby, M., and Weaver, A. J.: Simulating the ice-thickness distribution in a coupled climate model, J. Geophys. Res., 106, 2441–2463, 2001.
Blaker, A. T., Hirschi, J. J.-M., McCarthy, G., Sinha, B., Taws, S., Marsh, R., Coward, A. C., and de Cuevas, B. A.: Historical analogues of the recent extreme minima observed in the Atlantic meridional overturning circulation at 26° N, Clim. Dynam., in review, 2014.
Bourdalle-Badie, R. and Treguier, A.-M.: A climatology of runoff for the global ocean-ice model ORCA025, Report, Mercator-Ocean, MOO-RP-425-365-MER, 2006.
Brown, A., Milton, S., Cullen, M., Golding, B., Mitchell, J., and Shelley, A.: Unified modeling and prediction of weather and climate: a 25-year journey, B. Am. Meteorol. Soc., 93, 1865–1877, 2012.
Calvert, D. and Siddorn, J.: Revised vertical mixing parameters for the UK community standard configuration of the global NEMO ocean model, Hadley Centre Technical Note 95, 74 pp., available at: http://www.metoffice.gov.uk/media/pdf/9/0/HCTN_95.pdf, last access: 21 May 2014, 2013.
Cavalieri, D. J., Parkinson, C. L., Gloersen, P., and Zwally, H.: Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, [indicate subset used], NASA DAAC at the National Snow and Ice Data Center, Boulder, Colorado, USA, 1996 (updated yearly).
Clement Kinney, J., Maslowski, W., Aksenov, Y., de Cuevas, B., Nguyen, A., Osinski, R., Steele, M., Woodgate, R. A., and Zhang, J.: On the Flow Through Bering Strait: A Synthesis of Model Results and Observations, in: The Pacific Arctic Region. Ecosystem Status and Trends in a Rapidly Changing Environment, edited by: Grebmeier, J. M. and Maslowski, W., Springer, 2014.
Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Hinton, T., Jones, C. D., Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Totterdell, I., Woodward, S., Reichler, T., and Kim, J.: Evaluation of the HadGEM2 model, Met Office Hadley Centre Technical Note no. HCTN 74, available from Met Office, FitzRoy Road, Exeter EX1 3PB, available at: http://www.metoffice.gov.uk/media/pdf/8/7/HCTN_74.pdf, last access: 18 November 2013, 2008.
Craig, P. D. and Banner, M. L.: Modelling Wave-Enhanced Turbulence in the Ocean Surface Layer, J. Phys. Oceanogr., 24, 2546–2559, 1994.
Cunningham, S. A., Alderson, S. G., King, B. A., and Brandon, M. A.: Transport and variability of the Antarctic Circumpolar Current in Drake Passage, J. Geophys. Res., 108, 8084, https://doi.org/10.1029/2001JC001147, 2003.
Cuny, J., Rhines, P., and Kwok, R. R.: Davis Strait volume, freshwater and heat fluxes, Deep-Sea Res. Pt. I, 52, 519–542, 2005.
Curry, B., Lee, C. M., and Petrie, B.: Volume, freshwater, and heat fluxes through Davis Strait, 2004–2005, J. Phys. Oceanogr., 41, 429–462, https://doi.org/10.1175/2010JPO4536.1, 2011.
Dai, A. and Trenberth, K. E.: Estimates of freshwater discharge from continents: latitudinal and seasonal variations, J. Hydrometeorol., 3, 660–687, 2002.
Danabasoglu, G., Large, G. W., and Briegleb, B.: Climate impacts of parameterized Nordic Sea overflows, J. Geophys. Res., 115, C11005, https://doi.org/10.1029/2010JC006243, 2010.
Dawson, A., Matthews, A. J., Stevens, D. P., Roberts, M. J., and Vidale, P.-L.: Importance of oceanic resolution and mean state on the extra-tropical response to El Nino in a matrix of coupled models, Clim. Dynam., 41, 1439–1452, https://doi.org/10.1007/s00382-012-1518-6, 2012.
de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and Iudicone, D.: Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology, J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378, 2004.
Delworth, T., Rosati, A., Anderson, W., Adcroft, A., Balaji, V., Benson, R., Dixon, K., Griffies, S., Lee, H., Pacanowski, R., Vecchi, G. A., Wittenberg, A. T., Zeng, F., and Zhang, R.: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model, J. Climate, 25, 2755–2781, 2012.
Farneti, R. and Gent, P. R.: The effects of the eddy-induced advection coefficient in a coarse-resolution coupled climate model, Ocean Model., 39, 135–145, https://doi.org/10.1016/j.ocemod.2011.02.005, 2011.
Farneti, R., Delworth, T. L., Rosati, A. J., Griffies, S. M., and Zeng, F.: The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change, J. Phys. Oceanogr., 40, 1539–1557, https://doi.org/10.1175/2010JPO4353.1, 2010.
Gammelsrod, T., Leikvin, O., Lien, V., Budgell, W. P., Loeng, H., and Maslowski, W.: Mass and heat transports in the NE Barents Sea: observations and models, J. Marine Syst., 75, 56–69, https://doi.org/10.1016/j.jmarsys.2008.07.010, 2009.
Gaspar, P., Grégoris, Y., and Lefevre, J.-M.: A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: tests at Station Papa and long-term upper ocean study site, J. Geophys. Res., 95, 16179–16193, https://doi.org/10.1029/JC095iC09p16179, 1990.
Gent, P. R. and Danabasoglu, G.: Response to Increasing Southern Hemisphere Winds in CCSM4, J. Climate, 24, 4992–4998, https://doi.org/10.1175/JCLI-D-10-05011.1, 2011.
Gent, P. R. and McWilliams, J. C.: Isopycnal mixing in ocean circulation models, J. Phys. Oceanogr., 20, 150–155, 1990.
Gnanadesikan, A., Griffies, S. M., and Samuels, B. L.: Effects in a climate model of slope tapering in neutral physics schemes, Ocean Model., 16, 1–16, 2007.
Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T. C., Mitchell, J. F. B., and Wood, R. A.: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments, Clim. Dynam., 16, 147–168, 2000.
Gregg, M. C., Sanford, T. B., and Winkel, D. P.: Reduced mixing from the breaking of internal waves in equatorial waters, Nature, 422, 513–515, 2003.
Griffies, S. M., Pacanowski, R. C., and Hallberg, R. W.: Spurious diapycnal mixing associated with advection in a z-coordinate ocean model, Mon. Weather Rev., 128, 538–564, 2000.
Griffies, S. M., Biastoch, A., Böning, C., Bryan, F., Danabasoglu, G., Chassignet, E. P., England, M. H., Gerdes, R., Haak, H., Hallberg, R. W., Hazeleger, W., Jungclaus, J., Large, W. G., Madec, G., Pirani, A., Samuels, B. L., Scheinert, M., Sen Gupta, A., Severijns, C. A., Simmons, H. L., Treguier, A.-M., Winton, M., Yeager, S., and Yin, J.: Coordinated Ocean-ice Reference Experiments (COREs), J. Ocean Model., 26, https://doi.org/10.1016/j.ocemod.2008.08.007, 2009.
Hallberg, R. and Gnanadesikan, A.: The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: results from the Modeling Eddies in the Southern Ocean (MESO) project, J. Phys. Oceanogr., 36, 2232–2252, 2006.
Hewitt, H. T., Copsey, D., Culverwell, I. D., Harris, C. M., Hill, R. S. R., Keen, A. B., McLaren, A. J., and Hunke, E. C.: Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system, Geosci. Model Dev., 4, 223–253, https://doi.org/10.5194/gmd-4-223-2011, 2011.
Hirschi, J. J.-M., Blaker, A. T., Sinha, B., Coward, A., de Cuevas, B., Alderson, S., and Madec, G.: Chaotic variability of the meridional overturning circulation on subannual to interannual timescales, Ocean Sci., 9, 805–823, https://doi.org/10.5194/os-9-805-2013, 2013.
Holland, P. R. and Kwok, R.: Wind-driven trends in Antarctic sea-ice drift, Nat. Geosci., 5, 872–875, https://doi.org/10.1038/ngeo1627, 2012.
Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., and Xiaosu, D.: Climate Change 2001: The Scientific Basis, Cambridge University Press, 944 pp., 2001.
Hunke, E. C. and Dukowicz, J. K.: An Elastic–Viscous–Plastic Model for sea ice dynamics, J. Phys. Oceanogr., 27, 1849–1867, 1997.
Hunke, E. C. and Lipscomb, W. H.: CICE: The Los Alamos Sea Ice Model, Documentation and Software User's Manual, Version 4.1, Tech. Rep. LA-CC-06-012, Los Alamos National Laboratory, Los Alamos, New Mexico, available at: http://oceans11.lanl.gov/trac/CICE, last access: 18 November 2013, 2010.
Ingleby, B. and Huddleston, M.: Quality control of ocean temperature and salinity profiles – historical and real-time data, J. Marine Syst., 65, 158–175, 2007.
IOC, IHO and BODC: Centenary Edition of the GEBCO Digital Atlas, published on CD-ROM on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the General Bathymetric Chart of the Oceans, British Oceanographic Data Centre, Liverpool, UK, 2003.
Johns, T. C., Durman, C. F., Banks, H. T., Roberts, M. J., McLaren, A. J., Ridley, J. K., Senior, C. A., Williams, K. D., Jones, A., Rickard, G. J., Cusack, S., Ingram, W. J., Crucifix, M., Sexton, D. M. H., Joshi, M. M., Dong, B.-W., Spencer, H., Hill, R. S. R., Gregory, J. M., Keen, A. B., Pardaens, A. K., Lowe, J. A., Bodas-Salcedo, A., Stark, S., and Searl, Y.: The New Hadley Centre Climate Model (HadGEM1): evaluation of coupled simulations, J. Climate, 19, 1327–1353, 2006.
Josey, S. A., Gulev, S., and Yu, L.: Exchanges through the ocean surface, in: Ocean Circulation and Climate: A 21st Century Perspective, 2nd Edn., edited by: Siedler, G., Griffies, S., Gould, J., and Church, J., Oxford, GB, Academic Press, International Geophysics Series, 103, 115–140, 2013.
Kennedy, J. J., Rayner, N. A., Smith, R. O., Saunby, M., and Parker, D. E.: Reassessing biases and other uncertainties in sea-surface temperature observations measured in situ since 1850 – Part 2: Biases and homogenisation, J. Geophys. Res., 116, D14104, https://doi.org/10.1029/2010JD015220, 2011.
Koch-Larrouy, A., Madec, G., Blanke, B., and Molcard, R.: Water mass transformation along the Indonesian throughflow in an OGCM, Ocean Dynam., 58, 289–309, 2008.
Large, W. G. and Yeager, S. G.: The global climatology of an interannually varying air-sea flux data set, Clim. Dynam., 33, 341–364, https://doi.org/10.1007/s00382- 008-0441-3, 2009.
Leclair, M. and Madec, G.: z-Coordinate, an Arbitrary Lagrangian–Eulerian coordinate separating high and low frequency motions, Ocean Model., 37, 139–152, https://doi.org/10.1016/j.ocemod.2011.02.001, 2011.
Lee, M.-M., Coward, A. C., and Nurser, A. J. G.: Spurious diapycnal mixing of the deep waters in an eddy-permitting global ocean model, J. Phys. Oceanogr., 32, 1522–1535, 2002.
Lohmann, G., Gerdes, R., and Chen, D.: Sensitivity of the thermohaline circulation in coupled oceanic GCM-atmospheric EBM experiments, Clim. Dynam., 12, 403–416, 1996.
Madec, G.: NEMO – the OPA9 ocean engine: Note du Pole de Modelisation, Institut Pierre-Simion Laplace, 1:100, available at: http://www.nemo-ocean.eu, last access: 18 November 2013, 2008.
McCarthy, G., Frajka-Williams, E., Johns, W. E., Baringer, M. O., Meinen, C. S., Bryden, H. L., Rayner, D., Duchez, A., Roberts, C., and Cunningham, S. A.: Observed interannual variability of the Atlantic meridional overturning circulation at 26.5° N, Geophys. Res. Lett., 39, L19609, https://doi.org/10.1029/2012GL052933, 2012.
Megann, A. P., New, A. L., Blaker, A. T., and Sinha, B.: The sensitivity of a coupled climate model to its ocean component, J. Climate, 23, 5126–5150, 2010.
Meijers, A. J. S., Shuckburgh, E., Bruneau, N., Sallee, J.-B., Bracegirdle, T. J., and Wang, Z.: Representation of the Antarctic Circumpolar Current in the CMIP5 climate models and future changes under warming scenarios, J. Geophys. Res., 117, C12008, https://doi.org/10.1029/2012JC008412, 2012.
Merryfield, W. J., Holloway, G., and Gargett, A. E.: A global ocean model with double-diffusive mixing, J. Phys. Ocean., 29, 1124–1142, 1999.
Munday, D. R., Johnson, H. L., and Marshall, D. P.: Eddy Saturation of Equilibrated Circumpolar Currents, J. Phys. Ocean., 43, 507–532, https://doi.org/10.1175/JPO-D-12-095.1, 2013.
Olsen, S. M., Hansen, B., Quadfasel, D., and Østerhus, S.: Observed and modelled stability of overflow across the Greenland–Scotland ridge, Nature, 455, 519–522, 2008.
Østerhus, S., Turrrell, W. R., Jónsson, S., and Hansen, B.: Measured volume, heat, and salt fluxes from the Atlantic to the Arctic Mediterranean, Geophys. Res. Lett., 32, L07603, https://doi.org/10.1029/2004GL022188, 2005.
Penduff, T., Le Sommer, J., Barnier, B., Treguier, A.-M., Molines, J.-M., and Madec, G.: Influence of numerical schemes on current-topography interactions in $1/4^\circ$ global ocean simulations, Ocean Sci., 3, 509–524, https://doi.org/10.5194/os-3-509-2007, 2007.
Penduff, T., Juza, M., Brodeau, L., Smith, G. C., Barnier, B., Molines, J.-M., Treguier, A.-M., and Madec, G.: Impact of global ocean model resolution on sea-level variability with emphasis on interannual time scales, Ocean Sci., 6, 269–284, https://doi.org/10.5194/os-6-269-2010, 2010.
Rae, J. G. L., Hewitt, H. T., Keen, A. B., Ridley, J. K., Harris, C. M., Hunke, E. C., and Walters, D. N.: Development of Global Sea Ice 5.0 CICE configuration, Geosci. Model Dev., in preparation, 2014.
Rahmstorf, S. and Willebrand, J.: The role of temperature feedback in stabilizing the thermohaline circulation, J. Phys. Oceanogr., 25, 787–805, https://doi.org/10.1175/1520-0485(1995)025<0787:TROTFI>2.0.CO;2, 1995.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670, 2003.
Remy, E., Siefridt, L., Fleury, L., and Bremond, M.: Construction de la bathymetrie pour la configuration modele ORCA025, CERFACS Report, May 2003.
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.: An improved in situ and satellite SST analysis for climate, J. Climate, 15, 1609–1625, 2002.
Roberts, C. D., Waters, J., Peterson, K. A., Palmer, M. D., McCarthy, G. D., Frajka-Williams, E., Haines, K., Lea, D. J., Martin, M. J., Storkey, D., Blockley, E. W., and Zuo, H.: Atmosphere drives recent interannual variability of the Atlantic meridional overturning circulation at 26.5° N, Geophys. Res. Lett., 40, 5164–5170, https://doi.org/10.1002/grl.50930, 2013.
Roberts, M. J., Clayton, A., Demory, M.-E., Donners, J., Vidale, P.-L., Norton, W., Shaffrey, L., Stevens, D. P., Stevens, I., Wood, R. A., and Slingo, J.: Impact of resolution on the tropical pacific circulation in a matrix of coupled models, J. Climate, 22, 2541–2556, 2009.
Robson, J., Hodson, D., Hawkins, E., and Sutton, R.: Atlantic overturning in decline?, Nat. Geosci., 7, 2–3, 2014.
Saunders, P. P., Cunningham, S. A., de Cuevas, B. A., and Coward, A. C.: Comments on "Decadal Changes in the North Atlantic and Pacific Meridional Overturning Circulation and Heat Flux", J. Phys. Ocean., 38, 2104–2107, 2008.
Scaife, A. A., Copsey, D., Gordon, C., Harris, C., Hinton, T., Keeley, S., O'Neill, A., Roberts, M., and Williams, K.: Improved Atlantic winter blocking in a climate model, Geophys. Res. Lett., 38, L23703, https://doi.org/10.1029/2011GL049573, 2011.
Semtner, A. J.: A model for the thermodynamic growth of sea ice in numerical investigations of climate, J. Phys. Oceanogr., 6, 379–389, 1976.
Shaffrey, L. C., Stevens, I., Norton, W. A., Roberts, M. J., Vidale, P. L., Harle, J. D., Jarrar, A., Stevens, D. P., Woodage, M. J., Demory, M. E., Donners, J., Clark, D. B., Clayton, A., Cole, J. W., Wilson, S. S., Connolley, W. M., Davies, T. M., Iwi, A. M., Johns, T. C., King, J. C., New, A. L., Slingo, J. M., Slingo, A., Steenman-Clark, L., and Martin, G. M.: U.K. HiGEM: The new U.K. high-resolution global environment model – model description and basic evaluation, J. Climate, 22, 1861–1896, 2009.
Simmons, H., Jayne, S., Laurent, L. S., and Weaver, A.: Tidally driven mixing in a numerical model of the ocean general circulation, Ocean Model., 6, 245–263, 2004.
Sinha, B., Topliss, B., Blaker, A. T., and Hirschi J. J.-M.: A numerical model study of the effects of interannual timescale wave propagation on the predictability of the Atlantic meridional overturning circulation, J. Geophys. Res., 118, 131–146, https://doi.org/10.1029/2012JC008334, 2013.
Sirevaag, A., McPhee, M. G., Morison, J. H., Shaw, W. J., and Stanton, T. P.: Wintertime mixed layer measurements at Maud Rise, Weddell Sea, J. Geophys. Res., 115, C02009, https://doi.org/10.1029/2008JC005141, 2010.
Skagseth, Ø., Furevik, T., Ingvaldsen, R., Loeng, H., Mork, K. A., Orvik, K. A., and Ozhigin, V.: Volume and heat transports to the Arctic Ocean via the Norwegian and Barents Seas, in: Arctic–Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate, edited by: Dickson, R. R., Meincke, J., and Rhines, P., Springer, the Netherlands, 45–64, 2008.
Smeed, D. A., McCarthy, G. D., Cunningham, S. A., Frajka-Williams, E., Rayner, D., Johns, W. E., Meinen, C. S., Baringer, M. O., Moat, B. I., Duchez, A., and Bryden, H. L.: Observed decline of the Atlantic meridional overturning circulation 2004–2012, Ocean Sci., 10, 29–38, https://doi.org/10.5194/os-10-29-2014, 2014.
Smith, D. M., Cusack, S., Colman, A. W., Folland, C. K., Harris, G. R., and Murphy, J. M.: Improved surface temperature prediction for the coming decade from a global climate model, Science, 317, 796–799, https://doi.org/10.1126/science.1139540, 2007.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L.: Climate Change 2007: The Physical Science Basis, Cambridge University Press, 996 pp., 2007.
Sprintall, J., Wijffels, S. E., Molcard, R., and Jaya, I.: Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006, J. Geophys. Res., 114, C07001, https://doi.org/10.1029/2008JC005257, 2009.
Stein, C. A. and Stein, S.: A model for the global variation in oceanic depth and heat flow with lithospheric age, Nature, 359, 123–129, 1992.
Storkey, D., Blockley, E. W., Furner, R., Guiavarc'h, C., Lea, D., Martin, M. J., Barciela, R. M., Hines, A., Hyder, P., and Siddorn, J. R.: Forecasting the ocean state using NEMO: the new FOAM system, Journal of Operational Oceanography, 3, 3–15, 2010.
Tansley, C. E. and Marshall, D. P.: On the dynamics of wind-driven circumpolar currents, J. Phys. Oceanogr., 31, 3258–3273, 2001.
Thomas, M. D. and Zhai, X.: Eddy-induced variability of the meridional overturning circulation in a model of the North Atlantic, Geophys. Res. Lett., 40, 1–6, https://doi.org/10.1002/grl.50532, 2013.
Viebahn, J. and Eden, C.: Towards the impact of eddies on the response of the southern ocean to climate change, Ocean Model., 34, 150–165, 2010.
Williamson, D., Goldstein, M., Allison, L., Blaker, A., Challenor, P., and Jackson, L.: History matching for the quantification and reduction of parametric uncertainty in climate model projections, Clim. Dynam., 41, 1703–1729, https://doi.org/10.1007/s00382-013-1896-4, 2013.
Woodgate, R. A., Weingartner, T. J., and Lindsay, R.: Observed increases in Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic Ocean water column, Geophys. Res. Lett., 39, L24603, https://doi.org/10.1029/2012GL054092, 2012.
Worby, A. P., Geiger, C. A., Paget, M. J., van Woert, M. L., Ackley, S. F., and DeLiberty, T. L.: Thickness distribution of Antarctic sea ice, J. Geophys. Res., 113, C05S92, https://doi.org/10.1029/2007JC004254, 2008.
Yeager, S. G. and Jochum, M.: The connection between Labrador Sea buoyancy loss, deep western boundary current strength, and Gulf Stream path in an ocean circulation model, Ocean Model., 30, 207–224, 2009.
Zalesak, S. T.: Fully multidimensional flux corrected transport algorithms for fluids, J. Comput. Phys., 31, 335–362, 1979.
Zhang, J., Thomas, D. R., Rothrock, D. A., Lindsay, R. W., Yu, Y., and Kwok, R.: Assimilation of ice motion observations and comparisons with submarine ice thickness data, J. Geophys. Res., 108, 3170, https://doi.org/10.1029/2001JC001041, 2003.
Special issue