Articles | Volume 6, issue 2
https://doi.org/10.5194/gmd-6-495-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gmd-6-495-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Modeling agriculture in the Community Land Model
B. Drewniak
Environmental Science Division, Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439, USA
J. Song
Northern Illinois University, Department of Geography, Davis Hall, Room 118, DeKalb, IL 60115, USA
J. Prell
Environmental Science Division, Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439, USA
V. R. Kotamarthi
Environmental Science Division, Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439, USA
Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439, USA
Related authors
Eva Sinha, Kate Calvin, Ben Bond-Lamberty, Beth Drewniak, Dan Ricciuto, Khachik Sargsyan, Yanyan Cheng, Carl Bernacchi, and Caitlin Moore
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-244, https://doi.org/10.5194/gmd-2021-244, 2021
Preprint withdrawn
Short summary
Short summary
Perennial bioenergy crops are not well represented in global land models, despite projected increase in their production. Our study expands Energy Exascale Earth System Model (E3SM) Land Model (ELM) to include perennial bioenergy crops and calibrates the model for miscanthus and switchgrass. The calibrated model captures the seasonality and magnitude of carbon and energy fluxes. This study provides the foundation for future research examining the impact of perennial bioenergy crop expansion.
I. Bilionis, B. A. Drewniak, and E. M. Constantinescu
Geosci. Model Dev., 8, 1071–1083, https://doi.org/10.5194/gmd-8-1071-2015, https://doi.org/10.5194/gmd-8-1071-2015, 2015
Short summary
Short summary
Farming is using more of the land surface terrestrial ground and this expansion exerts an increasing impact on the terrestrial carbon cycle. In order to understand the impact of such processes, we calibrate the parametric models within CLM-Crop (part of the Community Land Model (CLM)). The agreement between AmeriFlux observations and model projections is greatly improved for soybean, which is the focus of this study.
B. A. Drewniak, U. Mishra, J. Song, J. Prell, and V. R. Kotamarthi
Biogeosciences, 12, 2119–2129, https://doi.org/10.5194/bg-12-2119-2015, https://doi.org/10.5194/bg-12-2119-2015, 2015
X. Zeng, B. A. Drewniak, and E. M. Constantinescu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-6-379-2013, https://doi.org/10.5194/gmdd-6-379-2013, 2013
Revised manuscript not accepted
Kyle Peco, Jiali Wang, Chunyong Jung, Gökhan Sever, Lindsay Sheridan, Jeremy Feinstein, Rao Kotamarthi, Caroline Draxl, Ethan Young, Avi Purkayastha, and Andrew Kumler
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-13, https://doi.org/10.5194/wes-2025-13, 2025
Preprint under review for WES
Short summary
Short summary
This study presents a new wind dataset, generated by a climate model, that can help facilitate efforts in wind energy. By providing data across much of North America, this dataset can offer insights into the wind patterns in more understudied regions. By validating the dataset against actual wind observations, we have demonstrated that this dataset is able to accurately capture the wind patterns of different geographic areas, which can help identify locations for wind energy farms.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Qiuyi Wu, Julie Bessac, Whitney Huang, Jiali Wang, and Rao Kotamarthi
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 205–224, https://doi.org/10.5194/ascmo-8-205-2022, https://doi.org/10.5194/ascmo-8-205-2022, 2022
Short summary
Short summary
We study wind conditions and their potential future changes across the U.S. via a statistical conditional framework. We conclude that changes between historical and future wind directions are small, but wind speeds are generally weakened in the projected period, with some locations being intensified. Moreover, winter wind speeds are projected to decrease in the northwest, Colorado, and the northern Great Plains (GP), while summer wind speeds over the southern GP slightly increase in the future.
William J. Shaw, Larry K. Berg, Mithu Debnath, Georgios Deskos, Caroline Draxl, Virendra P. Ghate, Charlotte B. Hasager, Rao Kotamarthi, Jeffrey D. Mirocha, Paytsar Muradyan, William J. Pringle, David D. Turner, and James M. Wilczak
Wind Energ. Sci., 7, 2307–2334, https://doi.org/10.5194/wes-7-2307-2022, https://doi.org/10.5194/wes-7-2307-2022, 2022
Short summary
Short summary
This paper provides a review of prominent scientific challenges to characterizing the offshore wind resource using as examples phenomena that occur in the rapidly developing wind energy areas off the United States. The paper also describes the current state of modeling and observations in the marine atmospheric boundary layer and provides specific recommendations for filling key current knowledge gaps.
Vijay S. Mahadevan, Jorge E. Guerra, Xiangmin Jiao, Paul Kuberry, Yipeng Li, Paul Ullrich, David Marsico, Robert Jacob, Pavel Bochev, and Philip Jones
Geosci. Model Dev., 15, 6601–6635, https://doi.org/10.5194/gmd-15-6601-2022, https://doi.org/10.5194/gmd-15-6601-2022, 2022
Short summary
Short summary
Coupled Earth system models require transfer of field data between multiple components with varying spatial resolutions to determine the correct climate behavior. We present the Metrics for Intercomparison of Remapping Algorithms (MIRA) protocol to evaluate the accuracy, conservation properties, monotonicity, and local feature preservation of four different remapper algorithms for various unstructured mesh problems of interest. Future extensions to more practical use cases are also discussed.
Caleb Phillips, Lindsay M. Sheridan, Patrick Conry, Dimitrios K. Fytanidis, Dmitry Duplyakin, Sagi Zisman, Nicolas Duboc, Matt Nelson, Rao Kotamarthi, Rod Linn, Marc Broersma, Timo Spijkerboer, and Heidi Tinnesand
Wind Energ. Sci., 7, 1153–1169, https://doi.org/10.5194/wes-7-1153-2022, https://doi.org/10.5194/wes-7-1153-2022, 2022
Short summary
Short summary
Adoption of distributed wind turbines for energy generation is hindered by challenges associated with siting and accurate estimation of the wind resource. This study evaluates classic and commonly used methods alongside new state-of-the-art models derived from simulations and machine learning approaches using a large dataset from the Netherlands. We find that data-driven methods are most effective at predicting production at real sites and new models reliably outperform classic methods.
Romit Maulik, Vishwas Rao, Jiali Wang, Gianmarco Mengaldo, Emil Constantinescu, Bethany Lusch, Prasanna Balaprakash, Ian Foster, and Rao Kotamarthi
Geosci. Model Dev., 15, 3433–3445, https://doi.org/10.5194/gmd-15-3433-2022, https://doi.org/10.5194/gmd-15-3433-2022, 2022
Short summary
Short summary
In numerical weather prediction, data assimilation is frequently utilized to enhance the accuracy of forecasts from equation-based models. In this work we use a machine learning framework that approximates a complex dynamical system given by the geopotential height. Instead of using an equation-based model, we utilize this machine-learned alternative to dramatically accelerate both the forecast and the assimilation of data, thereby reducing need for large computational resources.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Jiali Wang, Zhengchun Liu, Ian Foster, Won Chang, Rajkumar Kettimuthu, and V. Rao Kotamarthi
Geosci. Model Dev., 14, 6355–6372, https://doi.org/10.5194/gmd-14-6355-2021, https://doi.org/10.5194/gmd-14-6355-2021, 2021
Short summary
Short summary
Downscaling, the process of generating a higher spatial or time dataset from a coarser observational or model dataset, is a widely used technique. Two common methodologies for performing downscaling are to use either dynamic (physics-based) or statistical (empirical). Here we develop a novel methodology, using a conditional generative adversarial network (CGAN), to perform the downscaling of a model's precipitation forecasts and describe the advantages of this method compared to the others.
Eva Sinha, Kate Calvin, Ben Bond-Lamberty, Beth Drewniak, Dan Ricciuto, Khachik Sargsyan, Yanyan Cheng, Carl Bernacchi, and Caitlin Moore
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-244, https://doi.org/10.5194/gmd-2021-244, 2021
Preprint withdrawn
Short summary
Short summary
Perennial bioenergy crops are not well represented in global land models, despite projected increase in their production. Our study expands Energy Exascale Earth System Model (E3SM) Land Model (ELM) to include perennial bioenergy crops and calibrates the model for miscanthus and switchgrass. The calibrated model captures the seasonality and magnitude of carbon and energy fluxes. This study provides the foundation for future research examining the impact of perennial bioenergy crop expansion.
Jaydeep Singh, Narendra Singh, Narendra Ojha, Amit Sharma, Andrea Pozzer, Nadimpally Kiran Kumar, Kunjukrishnapillai Rajeev, Sachin S. Gunthe, and V. Rao Kotamarthi
Geosci. Model Dev., 14, 1427–1443, https://doi.org/10.5194/gmd-14-1427-2021, https://doi.org/10.5194/gmd-14-1427-2021, 2021
Short summary
Short summary
Atmospheric models often have limitations in simulating the geographically complex and climatically important central Himalayan region. In this direction, we have performed regional modeling at high resolutions to improve the simulation of meteorology and dynamics through a better representation of the topography. The study has implications for further model applications to investigate the effects of anthropogenic pressure over the Himalaya.
Francesca Gallo, Janek Uin, Stephen Springston, Jian Wang, Guangjie Zheng, Chongai Kuang, Robert Wood, Eduardo B. Azevedo, Allison McComiskey, Fan Mei, Adam Theisen, Jenni Kyrouac, and Allison C. Aiken
Atmos. Chem. Phys., 20, 7553–7573, https://doi.org/10.5194/acp-20-7553-2020, https://doi.org/10.5194/acp-20-7553-2020, 2020
Short summary
Short summary
Continuous high-time-resolution ambient data can include periods when aerosol properties do not represent regional aerosol processes due to high-concentration local events. We develop a novel aerosol mask at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) facility in the eastern North Atlantic (ENA). We use two ground sites to validate the mask, include a comparison with aircraft overflights, and provide guidance to increase data quality at ENA and other locations.
Vijay S. Mahadevan, Iulian Grindeanu, Robert Jacob, and Jason Sarich
Geosci. Model Dev., 13, 2355–2377, https://doi.org/10.5194/gmd-13-2355-2020, https://doi.org/10.5194/gmd-13-2355-2020, 2020
Short summary
Short summary
Accurate climate modeling of coupled Earth systems requires mapping of solution field data between dependent components that use non-matching discrete meshes. While existing workflows provide a pathway to generate the projection weights as an offline step, severe bottlenecks impede flexible setup of high-resolution models. In this paper, we present new algorithmic approaches to simplify the E3SM computational workflow using a scalable software infrastructure to generate the remapping operators.
Jiali Wang, Prasanna Balaprakash, and Rao Kotamarthi
Geosci. Model Dev., 12, 4261–4274, https://doi.org/10.5194/gmd-12-4261-2019, https://doi.org/10.5194/gmd-12-4261-2019, 2019
Short summary
Short summary
Parameterizations are frequently used in models representing physical phenomena and are often the computationally expensive portions of the code. Using model output from simulations performed using a weather model, we train deep neural networks to provide an accurate alternative to a physics-based parameterization. We demonstrate that a domain-aware deep neural network can successfully simulate the entire diurnal cycle of the boundary layer physics and the results are transferable.
Jiali Wang, Cheng Wang, Vishwas Rao, Andrew Orr, Eugene Yan, and Rao Kotamarthi
Geosci. Model Dev., 12, 3523–3539, https://doi.org/10.5194/gmd-12-3523-2019, https://doi.org/10.5194/gmd-12-3523-2019, 2019
Short summary
Short summary
WRF-Hydro needs to be calibrated to optimize its output with respect to observations. However, when applied to a relatively large domain, both WRF-Hydro simulations and calibrations require intensive computing resources and are best performed in parallel. This study ported an independent calibration tool (parameter estimation tool – PEST) to high-performance computing clusters and adapted it to work with WRF-Hydro. The results show significant speedup for model calibration.
Jeffrey D. Mirocha, Matthew J. Churchfield, Domingo Muñoz-Esparza, Raj K. Rai, Yan Feng, Branko Kosović, Sue Ellen Haupt, Barbara Brown, Brandon L. Ennis, Caroline Draxl, Javier Sanz Rodrigo, William J. Shaw, Larry K. Berg, Patrick J. Moriarty, Rodman R. Linn, Veerabhadra R. Kotamarthi, Ramesh Balakrishnan, Joel W. Cline, Michael C. Robinson, and Shreyas Ananthan
Wind Energ. Sci., 3, 589–613, https://doi.org/10.5194/wes-3-589-2018, https://doi.org/10.5194/wes-3-589-2018, 2018
Short summary
Short summary
This paper validates the use of idealized large-eddy simulations with periodic lateral boundary conditions to provide boundary-layer flow quantities of interest for wind energy applications. Sensitivities to model formulation, forcing parameter values, and grid configurations were also examined, both to ascertain the robustness of the technique and to characterize inherent uncertainties, as required for the evaluation of more general wind plant flow simulation approaches under development.
K. K. Shukla, K. Niranjan Kumar, D. V. Phanikumar, R. K. Newsom, V. R. Kotamarthi, T. B. M. J. Ouarda, and M. V. Ratnam
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-162, https://doi.org/10.5194/amt-2016-162, 2016
Revised manuscript not accepted
Short summary
Short summary
Estimation of Cloud base height was carried out by using various ground based instruments (Doppler Lidar and Ceilometer) and satellite datasets (MODIS) over central Himalayan region for the first time. The present study demonstrates the potential of Doppler Lidar in precise estimation of cloud base height and updraft velocities. More such deployments will be invaluable inputs for regional weather prediction models over complex Himalayan terrains.
Y. Feng, V. R. Kotamarthi, R. Coulter, C. Zhao, and M. Cadeddu
Atmos. Chem. Phys., 16, 247–264, https://doi.org/10.5194/acp-16-247-2016, https://doi.org/10.5194/acp-16-247-2016, 2016
Short summary
Short summary
Aerosol radiative effects are of great importance for climate studies over South Asia, such as the weakening of the South Asian monsoon in the 20th century. This study reveals the altitude dependence of commonly underestimated aerosol radiative properties over this region. It further demonstrates the importance of constraining aerosol vertical distributions and partitioning of scattering vs absorbing aerosols in simulating the subsequent regional dynamical and hydrological responses to aerosols.
I. Bilionis, B. A. Drewniak, and E. M. Constantinescu
Geosci. Model Dev., 8, 1071–1083, https://doi.org/10.5194/gmd-8-1071-2015, https://doi.org/10.5194/gmd-8-1071-2015, 2015
Short summary
Short summary
Farming is using more of the land surface terrestrial ground and this expansion exerts an increasing impact on the terrestrial carbon cycle. In order to understand the impact of such processes, we calibrate the parametric models within CLM-Crop (part of the Community Land Model (CLM)). The agreement between AmeriFlux observations and model projections is greatly improved for soybean, which is the focus of this study.
B. A. Drewniak, U. Mishra, J. Song, J. Prell, and V. R. Kotamarthi
Biogeosciences, 12, 2119–2129, https://doi.org/10.5194/bg-12-2119-2015, https://doi.org/10.5194/bg-12-2119-2015, 2015
M. P. Jensen, T. Toto, D. Troyan, P. E. Ciesielski, D. Holdridge, J. Kyrouac, J. Schatz, Y. Zhang, and S. Xie
Atmos. Meas. Tech., 8, 421–434, https://doi.org/10.5194/amt-8-421-2015, https://doi.org/10.5194/amt-8-421-2015, 2015
Short summary
Short summary
A major component of the 2011 Midlatitude Continental Convective Clouds Experiment (MC3E) was a six-site radiosonde array designed to capture the large-scale variability of the atmospheric state. This manuscript describes the details of the MC3E radiosonde operations including the instrumentation, data processing and analysis of the impacts of bias correction and algorithm assumptions on the determination of forcing data sets.
V. S. Manoharan, R. Kotamarthi, Y. Feng, and M. P. Cadeddu
Atmos. Chem. Phys., 14, 1159–1165, https://doi.org/10.5194/acp-14-1159-2014, https://doi.org/10.5194/acp-14-1159-2014, 2014
Y. Feng, V. Ramanathan, and V. R. Kotamarthi
Atmos. Chem. Phys., 13, 8607–8621, https://doi.org/10.5194/acp-13-8607-2013, https://doi.org/10.5194/acp-13-8607-2013, 2013
X. Zeng, B. A. Drewniak, and E. M. Constantinescu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-6-379-2013, https://doi.org/10.5194/gmdd-6-379-2013, 2013
Revised manuscript not accepted
S. Valcke, V. Balaji, A. Craig, C. DeLuca, R. Dunlap, R. W. Ford, R. Jacob, J. Larson, R. O'Kuinghttons, G. D. Riley, and M. Vertenstein
Geosci. Model Dev., 5, 1589–1596, https://doi.org/10.5194/gmd-5-1589-2012, https://doi.org/10.5194/gmd-5-1589-2012, 2012
Related subject area
Climate and Earth system modeling
High-Resolution Model Intercomparison Project phase 2 (HighResMIP2) towards CMIP7
T&C-CROP: representing mechanistic crop growth with a terrestrial biosphere model (T&C, v1.5) – model formulation and validation
An updated non-intrusive, multi-scale, and flexible coupling interface in WRF 4.6.0
Monitoring and benchmarking Earth system model simulations with ESMValTool v2.12.0
The Earth Science Box Modeling Toolkit (ESBMTK 0.14.0.11): a Python library for research and teaching
CropSuite v1.0 – a comprehensive open-source crop suitability model considering climate variability for climate impact assessment
ICON ComIn – the ICON Community Interface (ComIn version 0.1.0, with ICON version 2024.01-01)
Using feature importance as an exploratory data analysis tool on Earth system models
A new metrics framework for quantifying and intercomparing atmospheric rivers in observations, reanalyses, and climate models
The real challenges for climate and weather modelling on its way to sustained exascale performance: a case study using ICON (v2.6.6)
Improving the representation of major Indian crops in the Community Land Model version 5.0 (CLM5) using site-scale crop data
Evaluation of CORDEX ERA5-forced NARCliM2.0 regional climate models over Australia using the Weather Research and Forecasting (WRF) model version 4.1.2
Design, evaluation, and future projections of the NARCliM2.0 CORDEX-CMIP6 Australasia regional climate ensemble
Amending the algorithm of aerosol–radiation interactions in WRF-Chem (v4.4)
The very-high-resolution configuration of the EC-Earth global model for HighResMIP
GOSI9: UK Global Ocean and Sea Ice configurations
Decomposition of skill scores for conditional verification: impact of Atlantic Multidecadal Oscillation phases on the predictability of decadal temperature forecasts
Virtual Integration of Satellite and In-situ Observation Networks (VISION) v1.0: In-Situ Observations Simulator (ISO_simulator)
Climate model downscaling in central Asia: a dynamical and a neural network approach
Multi-year simulations at kilometre scale with the Integrated Forecasting System coupled to FESOM2.5 and NEMOv3.4
Subsurface hydrological controls on the short-term effects of hurricanes on nitrate–nitrogen runoff loading: a case study of Hurricane Ida using the Energy Exascale Earth System Model (E3SM) Land Model (v2.1)
CARIB12: a regional Community Earth System Model/Modular Ocean Model 6 configuration of the Caribbean Sea
Architectural insights into and training methodology optimization of Pangu-Weather
Evaluation of global fire simulations in CMIP6 Earth system models
Evaluating downscaled products with expected hydroclimatic co-variances
Software sustainability of global impact models
fair-calibrate v1.4.1: calibration, constraining, and validation of the FaIR simple climate model for reliable future climate projections
ISOM 1.0: a fully mesoscale-resolving idealized Southern Ocean model and the diversity of multiscale eddy interactions
A computationally lightweight model for ensemble forecasting of environmental hazards: General TAMSAT-ALERT v1.2.1
Introducing the MESMER-M-TPv0.1.0 module: spatially explicit Earth system model emulation for monthly precipitation and temperature
Investigating Carbon and Nitrogen Conservation in Reported CMIP6 Earth System Model Data
The need for carbon-emissions-driven climate projections in CMIP7
Robust handling of extremes in quantile mapping – “Murder your darlings”
A protocol for model intercomparison of impacts of marine cloud brightening climate intervention
An extensible perturbed parameter ensemble for the Community Atmosphere Model version 6
Coupling the regional climate model ICON-CLM v2.6.6 to the Earth system model GCOAST-AHOI v2.0 using OASIS3-MCT v4.0
A fully coupled solid-particle microphysics scheme for stratospheric aerosol injections within the aerosol–chemistry–climate model SOCOL-AERv2
The Tropical Basin Interaction Model Intercomparison Project (TBIMIP)
An improved representation of aerosol in the ECMWF IFS-COMPO 49R1 through the integration of EQSAM4Climv12 – a first attempt at simulating aerosol acidity
At-scale Model Output Statistics in mountain environments (AtsMOS v1.0)
Impact of ocean vertical-mixing parameterization on Arctic sea ice and upper-ocean properties using the NEMO-SI3 model
Development and evaluation of a new 4DEnVar-based weakly coupled ocean data assimilation system in E3SMv2
Bridging the gap: a new module for human water use in the Community Earth System Model version 2.2.1
PaleoSTeHM v1.0-rc: a modern, scalable spatio-temporal hierarchical modeling framework for paleo-environmental data
From Weather Data to River Runoff: Leveraging Spatiotemporal Convolutional Networks for Comprehensive Discharge Forecasting
Historical Trends and Controlling Factors of Isoprene Emissions in CMIP6 Earth System Models
Modeling Commercial-Scale CO2 Storage in the Gas Hydrate Stability Zone with PFLOTRAN v6.0
A new lightning scheme in the Canadian Atmospheric Model (CanAM5.1): implementation, evaluation, and projections of lightning and fire in future climates
Methane dynamics in the Baltic Sea: investigating concentration, flux, and isotopic composition patterns using the coupled physical–biogeochemical model BALTSEM-CH4 v1.0
Split-explicit external mode solver in the finite volume sea ice–ocean model FESOM2
Malcolm J. Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
Geosci. Model Dev., 18, 1307–1332, https://doi.org/10.5194/gmd-18-1307-2025, https://doi.org/10.5194/gmd-18-1307-2025, 2025
Short summary
Short summary
HighResMIP2 is a model intercomparison project focusing on high-resolution global climate models, that is, those with grid spacings of 25 km or less in the atmosphere and ocean, using simulations of decades to a century in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present-day and future projections and to build links with other communities to provide more robust climate information.
Jordi Buckley Paules, Simone Fatichi, Bonnie Warring, and Athanasios Paschalis
Geosci. Model Dev., 18, 1287–1305, https://doi.org/10.5194/gmd-18-1287-2025, https://doi.org/10.5194/gmd-18-1287-2025, 2025
Short summary
Short summary
We present and validate enhancements to the process-based T&C model aimed at improving its representation of crop growth and management practices. The updated model, T&C-CROP, enables applications such as analysing the hydrological and carbon storage impacts of land use transitions (e.g. conversions between crops, forests, and pastures) and optimizing irrigation and fertilization strategies in response to climate change.
Sébastien Masson, Swen Jullien, Eric Maisonnave, David Gill, Guillaume Samson, Mathieu Le Corre, and Lionel Renault
Geosci. Model Dev., 18, 1241–1263, https://doi.org/10.5194/gmd-18-1241-2025, https://doi.org/10.5194/gmd-18-1241-2025, 2025
Short summary
Short summary
This article details a new feature we implemented in the popular regional atmospheric model WRF. This feature allows for data exchange between WRF and any other model (e.g. an ocean model) using the coupling library Ocean–Atmosphere–Sea–Ice–Soil Model Coupling Toolkit (OASIS3-MCT). This coupling interface is designed to be non-intrusive, flexible and modular. It also offers the possibility of taking into account the nested zooms used in WRF or in the models with which it is coupled.
Axel Lauer, Lisa Bock, Birgit Hassler, Patrick Jöckel, Lukas Ruhe, and Manuel Schlund
Geosci. Model Dev., 18, 1169–1188, https://doi.org/10.5194/gmd-18-1169-2025, https://doi.org/10.5194/gmd-18-1169-2025, 2025
Short summary
Short summary
Earth system models are important tools to improve our understanding of current climate and to project climate change. Thus, it is crucial to understand possible shortcomings in the models. New features of the ESMValTool software package allow one to compare and visualize a model's performance with respect to reproducing observations in the context of other climate models in an easy and user-friendly way. We aim to help model developers assess and monitor climate simulations more efficiently.
Ulrich G. Wortmann, Tina Tsan, Mahrukh Niazi, Irene A. Ma, Ruben Navasardyan, Magnus-Roland Marun, Bernardo S. Chede, Jingwen Zhong, and Morgan Wolfe
Geosci. Model Dev., 18, 1155–1167, https://doi.org/10.5194/gmd-18-1155-2025, https://doi.org/10.5194/gmd-18-1155-2025, 2025
Short summary
Short summary
The Earth Science Box Modeling Toolkit (ESBMTK) is a user-friendly Python library that simplifies the creation of models to study earth system processes, such as the carbon cycle and ocean chemistry. It enhances learning by emphasizing concepts over programming and is accessible to students and researchers alike. By automating complex calculations and promoting code clarity, ESBMTK accelerates model development while improving reproducibility and the usability of scientific research.
Florian Zabel, Matthias Knüttel, and Benjamin Poschlod
Geosci. Model Dev., 18, 1067–1087, https://doi.org/10.5194/gmd-18-1067-2025, https://doi.org/10.5194/gmd-18-1067-2025, 2025
Short summary
Short summary
CropSuite is a new open-source crop suitability model. It provides a GUI and a wide range of options, including a spatial downscaling of climate data. We apply CropSuite to 48 staple and opportunity crops at a 1 km spatial resolution in Africa. We find that climate variability significantly impacts suitable areas but also affects optimal sowing dates and multiple cropping potential. The results provide valuable information for climate impact assessments, adaptation, and land-use planning.
Kerstin Hartung, Bastian Kern, Nils-Arne Dreier, Jörn Geisbüsch, Mahnoosh Haghighatnasab, Patrick Jöckel, Astrid Kerkweg, Wilton Jaciel Loch, Florian Prill, and Daniel Rieger
Geosci. Model Dev., 18, 1001–1015, https://doi.org/10.5194/gmd-18-1001-2025, https://doi.org/10.5194/gmd-18-1001-2025, 2025
Short summary
Short summary
The ICOsahedral Non-hydrostatic (ICON) model system Community Interface (ComIn) library supports connecting third-party modules to the ICON model. Third-party modules can range from simple diagnostic Python scripts to full chemistry models. ComIn offers a low barrier for code extensions to ICON, provides multi-language support (Fortran, C/C++, and Python), and reduces the migration effort in response to new ICON releases. This paper presents the ComIn design principles and a range of use cases.
Daniel Ries, Katherine Goode, Kellie McClernon, and Benjamin Hillman
Geosci. Model Dev., 18, 1041–1065, https://doi.org/10.5194/gmd-18-1041-2025, https://doi.org/10.5194/gmd-18-1041-2025, 2025
Short summary
Short summary
Machine learning has advanced research in the climate science domain, but its models are difficult to understand. In order to understand the impacts and consequences of climate interventions such as stratospheric aerosol injection, complex models are often necessary. We use a case study to illustrate how we can understand the inner workings of a complex model. We present this technique as an exploratory tool that can be used to quickly discover and assess relationships in complex climate data.
Bo Dong, Paul Ullrich, Jiwoo Lee, Peter Gleckler, Kristin Chang, and Travis A. O'Brien
Geosci. Model Dev., 18, 961–976, https://doi.org/10.5194/gmd-18-961-2025, https://doi.org/10.5194/gmd-18-961-2025, 2025
Short summary
Short summary
A metrics package designed for easy analysis of atmospheric river (AR) characteristics and statistics is presented. The tool is efficient for diagnosing systematic AR bias in climate models and useful for evaluating new AR characteristics in model simulations. In climate models, landfalling AR precipitation shows dry biases globally, and AR tracks are farther poleward (equatorward) in the North and South Atlantic (South Pacific and Indian Ocean).
Panagiotis Adamidis, Erik Pfister, Hendryk Bockelmann, Dominik Zobel, Jens-Olaf Beismann, and Marek Jacob
Geosci. Model Dev., 18, 905–919, https://doi.org/10.5194/gmd-18-905-2025, https://doi.org/10.5194/gmd-18-905-2025, 2025
Short summary
Short summary
In this paper, we investigated performance indicators of the climate model ICON (ICOsahedral Nonhydrostatic) on different compute architectures to answer the question of how to generate high-resolution climate simulations. Evidently, it is not enough to use more computing units of the conventionally used architectures; higher memory throughput is the most promising approach. More potential can be gained from single-node optimization rather than simply increasing the number of compute nodes.
Kangari Narender Reddy, Somnath Baidya Roy, Sam S. Rabin, Danica L. Lombardozzi, Gudimetla Venkateswara Varma, Ruchira Biswas, and Devavat Chiru Naik
Geosci. Model Dev., 18, 763–785, https://doi.org/10.5194/gmd-18-763-2025, https://doi.org/10.5194/gmd-18-763-2025, 2025
Short summary
Short summary
The study aimed to improve the representation of wheat and rice in a land model for the Indian region. The modified model performed significantly better than the default model in simulating crop phenology, yield, and carbon, water, and energy fluxes compared to observations. The study highlights the need for global land models to use region-specific crop parameters for accurately simulating vegetation processes and land surface processes.
Giovanni Di Virgilio, Fei Ji, Eugene Tam, Jason P. Evans, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Yue Li, and Matthew L. Riley
Geosci. Model Dev., 18, 703–724, https://doi.org/10.5194/gmd-18-703-2025, https://doi.org/10.5194/gmd-18-703-2025, 2025
Short summary
Short summary
We evaluate the skill in simulating the Australian climate of some of the latest generation of regional climate models. We show when and where the models simulate this climate with high skill versus model limitations. We show how new models perform relative to the previous-generation models, assessing how model design features may underlie key performance improvements. This work is of national and international relevance as it can help guide the use and interpretation of climate projections.
Giovanni Di Virgilio, Jason P. Evans, Fei Ji, Eugene Tam, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Stephen White, Yue Li, Moutassem El Rafei, Rishav Goyal, Matthew L. Riley, and Jyothi Lingala
Geosci. Model Dev., 18, 671–702, https://doi.org/10.5194/gmd-18-671-2025, https://doi.org/10.5194/gmd-18-671-2025, 2025
Short summary
Short summary
We introduce new climate models that simulate Australia’s future climate at regional scales, including at an unprecedented resolution of 4 km for 1950–2100. We describe the model design process used to create these new climate models. We show how the new models perform relative to previous-generation models and compare their climate projections. This work is of national and international relevance as it can help guide climate model design and the use and interpretation of climate projections.
Jiawang Feng, Chun Zhao, Qiuyan Du, Zining Yang, and Chen Jin
Geosci. Model Dev., 18, 585–603, https://doi.org/10.5194/gmd-18-585-2025, https://doi.org/10.5194/gmd-18-585-2025, 2025
Short summary
Short summary
In this study, we improved the calculation of how aerosols in the air interact with radiation in WRF-Chem. The original model used a simplified method, but we developed a more accurate approach. We found that this method significantly changes the properties of the estimated aerosols and their effects on radiation, especially for dust aerosols. It also impacts the simulated weather conditions. Our work highlights the importance of correctly representing aerosol–radiation interactions in models.
Eduardo Moreno-Chamarro, Thomas Arsouze, Mario Acosta, Pierre-Antoine Bretonnière, Miguel Castrillo, Eric Ferrer, Amanda Frigola, Daria Kuznetsova, Eneko Martin-Martinez, Pablo Ortega, and Sergi Palomas
Geosci. Model Dev., 18, 461–482, https://doi.org/10.5194/gmd-18-461-2025, https://doi.org/10.5194/gmd-18-461-2025, 2025
Short summary
Short summary
We present the high-resolution model version of the EC-Earth global climate model to contribute to HighResMIP. The combined model resolution is about 10–15 km in both the ocean and atmosphere, which makes it one of the finest ever used to complete historical and scenario simulations. This model is compared with two lower-resolution versions, with a 100 km and a 25 km grid. The three models are compared with observations to study the improvements thanks to the increased resolution.
Catherine Guiavarc'h, David Storkey, Adam T. Blaker, Ed Blockley, Alex Megann, Helene Hewitt, Michael J. Bell, Daley Calvert, Dan Copsey, Bablu Sinha, Sophia Moreton, Pierre Mathiot, and Bo An
Geosci. Model Dev., 18, 377–403, https://doi.org/10.5194/gmd-18-377-2025, https://doi.org/10.5194/gmd-18-377-2025, 2025
Short summary
Short summary
The Global Ocean and Sea Ice configuration version 9 (GOSI9) is the new UK hierarchy of model configurations based on the Nucleus for European Modelling of the Ocean (NEMO) and available at three resolutions. It will be used for various applications, e.g. weather forecasting and climate prediction. It improves upon the previous version by reducing global temperature and salinity biases and enhancing the representation of Arctic sea ice and the Antarctic Circumpolar Current.
Andy Richling, Jens Grieger, and Henning W. Rust
Geosci. Model Dev., 18, 361–375, https://doi.org/10.5194/gmd-18-361-2025, https://doi.org/10.5194/gmd-18-361-2025, 2025
Short summary
Short summary
The performance of weather and climate prediction systems is variable in time and space. It is of interest how this performance varies in different situations. We provide a decomposition of a skill score (a measure of forecast performance) as a tool for detailed assessment of performance variability to support model development or forecast improvement. The framework is exemplified with decadal forecasts to assess the impact of different ocean states in the North Atlantic on temperature forecast.
Maria R. Russo, Sadie L. Bartholomew, David Hassell, Alex M. Mason, Erica Neininger, A. James Perman, David A. J. Sproson, Duncan Watson-Parris, and Nathan Luke Abraham
Geosci. Model Dev., 18, 181–191, https://doi.org/10.5194/gmd-18-181-2025, https://doi.org/10.5194/gmd-18-181-2025, 2025
Short summary
Short summary
Observational data and modelling capabilities have expanded in recent years, but there are still barriers preventing these two data sources from being used in synergy. Proper comparison requires generating, storing, and handling a large amount of data. This work describes the first step in the development of a new set of software tools, the VISION toolkit, which can enable the easy and efficient integration of observational and model data required for model evaluation.
Bijan Fallah, Masoud Rostami, Emmanuele Russo, Paula Harder, Christoph Menz, Peter Hoffmann, Iulii Didovets, and Fred F. Hattermann
Geosci. Model Dev., 18, 161–180, https://doi.org/10.5194/gmd-18-161-2025, https://doi.org/10.5194/gmd-18-161-2025, 2025
Short summary
Short summary
We tried to contribute to a local climate change impact study in central Asia, a region that is water-scarce and vulnerable to global climate change. We use regional models and machine learning to produce reliable local data from global climate models. We find that regional models show more realistic and detailed changes in heavy precipitation than global climate models. Our work can help assess the future risks of extreme events and plan adaptation strategies in central Asia.
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025, https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary
Short summary
Detailed global climate model simulations have been created based on a numerical weather prediction model, offering more accurate spatial detail down to the scale of individual cities ("kilometre-scale") and a better understanding of climate phenomena such as atmospheric storms, whirls in the ocean, and cracks in sea ice. The new model aims to provide globally consistent information on local climate change with greater precision, benefiting environmental planning and local impact modelling.
Yilin Fang, Hoang Viet Tran, and L. Ruby Leung
Geosci. Model Dev., 18, 19–32, https://doi.org/10.5194/gmd-18-19-2025, https://doi.org/10.5194/gmd-18-19-2025, 2025
Short summary
Short summary
Hurricanes may worsen water quality in the lower Mississippi River basin (LMRB) by increasing nutrient runoff. We found that runoff parameterizations greatly affect nitrate–nitrogen runoff simulated using an Earth system land model. Our simulations predicted increased nitrogen runoff in the LMRB during Hurricane Ida in 2021, albeit less pronounced than the observations, indicating areas for model improvement to better understand and manage nutrient runoff loss during hurricanes in the region.
Giovanni Seijo-Ellis, Donata Giglio, Gustavo Marques, and Frank Bryan
Geosci. Model Dev., 17, 8989–9021, https://doi.org/10.5194/gmd-17-8989-2024, https://doi.org/10.5194/gmd-17-8989-2024, 2024
Short summary
Short summary
A CESM–MOM6 regional configuration of the Caribbean Sea was developed in response to the rising need for high-resolution models for climate impact studies. The configuration is validated for the period 2000–2020 and improves significant errors in a low-resolution model. Oceanic properties are well represented. Patterns of freshwater associated with the Amazon River are well captured, and the mean flows of ocean waters across multiple passages in the Caribbean Sea agree with observations.
Deifilia To, Julian Quinting, Gholam Ali Hoshyaripour, Markus Götz, Achim Streit, and Charlotte Debus
Geosci. Model Dev., 17, 8873–8884, https://doi.org/10.5194/gmd-17-8873-2024, https://doi.org/10.5194/gmd-17-8873-2024, 2024
Short summary
Short summary
Pangu-Weather is a breakthrough machine learning model in medium-range weather forecasting that considers 3D atmospheric information. We show that using a simpler 2D framework improves robustness, speeds up training, and reduces computational needs by 20 %–30 %. We introduce a training procedure that varies the importance of atmospheric variables over time to speed up training convergence. Decreasing computational demand increases the accessibility of training and working with the model.
Fang Li, Xiang Song, Sandy P. Harrison, Jennifer R. Marlon, Zhongda Lin, L. Ruby Leung, Jörg Schwinger, Virginie Marécal, Shiyu Wang, Daniel S. Ward, Xiao Dong, Hanna Lee, Lars Nieradzik, Sam S. Rabin, and Roland Séférian
Geosci. Model Dev., 17, 8751–8771, https://doi.org/10.5194/gmd-17-8751-2024, https://doi.org/10.5194/gmd-17-8751-2024, 2024
Short summary
Short summary
This study provides the first comprehensive assessment of historical fire simulations from 19 Earth system models in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Most models reproduce global totals, spatial patterns, seasonality, and regional historical changes well but fail to simulate the recent decline in global burned area and underestimate the fire response to climate variability. CMIP6 simulations address three critical issues of phase-5 models.
Seung H. Baek, Paul A. Ullrich, Bo Dong, and Jiwoo Lee
Geosci. Model Dev., 17, 8665–8681, https://doi.org/10.5194/gmd-17-8665-2024, https://doi.org/10.5194/gmd-17-8665-2024, 2024
Short summary
Short summary
We evaluate downscaled products by examining locally relevant co-variances during precipitation events. Common statistical downscaling techniques preserve expected co-variances during convective precipitation (a stationary phenomenon). However, they dampen future intensification of frontal precipitation (a non-stationary phenomenon) captured in global climate models and dynamical downscaling. Our study quantifies a ramification of the stationarity assumption underlying statistical downscaling.
Emmanuel Nyenah, Petra Döll, Daniel S. Katz, and Robert Reinecke
Geosci. Model Dev., 17, 8593–8611, https://doi.org/10.5194/gmd-17-8593-2024, https://doi.org/10.5194/gmd-17-8593-2024, 2024
Short summary
Short summary
Research software is vital for scientific progress but is often developed by scientists with limited skills, time, and funding, leading to challenges in usability and maintenance. Our study across 10 sectors shows strengths in version control, open-source licensing, and documentation while emphasizing the need for containerization and code quality. We recommend workshops; code quality metrics; funding; and following the findable, accessible, interoperable, and reusable (FAIR) standards.
Chris Smith, Donald P. Cummins, Hege-Beate Fredriksen, Zebedee Nicholls, Malte Meinshausen, Myles Allen, Stuart Jenkins, Nicholas Leach, Camilla Mathison, and Antti-Ilari Partanen
Geosci. Model Dev., 17, 8569–8592, https://doi.org/10.5194/gmd-17-8569-2024, https://doi.org/10.5194/gmd-17-8569-2024, 2024
Short summary
Short summary
Climate projections are only useful if the underlying models that produce them are well calibrated and can reproduce observed climate change. We formalise a software package that calibrates the open-source FaIR simple climate model to full-complexity Earth system models. Observations, including historical warming, and assessments of key climate variables such as that of climate sensitivity are used to constrain the model output.
Jingwei Xie, Xi Wang, Hailong Liu, Pengfei Lin, Jiangfeng Yu, Zipeng Yu, Junlin Wei, and Xiang Han
Geosci. Model Dev., 17, 8469–8493, https://doi.org/10.5194/gmd-17-8469-2024, https://doi.org/10.5194/gmd-17-8469-2024, 2024
Short summary
Short summary
We propose the concept of mesoscale ocean direct numerical simulation (MODNS), which should resolve the first baroclinic deformation radius and ensure the numerical dissipative effects do not directly contaminate the mesoscale motions. It can be a benchmark for testing mesoscale ocean large eddy simulation (MOLES) methods in ocean models. We build an idealized Southern Ocean model using MITgcm to generate a type of MODNS. We also illustrate the diversity of multiscale eddy interactions.
Emily Black, John Ellis, and Ross I. Maidment
Geosci. Model Dev., 17, 8353–8372, https://doi.org/10.5194/gmd-17-8353-2024, https://doi.org/10.5194/gmd-17-8353-2024, 2024
Short summary
Short summary
We present General TAMSAT-ALERT, a computationally lightweight and versatile tool for generating ensemble forecasts from time series data. General TAMSAT-ALERT is capable of combining multiple streams of monitoring and meteorological forecasting data into probabilistic hazard assessments. In this way, it complements existing systems and enhances their utility for actionable hazard assessment.
Sarah Schöngart, Lukas Gudmundsson, Mathias Hauser, Peter Pfleiderer, Quentin Lejeune, Shruti Nath, Sonia Isabelle Seneviratne, and Carl-Friedrich Schleussner
Geosci. Model Dev., 17, 8283–8320, https://doi.org/10.5194/gmd-17-8283-2024, https://doi.org/10.5194/gmd-17-8283-2024, 2024
Short summary
Short summary
Precipitation and temperature are two of the most impact-relevant climatic variables. Yet, projecting future precipitation and temperature data under different emission scenarios relies on complex models that are computationally expensive. In this study, we propose a method that allows us to generate monthly means of local precipitation and temperature at low computational costs. Our modelling framework is particularly useful for all downstream applications of climate model data.
Gang Tang, Zebedee Nicholls, Chris Jones, Thomas Gasser, Alexander Norton, Tilo Ziehn, Alejandro Romero-Prieto, and Malte Meinshausen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3522, https://doi.org/10.5194/egusphere-2024-3522, 2024
Short summary
Short summary
We analyzed carbon and nitrogen mass conservation in data from CMIP6 Earth System Models. Our findings reveal significant discrepancies between flux and pool size data, particularly in nitrogen, where cumulative imbalances can reach hundreds of gigatons. These imbalances appear primarily due to missing or inconsistently reported fluxes – especially for land use and fire emissions. To enhance data quality, we recommend that future climate data protocols address this issue at the reporting stage.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Peter Berg, Thomas Bosshard, Denica Bozhinova, Lars Bärring, Joakim Löw, Carolina Nilsson, Gustav Strandberg, Johan Södling, Johan Thuresson, Renate Wilcke, and Wei Yang
Geosci. Model Dev., 17, 8173–8179, https://doi.org/10.5194/gmd-17-8173-2024, https://doi.org/10.5194/gmd-17-8173-2024, 2024
Short summary
Short summary
When bias adjusting climate model data using quantile mapping, one needs to prescribe what to do at the tails of the distribution, where a larger data range is likely encountered outside of the calibration period. The end result is highly dependent on the method used. We show that, to avoid discontinuities in the time series, one needs to exclude data in the calibration range to also activate the extrapolation functionality in that time period.
Philip J. Rasch, Haruki Hirasawa, Mingxuan Wu, Sarah J. Doherty, Robert Wood, Hailong Wang, Andy Jones, James Haywood, and Hansi Singh
Geosci. Model Dev., 17, 7963–7994, https://doi.org/10.5194/gmd-17-7963-2024, https://doi.org/10.5194/gmd-17-7963-2024, 2024
Short summary
Short summary
We introduce a protocol to compare computer climate simulations to better understand a proposed strategy intended to counter warming and climate impacts from greenhouse gas increases. This slightly changes clouds in six ocean regions to reflect more sunlight and cool the Earth. Example changes in clouds and climate are shown for three climate models. Cloud changes differ between the models, but precipitation and surface temperature changes are similar when their cooling effects are made similar.
Trude Eidhammer, Andrew Gettelman, Katherine Thayer-Calder, Duncan Watson-Parris, Gregory Elsaesser, Hugh Morrison, Marcus van Lier-Walqui, Ci Song, and Daniel McCoy
Geosci. Model Dev., 17, 7835–7853, https://doi.org/10.5194/gmd-17-7835-2024, https://doi.org/10.5194/gmd-17-7835-2024, 2024
Short summary
Short summary
We describe a dataset where 45 parameters related to cloud processes in the Community Earth System Model version 2 (CESM2) Community Atmosphere Model version 6 (CAM6) are perturbed. Three sets of perturbed parameter ensembles (263 members) were created: current climate, preindustrial aerosol loading and future climate with sea surface temperature increased by 4 K.
Ha Thi Minh Ho-Hagemann, Vera Maurer, Stefan Poll, and Irina Fast
Geosci. Model Dev., 17, 7815–7834, https://doi.org/10.5194/gmd-17-7815-2024, https://doi.org/10.5194/gmd-17-7815-2024, 2024
Short summary
Short summary
The regional Earth system model GCOAST-AHOI v2.0 that includes the regional climate model ICON-CLM coupled to the ocean model NEMO and the hydrological discharge model HD via the OASIS3-MCT coupler can be a useful tool for conducting long-term regional climate simulations over the EURO-CORDEX domain. The new OASIS3-MCT coupling interface implemented in ICON-CLM makes it more flexible for coupling to an external ocean model and an external hydrological discharge model.
Sandro Vattioni, Rahel Weber, Aryeh Feinberg, Andrea Stenke, John A. Dykema, Beiping Luo, Georgios A. Kelesidis, Christian A. Bruun, Timofei Sukhodolov, Frank N. Keutsch, Thomas Peter, and Gabriel Chiodo
Geosci. Model Dev., 17, 7767–7793, https://doi.org/10.5194/gmd-17-7767-2024, https://doi.org/10.5194/gmd-17-7767-2024, 2024
Short summary
Short summary
We quantified impacts and efficiency of stratospheric solar climate intervention via solid particle injection. Microphysical interactions of solid particles with the sulfur cycle were interactively coupled to the heterogeneous chemistry scheme and the radiative transfer code of an aerosol–chemistry–climate model. Compared to injection of SO2 we only find a stronger cooling efficiency for solid particles when normalizing to the aerosol load but not when normalizing to the injection rate.
Ingo Richter, Ping Chang, Gokhan Danabasoglu, Dietmar Dommenget, Guillaume Gastineau, Aixue Hu, Takahito Kataoka, Noel Keenlyside, Fred Kucharski, Yuko Okumura, Wonsun Park, Malte Stuecker, Andrea Taschetto, Chunzai Wang, Stephen Yeager, and Sang-Wook Yeh
EGUsphere, https://doi.org/10.5194/egusphere-2024-3110, https://doi.org/10.5194/egusphere-2024-3110, 2024
Short summary
Short summary
The tropical ocean basins influence each other through multiple pathways and mechanisms, here referred to as tropical basin interaction (TBI). Many researchers have examined TBI using comprehensive climate models, but have obtained conflicting results. This may be partly due to differences in experiment protocols, and partly due to systematic model errors. TBIMIP aims to address this problem by designing a set of TBI experiments that will be performed by multiple models.
Samuel Rémy, Swen Metzger, Vincent Huijnen, Jason E. Williams, and Johannes Flemming
Geosci. Model Dev., 17, 7539–7567, https://doi.org/10.5194/gmd-17-7539-2024, https://doi.org/10.5194/gmd-17-7539-2024, 2024
Short summary
Short summary
In this paper we describe the development of the future operational cycle 49R1 of the IFS-COMPO system, used for operational forecasts of atmospheric composition in the CAMS project, and focus on the implementation of the thermodynamical model EQSAM4Clim version 12. The implementation of EQSAM4Clim significantly improves the simulated secondary inorganic aerosol surface concentration. The new aerosol and precipitation acidity diagnostics showed good agreement against observational datasets.
Maximillian Van Wyk de Vries, Tom Matthews, L. Baker Perry, Nirakar Thapa, and Rob Wilby
Geosci. Model Dev., 17, 7629–7643, https://doi.org/10.5194/gmd-17-7629-2024, https://doi.org/10.5194/gmd-17-7629-2024, 2024
Short summary
Short summary
This paper introduces the AtsMOS workflow, a new tool for improving weather forecasts in mountainous areas. By combining advanced statistical techniques with local weather data, AtsMOS can provide more accurate predictions of weather conditions. Using data from Mount Everest as an example, AtsMOS has shown promise in better forecasting hazardous weather conditions, making it a valuable tool for communities in mountainous regions and beyond.
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev., 17, 7445–7466, https://doi.org/10.5194/gmd-17-7445-2024, https://doi.org/10.5194/gmd-17-7445-2024, 2024
Short summary
Short summary
We study the parameters of the turbulent-kinetic-energy mixed-layer-penetration scheme in the NEMO model with regard to sea-ice-covered regions of the Arctic Ocean. This evaluation reveals the impact of these parameters on mixed-layer depth, sea surface temperature and salinity, and ocean stratification. Our findings demonstrate significant impacts on sea ice thickness and sea ice concentration, emphasizing the need for accurately representing ocean mixing to understand Arctic climate dynamics.
Pengfei Shi, L. Ruby Leung, and Bin Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-183, https://doi.org/10.5194/gmd-2024-183, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Improving climate predictions has significant socio-economic impacts. In this study, we developed and applied a weakly coupled ocean data assimilation (WCODA) system to a coupled climate model. The WCODA system improves simulations of ocean temperature and salinity across many global regions. It also enhances the simulation of interannual precipitation and temperature variability over the southern US. This system is to support future predictability studies.
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
Geosci. Model Dev., 17, 7365–7399, https://doi.org/10.5194/gmd-17-7365-2024, https://doi.org/10.5194/gmd-17-7365-2024, 2024
Short summary
Short summary
In this study, we improved a climate model by adding the representation of water use sectors such as domestic, industry, and agriculture. This new feature helps us understand how water is used and supplied in various areas. We tested our model from 1971 to 2010 and found that it accurately identifies areas with water scarcity. By modelling the competition between sectors when water availability is limited, the model helps estimate the intensity and extent of individual sectors' water shortages.
Yucheng Lin, Robert E. Kopp, Alexander Reedy, Matteo Turilli, Shantenu Jha, and Erica L. Ashe
EGUsphere, https://doi.org/10.5194/egusphere-2024-2183, https://doi.org/10.5194/egusphere-2024-2183, 2024
Short summary
Short summary
PaleoSTeHM v1.0-rc is a state-of-the-art framework designed to reconstruct past environmental conditions using geological data. Built on modern machine learning techniques, it efficiently handles the sparse and noisy nature of paleo records, allowing scientists to make accurate and scalable inferences about past environmental change. By using flexible statistical models, PaleoSTeHM separates different sources of uncertainty, improving the precision of historical climate reconstructions.
Florian Börgel, Sven Karsten, Karoline Rummel, and Ulf Gräwe
EGUsphere, https://doi.org/10.5194/egusphere-2024-2685, https://doi.org/10.5194/egusphere-2024-2685, 2024
Short summary
Short summary
Forecasting river runoff, crucial for managing water resources and understanding climate impacts, can be challenging. This study introduces a new method using Convolutional Long Short-Term Memory (ConvLSTM) networks, a machine learning model that processes spatial and temporal data. Focusing on the Baltic Sea region, our model uses weather data as input to predict daily river runoff for 97 rivers.
Thi Nhu Ngoc Do, Kengo Sudo, Akihiko Ito, Louisa Emmons, Vaishali Naik, Kostas Tsigaridis, Øyvind Seland, Gerd A. Folberth, and Douglas I. Kelley
EGUsphere, https://doi.org/10.5194/egusphere-2024-2313, https://doi.org/10.5194/egusphere-2024-2313, 2024
Short summary
Short summary
Understanding historical isoprene emission changes is important for predicting future climate, but trends and their controlling factors remain uncertain. This study shows that long-term isoprene trends vary among Earth System Models mainly due to partially incorporating CO2 effects and land cover changes rather than climate. Future models that refine these factors’ effects on isoprene emissions, along with long-term observations, are essential for better understanding plant-climate interactions.
Michael Nole, Jonah Bartrand, Fawz Naim, and Glenn Hammond
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-162, https://doi.org/10.5194/gmd-2024-162, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Safe carbon dioxide (CO2) storage is likely to be critical for mitigating some of the most dangerous effects of climate change. We present a simulation framework for modeling CO2 storage beneath the seafloor where CO2 can form a solid. This can aid in permanent CO2 storage for long periods of time. Our models show what a commercial-scale CO2 injection would look like in a marine environment. We discuss what would need to be considered when designing a sub-sea CO2 injection.
Cynthia Whaley, Montana Etten-Bohm, Courtney Schumacher, Ayodeji Akingunola, Vivek Arora, Jason Cole, Michael Lazare, David Plummer, Knut von Salzen, and Barbara Winter
Geosci. Model Dev., 17, 7141–7155, https://doi.org/10.5194/gmd-17-7141-2024, https://doi.org/10.5194/gmd-17-7141-2024, 2024
Short summary
Short summary
This paper describes how lightning was added as a process in the Canadian Earth System Model in order to interactively respond to climate changes. As lightning is an important cause of global wildfires, this new model development allows for more realistic projections of how wildfires may change in the future, responding to a changing climate.
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev., 17, 7157–7179, https://doi.org/10.5194/gmd-17-7157-2024, https://doi.org/10.5194/gmd-17-7157-2024, 2024
Short summary
Short summary
Methane (CH4) cycling in the Baltic Proper is studied through model simulations, enabling a first estimate of key CH4 fluxes. A preliminary budget identifies benthic CH4 release as the dominant source and two main sinks: CH4 oxidation in the water (92 % of sinks) and outgassing to the atmosphere (8 % of sinks). This study addresses CH4 emissions from coastal seas and is a first step toward understanding the relative importance of open-water outgassing compared with local coastal hotspots.
Tridib Banerjee, Patrick Scholz, Sergey Danilov, Knut Klingbeil, and Dmitry Sidorenko
Geosci. Model Dev., 17, 7051–7065, https://doi.org/10.5194/gmd-17-7051-2024, https://doi.org/10.5194/gmd-17-7051-2024, 2024
Short summary
Short summary
In this paper we propose a new alternative to one of the functionalities of the sea ice model FESOM2. The alternative we propose allows the model to capture and simulate fast changes in quantities like sea surface elevation more accurately. We also demonstrate that the new alternative is faster and more adept at taking advantages of highly parallelized computing infrastructure. We therefore show that this new alternative is a great addition to the sea ice model FESOM2.
Cited articles
Amanullah, M. J. H., Nawab, K., and Ali, A.: Response of Specific Leaf Area (SLA), Leaf Area Index (LAI) and Leaf Area Ratio (LAR) of maize (Zea mays L.) to plant density, rate and timing of nitrogen application, World Appl. Sci. J., 2, 235–243, 2007.
Amos, B. and Walters, D. T.: Maize root biomass and net rhizodeposited carbon, Soil Sci. Soc. Am. J., 70, 1489–1503, 2006.
Araki, H. and Iijima, M.: Deep rooting in winter wheat: rooting nodes of deep roots in two cultivars with deep and shallow root system, Plant Prod. Sci., 4, 215–219, 2001.
Barbottin, A., Lecomte, C., Bouchard, C., and Jeuffroy, M.-H.: Nitrogen remobilization during grain filling in wheat: Genotypic and environmental effects, Crop Sci., 45, 1141–1150, 2005.
Batjes, N. H.: ISRIC-WISE harmonized global soil profile dataset (Ver. 3.1). Report 2008/02, ISRIC – World Soil Information, Wageningen, 2008.
Blanco-Canqui, H. and Lal, R.: No-tillage and soil-profile carbon sequestration: an on-farm assessment, Soil Water Manag. Conservation, 72, 693–701, 2008.
Bonan, G. B., Levis, S., Kergoat, L., and Oleson, K. W.: Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models, Global Biogeochem. Cy., 16, 1021, https://doi.org/10.1029/2000GB001360, 2002.
Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Lotze-Campen, H., Mullers, C., Reichstein, M., and Smith, B.: Modeling the role of agriculture for the 20th century global terrestrial carbon balance, Global Change Biol., 13, 679–706, 2007.
Crawford, T. W., Rendig, V. V., and Broadent, F. E.: Sources, fluxes, and sinks of nitrogen during early reproductive growth of maize (Zea mays L.), Plant Physiol., 70, 1645–1660, 1982.
Diffenbaugh, N. S.: Influence of modern land cover on the climate of the United States, Climate Dynam., 33, 945–958, 2009.
Dou, F. and Hans, F. M.: Tillage and nitrogen effects on soil organic matter fractions in wheat-based systems, Soil Sci. Soc. Am. J., 70, 1896–1905, 2006.
Fargione, J., Hill, J., Tilman, D., Polasky, S., and Hawthorne, P.: Land clearing and the biofuel carbon debt, Science, 319, 1235–1238, 2008.
Fischer, G., Shah, M., Tubiello, F. N., and van Velhuizen, H.: Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990-2080, Philos. T. R. SOC. A, 360, 2067–2083, 2005.
Gallais, A., Coque, M. Quillere, I., Prioul, J., and Hirel, B.: Modeling postsilking nitrogen fluxes in maize (Zea mays) using 15N-labeling field experiments, New Phytol., 172, 696–707, 2006.
Gallais, A., Coque, M., Gouis, J. L., Prioul, J. L., Hirel, B., and Quillere, I.: Estimating the proportion of nitrogen remobilization and of postsilking nitrogen uptake allocated to maize kernels by Nitrogen-15 labeling, Crop Sci., 47, 685–693, 2007.
Garay, A. F. and Wilhelm W. W.: Root system characteristics of two soybean isolines undergoing water stress conditions, Agronomy J., 75, 973–977, 1983.
Gibbs, H. K., Johnston, M., Foley, J. A., Holloway, T., Monfreda, C., Ramankutty, N., and Zaks, D.: Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology, Environ. Res. Lett., 3, 034001, https://doi.org/10.1088/1748-9326/3/3/034001, 2008.
Hooker, B. A., Morris, T. F., Peters, R., and Cardon, Z. G.: Long-term effects of tillage and corn stalk return on soil carbon dynamics, Soil Sci. Soc. Am. J., 69, 188–196, 2005.
Huggins, D. R., Allmaras, R. R., Clapp, C. E., Lamb, J. A., and Randall, G. W.: Corn-soybean sequence and tillage effects on soil carbon dynamics and storage, Soil Sci. Soc. Am. J., 71, 145–154, 2007.
Hurtt, G. C., Frolking, S., Fearon, M. G., Moore, B., Shevliakova, E., Malyshev, S., Pacala, S. W., and Houghton, R. A.: The underpinnings of land-use history: three centuries of global gridded land-use transitions, wood harvest activity, and resulting secondary lands, Global Change Biol., 12, 1208–1229, 2006.
Jobbagy, E. G. and Jackson, R. B.: The distribution of soil nutrients with depth: Global patterns and the imprint of plants, Biogeochemistry, 53, 51–77, 2001.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woolen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year reanalysis project, Bull. Amer. Meteor. Soc., 77, 437–470, 1996.
Khan, S. A., Mulvaney, R. L., Ellsworth, T. R., and Boast, C. W.: The myth of nitrogen fertilization for soil carbon sequestration, J. Environ. Qual, 36, 1821–1832, 2007.
Kim, H., Kim, S., and Dale, B. E.: Biofuels, land use change, and greenhouse gas emissions: Some unexplored variables, Environ. Sci. Technol., 43, 961–967, 2009.
Kucharik, C. J.: Evaluation of a process-based agro-ecosystem model (Agro-IBIS) across the US Corn Belt: Simulations of the interannual variability in maize yield, Earth Interact., 7, 1–33, 2003.
Kucharik, C. J.: Contributions of planting date trends to increased maize yields in the Central United States, Agronomy J., 100, 328–336, 2008.
Kucharik, C. J. and Brye, K. R.: Integrated BIosphere Simulator (IBIS) Yield and Nitrate Loss Predictions for Wisconsin Maize Receiving Varied Amounts of Nitrogen Fertilizer, J. Environ. Qual., 32, 247–268, 2003.
Kucharik, C. J. and Twine, T. E.: Residue, respiration, and residuals: Evaluation of a dynamic agroecosystem model using eddy flux measurements and biometric data, Agr. Forest Meteorol., 146, 134–158, 2007.
Leff, B., Ramankutty, N., and Foley, J. A.: Geographic distribution of major crops across the world, Global Biogeochem. Cy., 18, GB1009, https://doi.org/10.1029/2003GB002108, 2004.
Levis, S., Bonan, G. B., Kluzek, E., Thornton, P. E., Jones, A., Sacks, W. J., Kucharik, C. J.: Interactive Crop Management in the Community Earth System Model (CESM1): seasonal influences on land-atmosphere fluxes, J. Climate, 25, https://doi.org/10.1175/JCLI-D-11-00446.1, 2012.
Lobell, D. B., Bala, G., and Duffy, P. B.: Biogeophysical impacts of cropland management changes on climate, Geophys. Res. Lett., 33, L06708, https://doi.org/10.1029/2005GL025492, 2006.
Lobell, D. B. and Field, C. B.: Global scale climate-crop yield relationships and the impacts of recent warming, Environ. Res. Lett., 2, 014002, https://doi.org/10.1088/1748-9326/2/1/014002, 2007.
Lobell, D. B., Schlenker, W., and Costa-Roberts, J.: Climate trends and global crop production since 1980, Science, 333, 616–620, 2011.
Mayaki, W. C., Reare, I. D., and Stone L. R.: Top and root growth of irrigated and non-irrigated soybean, Crop Sci., 16, 92–94, 1976.
Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C. B., Watterson, I. G., Weaver, A. J., and Zhao, Z.-C.: Global Climate Projections. In: Climate Change 2007: The Physical Science Basis, in: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 747–845, 2007.
Monfreda, C., Ramankutty, N., and Foley, J. A.: Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000, Global Biogeochem. Cy., 22, GB1022, https://doi.org/10.1029/2007GB002947, 2008.
Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams J. R.: Soil and Water Assessment Tool, Theoretical Documentation: Version 2005. Temple, TX. USDA Agricultural Research Service and Texas A{&}M Blackland Research Center, 2005.
New, M., Hulme, M., and Jones, P. D.: Representing Twentieth-Century Space-Time Climate Variability. Part I: Development of a 1961–90 Mean Monthly Terrestrial Climatology, J. Climate, 12, 829-856, 1999.
Oleson, K. W., Dai, Y., Bonan, G., Bosilovich, M., Dickinson, R., Dirmeyer, P., Hoffman, F., Houser, P., Levis, S., Niu, G.-Y., Thornton, P., Vertenstein, M., Yang, Z.-L., and Zeng, X.: Technical Description of the Community Land Model (CLM). NCAR/TN-461+STR, National Center for Atmospheric Research, Boulder, Colorado, 2004.
Oleson, K. W., Niu, G.-Y., Yang, Z.-L., Lawrence, D. M., Thornton, P. E., Lawrence, P. J., Stockli, R., Dickinson, R. E., Bonan, G. B., Levis, S., Dai, A., and Qian, T.: Improvements to the Community Land Model and their impact on the hydrological cycle, J. Geophys. Res., 113, G01021, https://doi.org/10.1029/2007JG000563, 2008.
Osborne, T. M., Lawrence, D. M., Challinor, A. J., Slingo, J. M., and Wheeler, T. R.: Development and assessment of a coupled crop-climate model, Global Change Biol., 13, 169–183, 2007.
Osborne, T., Slingo, J., Lawrence, D., and Wheeler, T.: Examining the interaction of growing crops with local climate using a coupled crop-climate model, J. Climate, 22, 1393–1411, 2009.
Papale, D. and Valentini, R.: A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization, Global Change Biol., 9, 525–535, 2003.
Parry, M. L., Rosenzweig, C., Iglesias, A., Livermore, M., and Fischer, G: Effects of climate change on global food production under SRES emissions and socio-economic scenarios, Global Environ. Change, 14, 53–67, 2004.
Pollmer, W. G., Eberhard, D., Klein, D., and Dhillon, B. S.: Genetic control of nitrogen uptake and translocation in maize, Crop Sci., 19, 82–86, 1979.
Potter, P., Ramankutty, N., Bennett, E. M., and Donner, S. D.: Characterizing the spatial patterns of global fertilizer application and manure production, Earth Interact., 14, 1–22, https://doi.org/10.1175/2009EI288.1, 2010.
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Grainer, A., Grunwald, T., Havrankova, K., Ilvesniemi, H., Janous D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.-M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm, Global Change Biol., 11, 1424–1439, 2005.
Rosenzweig, C., Tubiello, F. N., Goldberg, R, Mills, E., and Bloomfield, J.: Increased crop damage in the US from excess precipitation under climate change, Global Environ. Change, 12, 197–202, 2002.
Sacks, W. J., Deryng, D., Foley, J. A., and Ramankutty, N.: Crop planting dates: an analysis of global patterns, Global Ecol. Biogeogr., 19, 607–620, https://doi.org/ 10.1111/j.1466-8238.2010.00551.x, 2010.
Schlenker, W. and Roberts, M. J.: Nonlinear temperature effects indicate severe damages to US crop yields under climate change, Proc. National Academy Sci., 106, 15594–15598, 2009.
Searchinger, T., Heimlick, R., Houghton, R. A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., and Yu, T.-H.: Use of US croplands for biofuels increases greenhouse gases through emissions from land use change, Science, 319, 1238–1240, 2008.
Simpson, R. J., Lambers, H., and Dalling, M. J.: Nitrogen redistribution during grain growth in wheat (Triticum avestivum L.), Plant Physiol., 71, 7–14, 1983.
Smith, P. C., De Noblet-Decoudre, N., Ciais, P., Peylin, P., Viovy, N., Meurdesoif, Y., and Bondeau, A.: European-wide simulations of croplands using an improved terrestrial biosphere model: Phenology and productivity, J. Geophys. Res., 115, G01014, https://doi.org/10.1029/2008JG000800, 2010.
Stockli, R., Lawrence, D. M., Niu, G.-Y., Oleson, K. W., Thornton, P. E., Yang, Z.-L., Bonan, G. B., Denning, A. S., and Running, S. W.: Use of FLUXNET in the Community Land Model development, J. Geophys. Res., 113, G01025, https://doi.org/10.1029/2007JG000562, 2008.
Ta, C. T. and Weiland, R. T.: Nitrogen partitioning in maize during ear development, Crop Sci., 32, 443–451, 1992.
Tang, J. Y., Riley, W. J., Koven, C. D., and Subin, Z. M.: CLM4-BeTR, a generic biogeochemical transport and reaction module for CLM4: model development, evaluation, and application, Geosci. Model Dev., 6, 127–140, https://doi.org/10.5194/gmd-6-127-2013, 2013.
Tardieu, F., Granier, C., and Muller, B.: Modelling leaf expansion in a fluctuating environment: are changes in specific leaf area a consequence of changes in expansion rate?, New Phytologist, 143, 33–43, 1999.
Thornton, P. E. and Rosenbloom, N.: Ecosystem model spin-up: estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model, Ecol. Model., 189, 25–48, 2005.
Thornton, P. E. and Zimmerman, N. E.: An improved canopy integration scheme for a land surface model with prognostic canopy structure, J. Climate, 20, 3902–3923, 2007.
Urban, D., Roberts, M. J., Schlenker, W., and Lobell, D. B.: Projected temperature changes indicate significant increase in interannual variability of US maize yields, Climatic Change, 112, 525–533, 2012.
West, T. O. and Post, W. M.: Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis, Soil Sci. Soc. Am. J., 66, 1930–1946, 2002.
Zhao, M., Heinsch, F. A., Nemani, R. R., and Running, S. W.: Improvements of the MODIS terrestrial gross and net primary production global data set, Remote Sens. Environ., 95, 164–176, 2005.