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Abstract. The potential impact of climate change on agri-
culture is uncertain. In addition, agriculture could influence
above- and below-ground carbon storage. Development of
models that represent agriculture is necessary to address
these impacts. We have developed an approach to integrate
agriculture representations for three crop types – maize, soy-
bean, and spring wheat – into the coupled carbon–nitrogen
version of the Community Land Model (CLM), to help ad-
dress these questions. Here we present the new model, CLM-
Crop, validated against observations from two AmeriFlux
sites in the United States, planted with maize and soybean.
Seasonal carbon fluxes compared well with field measure-
ments for soybean, but not as well for maize. CLM-Crop
yields were comparable with observations in countries such
as the United States, Argentina, and China, although the
generality of the crop model and its lack of technology
and irrigation made direct comparison difficult. CLM-Crop
was compared against the standard CLM3.5, which simu-
lates crops as grass. The comparison showed improvement
in gross primary productivity in regions where crops are
the dominant vegetation cover. Crop yields and productivity
were negatively correlated with temperature and positively
correlated with precipitation, in agreement with other mod-
eling studies. In case studies with the new crop model look-
ing at impacts of residue management and planting date on
crop yield, we found that increased residue returned to the
litter pool increased crop yield, while reduced residue re-
turns resulted in yield decreases. Using climate controls to
signal planting date caused different responses in different
crops. Maize and soybean had opposite reactions: when low
temperature threshold resulted in early planting, maize re-
sponded with a loss of yield, but soybean yields increased.
Our improvements in CLM demonstrate a new capability in

the model – simulating agriculture in a realistic way, com-
plete with fertilizer and residue management practices. Re-
sults are encouraging, with improved representation of hu-
man influences on the land surface and the potentially result-
ing climate impacts.

1 Introduction

The role of agriculture in the biosphere has important im-
plications for climate change. Humans have influenced 42–
68 % of the land surface (Hurtt et al., 2006) through activities
related to cultivation, wood harvesting, and grazing. Glob-
ally, around 12 % of the land is currently used for agricul-
ture, and in the United States cultivation accounts for roughly
20 % of the land base (http://faostat.fao.org). Even though
these numbers represent a significant area of land, most Earth
system models either ignore agriculture or represent cultiva-
tion in a simplistic way without management or harvest ac-
tivities.

Climate change can have a significant impact on crop
yields. Increasing demand for agricultural products from in-
creasing worldwide population places changes in crop yields
at the center of climate change impacts on human soci-
eties (Parry et al., 2004; Fischer et al., 2005). Past studies
have shown that increased temperatures and extreme precip-
itation events have a negative impact on yield for some crops
(Rosenzweig et al., 2002; Lobell and Field, 2007; Osborne et
al., 2009; Schlenker and Roberts, 2009; Lobell et al., 2011),
offsetting some of the technological advances in crop devel-
opment (Lobell and Field, 2007; Lobell et al., 2011). Urban
et al. (2012) predicted that future climate variability could
be responsible for a decreasing trend of crop yields and an
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increase in yield variability, although some variability might
be mitigated through adaptation strategies.

Agriculture can also have a significant influence on cli-
mate change through biophysical responses to surface fluxes
of CO2 and NOx, albedo, and heat fluxes, as well as bio-
chemical responses from soil carbon cycling. For exam-
ple, irrigation and reduced tillage on croplands resulted in
a global cooling effect, while local effects for precipitation,
cloud cover, and radiation were stronger (Lobell et al., 2006;
Diffenbaugh, 2009).

Cultivation also impacts the carbon stored and released
from soil. Loss of soil carbon as a result of native vegetation
removal can be significant, with long payback times (Far-
gione et al., 2008; Gibbs et al., 2008; Searchinger et al.,
2008). The influence of crops on carbon cycling varies with
management practices such as crop rotation, tillage, fertilizer
inputs, and residue harvesting (West and Post, 2002; Hooker
et al., 2005; Dou and Hons, 2006; Huggins et al., 2007; Khan
et al., 2007; Kim et al., 2009). Although observations dis-
agree on the magnitude and in some cases the sign of carbon
change, most do agree that management influences the total
soil carbon stored.

The strong atmosphere–land surface coupling and the pro-
nounced influence of agriculture on the biosphere make
the inclusion of crops important and necessary for evaluat-
ing atmosphere–biosphere interactions. As the need for im-
proved land surface models and the importance of distur-
bance on biogeochemical cycles were recognized, new mod-
els that include agriculture began to emerge. Several stud-
ies have incorporated agriculture into a vegetation modeling
framework to improve estimates of carbon and nitrogen cy-
cling in the soil system (Kucharik and Brye, 2003; Bondeau
et al., 2007; Osborne et al., 2007; Smith et al., 2010; Levis
et al., 2012). Agro-IBIS (Agro-Integrated Biosphere Simula-
tor; Kucharik and Brye, 2003), which was designed to sim-
ulate maize, soybean, and wheat crop types across the con-
tinental United States, has been tested against flux measure-
ments (Kucharik and Twine, 2007). Agro-IBIS was used to
evaluate yield variability against nitrogen inputs (Kucharik
and Brye, 2003) and planting date (Kucharik, 2008) and has
undergone yield sensitivity analysis (Kucharik, 2003). The
LPJ-mL (Lund–Potsdam–Jenna-managed land; Bondeau et
al., 2007) agriculture model combines a dynamic vegetation
model with several crop types, represented much like natu-
ral vegetation through the use of crop functional types. This
allows the model to capture growth on a global scale. LPJ-
mL was used to evaluate future water and carbon fluxes as
a result of land use change, management, and CO2 fertil-
ization. Although LPJ-mL does include a fertilizer repre-
sentation through influences on leaf area index (LAI), the
model does not include nutrient cycling, which might im-
pact plant development as a result of nitrogen stress. Os-
borne et al. (2007) developed a coupled crop–climate model
to evaluate the influence of crops on climate by incorporat-
ing the General Large Area Model (GLAM), a groundnut

model that can be applied to other tropical crop types, into
the Hadley Center Atmospheric Model (HadAM3). The fo-
cus of the study was in the tropics, using temperature and soil
moisture to interactively determine crop management such as
cultivation area, sowing date, and growing season. Osborne
et al. (2009) noted the correlation between climate and crop
yield variability and additionally found that crop yield vari-
ability had an impact on temperature, though not necessarily
on precipitation. The ORCHIDEE-STICS (Organizing Car-
bon and Hydrology in Dynamic Ecosystems–Supra-Thermal
Ion Composition Spectrometer; Smith et al., 2010) model
focuses on the European crops soybean, maize, and winter
wheat and uses an automated fertilizer and irrigation scheme
when plants become stressed, but it does not include explicit
crop organ development and residue management.

Recently, a more sophisticated crop model was incorpo-
rated into the Community Land Model (Levis et al., 2012).
This addition adds a separate growth scheme for crops to
simulate maize, soybean, and cereals in the midlatitudes,
using algorithms from the Agro-IBIS model (Kucharik and
Brye, 2003). Levis et al. (2012) used the new development
to evaluate CO2 fluxes from the modified LAI. The model
showed promising improvements in annual net ecosystem
exchange and the impact agriculture has on climate, such as
reduced precipitation. However, this model lacked some im-
portant features of nitrogen cycling (nitrogen retranslocation,
soybean nitrogen fixation) and management practices (fertil-
izer, residue harvest) that may have an important impact on
the carbon fluxes.

We chose the coupled carbon–nitrogen version of the
Community Land Model (CLM [CLM-CN]; Thornton and
Zimmerman, 2007; Oleson et al., 2008; Stockli et al., 2008)
as a basis for our model, because CLM-CN already had
a comprehensive carbon–nitrogen scheme, allowed multiple
plant functional types (PFTs) to exist within a grid cell, and
integrated crops as a model component (although they were
represented as grass). In addition, CLM-CN was already cou-
pled to the atmosphere and ocean in the Community Climate
System Model version 3 (CCSM3.0) and beyond, providing
an opportunity for future studies on feedbacks between cli-
mate change and agricultural productivity. We expanded the
PFTs in CLM-CN to include specific crop types, allowing
them to share space but exist separately, so as not to com-
pete for resources with natural vegetation. Our new model,
CLM-Crop, presented in this paper, includes new physiology
and carbon schemes to describe maize, soybean, and spring
wheat. We investigate the ability of CLM-Crop to simulate
agriculture environments through calculated harvest yields,
LAI, and gross primary productivity (GPP). In addition, we
include a capability for varying residue management and fer-
tilizer. We do not consider tillage practices, because CLM-
Crop’s carbon pools are not distributed in the soil profile.
We note that although CLM-Crop is designed to be imple-
mented globally, a majority of the parameterizations are typ-
ical of crops grown in the United States; therefore we focus
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our analysis on this region, with some limited discussion on
the global results.

Several features of CLM-Crop will be included in the next
release of CLM; we will point out those features throughout
the model development section. The description of CLM-
Crop in Sect. 2 includes a breakdown of the simulations
performed. Section 3 evaluates the model’s performance
through comparison with observations and a standard grass
simulation. Next, case studies demonstrate the impact of
residue management and planting date on yield and GPP in
Sect. 4. A discussion follows in Sect. 5.

2 Methods

2.1 Description of the Crop Module (CLM-Crop)

The standard CLM3.5, which simulates land surface re-
sponse to climate forcing, has been tested extensively against
observations, both as a component of the CCSM3.0 and of-
fline (Oleson et al., 2008; Stockli et al., 2008). The CLM op-
tional feature to include carbon and nitrogen cycling (CLM-
CN) was discussed by Thornton and Zimmerman (2007).
However, crops in CLM-CN are generic, modeled as grasses
without biomass removal during harvest and without varied
carbon allocation during different growth stages. Therefore,
we have added three additional PFTs to the model to repre-
sent maize, soybean, and spring wheat crop types. We began
our evaluation with these three types, because (1) maize oc-
cupies that largest share of cultivated land in North Amer-
ica, with the expectation of an even larger share in the fu-
ture as a major ethanol fuel source; (2) soybean is the sec-
ond largest crop cultivated in North America, grows rapidly
in South America, and is a potential biodiesel crop; and
(3) spring wheat is the primary cereal crop produced all over
the world. All three crops have been studied extensively and
have known phenology.

CLM-Crop has a sub-grid hierarchy allowing multiple
PFTs to exist in a single soil column and multiple soil
columns to exist in a grid cell (Fig. 1). Each soil column has
its own carbon and nitrogen pools, so vegetation growing in
one column does not compete for resources with vegetation
in a separate column. We separate crops from natural vege-
tation to model them independently. For example, a grid cell
growing maize and soybean in addition to natural trees and
grasses will have at least three soil columns: one contain-
ing natural vegetation PFTs, one containing maize, and one
containing soybean. Although they share the space on a grid
cell, each soil column has separate dynamics for soil water,
litter, soil organic carbon, etc., consistent with the vegetation
in that column.

2.1.1 Growth scheme

The growth and development processes of crops are bro-
ken into four stages (similar to Levis et al., 2012): seeding,

Fig. 1. An example of the sub-grid hierarchy in CLM-Crop (based
on concepts of Oleson et al., 2004).

emergence, organ development, and harvest. Each phase is
characterized by varied carbon allocation between the com-
ponents of the plant: leaves, stems, roots, and grain. The
growth stage is determined by the fraction of phenological
heat units (FPHUs) accumulated (Table 1), relative to the
crop planting date. The FPHUs for each growth stage are
similar to those in the Agro-IBIS model (Kucharik and Brye,
2003). FPHUs are calculated as

FPHU=

current day∑
i=planting

HUi

PHU
, (1)

where PHU is the total number of phenological heat
units (PHUs) necessary to reach maturity. At planting, heat
units (HUs) are accumulated daily as

HU = Tave− Tbase, (2)

where Tave is the average 2 m air temperature for the
current day, andTbase is the minimum temperature re-
quired for growth, as in the SWAT (Soil Water Assessment
Tool) model (Neitsch et al., 2005). The total number of
PHUs necessary to reach maturity, derived by the Sacks et
al. (2010) Crop Calendar Dataset, varies spatially and with
crop species (described in Sect. 2.2). PHUs were originally
calculated from a base temperature of 5◦C, so we use 5◦C
as a base temperature for all crops. Because growth stages
for plant development are determined by the fraction of total
PHUs, this approach is reasonable, even though actual base
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temperature is 0◦C for spring wheat and ranges from 8 to
10◦C for maize and soybean. For grid cells where PHU data
are not included in the Crop Calendar Dataset, a default PHU
value is used (Table 1).

The planting date is fixed for each crop and is based on the
average planting date from Sacks et al. (2010). At planting,
small amounts of carbon (approximately equivalent to the
carbon content in seeds) and nitrogen (Table 1) are allocated
to the leaves to initiate photosynthesis for growth, but further
carbon allocation is withheld until the crop has reached the
emergence phase. The fraction of available carbon allocated
hourly to each plant component (leaves, roots, and stems)
during the remaining growth period follows the Agro-IBIS
model (Kucharik and Brye, 2003), as was also done by Levis
et al. (2012). Between emergence and organ development,
carbon is directed toward leaves, roots, and stems. Root de-
velopment assimilates 30–50 % of carbon initially; this value
decreases with PHU accumulation to 5 % by maturity (Ta-
ble 1), while the remaining carbon is allocated to leaves and
stems.

Once organ development begins, carbon directed to leaves
and stems decreases rapidly, and the majority of carbon is
appropriated to grain, while a small amount is filtered to
the roots (Table 1). Throughout the growth period, photo-
synthesis is limited by the availability of water and nitrogen
through a downregulation process. The grain fill features of
this model differ from the Levis et al. (2012) crop model
through the maintenance of a separate pool for organ car-
bon and nitrogen to keep track of yield, whereas Levis et
al. (2012) allocate grain carbon into the stem pool.

2.1.2 Nitrogen and retranslocation

Nitrogen allocation for crops follows that of natural vege-
tation, which is based on carbon:nitrogen (CN) ratios for
leaves, stems, roots, organs, and litter. Nitrogen demand dur-
ing organ development is fulfilled through retranslocation
from leaves, stems, and roots (Pollmer et al., 1979; Crawford
et al., 1982; Simpson et al., 1983; Ta and Weiland, 1992; Bar-
bottin et al., 2005; Gallais et al., 2006, 2007). Because most
CN ratio measurements are from mature crops, we estab-
lished pre- and post-grain-development CN ratios for leaves,
stems, and roots (Table 1). Prior to organ development, CN
ratios are optimized to allow maximum nitrogen accumula-
tion for later use during organ development. When grain fill
begins, nitrogen from the leaves, stems, and roots (for wheat)
is transferred to a retranslocation pool, such that the new CN
ratio for each plant part is the same as for crop residue. The
organ nitrogen demand is first supplied from the retranslo-
cated nitrogen pool, and any remaining demand is drawn
from the soil nitrogen pools. The retranslocation scheme is
included in the next release of CLM4.5.

2.1.3 Fertilization

In CLM, the denitrification rate is high, resulting in a 50 %
loss of the unused available nitrogen each day. To integrate
fertilizer into the model without significant loss of fertilizer
during the early stages of growth when nitrogen demand is
low and availability is high, we adopted a fertilizer scheme
delivering nitrogen directly to the soil mineral nitrogen pool
over a 20 day period, beginning at emergence. The scheme
can effectively reduce large losses of nitrogen due to leach-
ing and denitrification during the early stage of crop devel-
opment. The 20 day period was chosen as an optimization
tool to limit fertilizer application to the emergence stage.
Total nitrogen fertilizer amounts are 150 kg ha−1 for maize,
80 kg ha−1 for wheat, and 25 kg ha−1 for soybean, repre-
sentative of current annual fertilizer application rates in the
United States (http://www.ers.usda.gov/Data/FertilizerUse).
The fertilizer scheme is included for the release of CLM4.5.

2.1.4 Soybean nitrogen fixation

Nitrogen fixation by soybean is similar to that in the SWAT
model (Neitsch et al., 2005) and is dependent on soil mois-
ture, nitrogen availability, and growth stage. If soil nitrogen
is sufficient to meet soybean demand, no fixation will occur
during the time step. Nitrogen fixation is largest during the
early to middle growth stages, when demand for nitrogen is
greatest. Soybean fixation is dependent on soil water, nitro-
gen availability, and the growth stage of the crop, determined
by

Nfix = Nplant ndemand∗ min(1,f xw,f xn) ∗ f xg, (3)

where Nplant ndemand is the balance of nitrogen needed to
reach potential growth that cannot be supplied from the soil
mineral nitrogen pool,fxw is the soil water factor,fxn is the
soil nitrogen factor, andfxg is the growth stage factor calcu-
lated by

f xw =
wf

0.85
, (4)

f xn =

 0 forsminn ≤ 10
1.5− 0.005∗ (sminn ∗ 10) for10< sminn ≥ 30

1 forsminn > 30
, (5)

f xg =


0 for PHU≤ 0.15

6.67∗ PHU−1 for0.15< PHU≥ 0.30
1 for 0.30< PHU≥ 0.55

3.75− 5∗ PHU for0.55< PHU≥ 0.75
0 for PHU≥ 0.75

, (6)

wherewf is the soil water content as a fraction of the water-
holding capacity for the top 0.5 m,sminnis the total nitrogen
in the soil pool (g m−2), and PHU is the fraction of growing
degree days accumulated during the growth period.Nfix is

Geosci. Model Dev., 6, 495–515, 2013 www.geosci-model-dev.net/6/495/2013/
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Table 1.Crop parameters.

Parameter Maize Wheat Soybean

FPHUs for growth stages
Seeding 0 0 0
Emergence 0.03 0.08 0.03
Grain fill 0.53 0.59 0.70
Harvest 1 1 1

Pre-grain-fill-stage CN ratio

Leaf 10 15 25
Stem 50 50 50
Root 42 30 42
Organ 50 40 60

Post-grain-fill-stage CN ratio

Leaf 65 65 65
Stem 120 100 130
Root 42 40 42
Organ 50 40 60

Other parameters

Base temperature 5◦C 5◦C 5◦C
Initial carbon allocation to seed (g C m−2) 0.8 3.9 2.5
Initial root carbon allocation 40 % 30 % 50 %
Initial leaf carbon allocation Depends on FPHU
Initial stem carbon allocation Depends on FPHU
Final root carbon allocation 5 % 5 % 5 %
Final leaf carbon allocation 0 % 0 % 0 %
Final stem carbon allocation 5 % 5 % 5 %
Maximum LAI 5.0 7.0 6.0
Maximum harvest index 0.6 0.5 0.38
Default PHU 1600 1900 1000
Maximum root depth (m) 1.2 0.9 1.6

added directly to the soil mineral nitrogen pool for use in
that time step. Nitrogen fixation does not occur in the early
growth stage, before the plant accumulates 15 % of PHU, or
in the late growth stage, after 75 % of PHUs have accrued
(shortly after grain fill begins). The soybean fixation scheme
will also be added to the CLM4.5 crop model.

2.1.5 Crop root structure

In CLM-CN, vegetation has a constant root depth and density
profile; root density decreased linearly with depth. In Levis et
al. (2012), root density for all vegetation decreased exponen-
tially with depth, but for crops it did not vary with growth.
We incorporated into CLM-Crop a dynamic root scheme to
approximate fine root distribution and rooting depth in re-
sponse to environmental conditions.

The root depth for natural vegetation is held constant and
is dependent on the type of PFT (Oleson et al., 2004). Crops
have a dynamic rooting depth that depends on growth stage.
Crop root depth, which is 4 cm at planting, continues to grow

linearly with FPHU until a maximum depth is reached at the
beginning of the organ development stage. The gradual in-
crease in root depth is meant to simulate a young crop with-
standing dry soil profiles. Maximum root depths for maize,
wheat, and soybean are 120 cm, 90 cm, and 160 cm, respec-
tively (Mayaki et al., 1976; Araki and Iijima, 2001; Amos
and Walters, 2006).

The fine root carbon budget in each soil layer depends on
new carbon allocation and turnover loss at each time step.
Fine root carbon,Ci (kg m−2), in each soil layer (i) is calcu-
lated as

Ci = Ci,0 + rd,iCnew− RiCloss, (7)

where

rd,i = (1− f )rw,i + f rn,i . (8)

The new carbon (Cnew) allocation is based on a redistribu-
tion factor (rd,i) for each soil layer that links soil moisture
and nutrient uptake capacity by weighting the relative avail-
able soil moisture (rw,i) and the relative nutrient distribution

www.geosci-model-dev.net/6/495/2013/ Geosci. Model Dev., 6, 495–515, 2013
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(rn,i) by the root zone water availability factor (f ), wheref

ranges from 0 for soil at the wilting point to 1 for saturated
soil. The distribution algorithm for new fine roots combines
the availability of two essential substances – water and nu-
trients – for root uptake and allows for root plasticity with
non-uniform water distribution (Mayaki et al., 1976; Garay
and Wilhelm, 1983; Amos and Walter, 2006). Carbon loss
(Closs) due to root turnover is removed from each layer rela-
tive to the fine root fraction (Ri) in the soil layer.

The prescribed relative nutrient profile used to calculate
rn,i is the approximated nitrogen profile based on Jobbagy
and Jackson (2001) and the global soil profile data set of Bat-
jes (2008). This profile has constant nitrogen in the top soil
layers (less than 10 cm depth), decreasing linearly to zero at
the bottom of the last soil layer. This distribution is charac-
teristic of agricultural soils where past tillage practices have
homogenized the upper soil profiles (Blanco-Canqui and Lal,
2008).

2.1.6 Harvest management

Crops are harvested as soon as maturity is reached, as was
done by Levis et al. (2012). However, in CLM-Crop, harvest
is partitioned between the atmosphere and litter pools. All of
the carbon and nitrogen in the grain, along with a percentage
of carbon and nitrogen in the leaves and stems, is harvested
and respired to the atmosphere. The remaining above-ground
and all of the below-ground carbon and nitrogen are consid-
ered residue and are returned to the litter pool as such, sim-
ulating residue management practices. Variability of residue
amounts in CLM-Crop enables study of the impact of differ-
ent residue management practices on soil carbon.

2.2 Input data

2.2.1 Climate

Simulations required three-hourly data for temperature, wind
speed, humidity, precipitation, solar radiation, and surface
pressure from the National Center for Environmental Pre-
diction (NCEP) reanalysis data for the period 1948–2004,
as described by Kalnay et al. (1996). We cycled through the
NCEP reanalysis data to spin up the model and reach a steady
state of carbon and nitrogen in the soil (Thornton and Rosen-
bloom, 2005). CLM-Crop was run at a resolution of 2.8◦ lat-
itude by 2.8◦ longitude.

2.2.2 Land use

Natural vegetation cover in CLM-Crop was represented by
14 PFTs, whose abundance was based on satellite data de-
scribed by Bonan et al. (2002). Natural vegetation PFTs in-
cluded needleleaf evergreen and deciduous trees, broadleaf
evergreen and deciduous trees, shrubs, and grasses, all of
which were divided among boreal, temperate, and tropical
regions. We used data from Leff et al. (2004) to derive crop

coverage maps representative of the year 1992, by separating
individual crop types of maize, soybean, and wheat from the
total crop area of Bonan et al. (2002). Remaining crop area
not designated as maize, soybean, or wheat was attributed to
an alternative PFT, called “other crop,” which was modeled
as a C3 grass. Because crop area data sets did not distinguish
winter wheat from spring wheat, we included winter wheat
areas in our spring wheat data. Double cropping was also in-
cluded in the data sets, causing total crop area to be counted
twice in some grid cells of CLM-Crop.

2.2.3 Planting date and PHUs

The planting date for each crop was derived from the Crop
Calendar Dataset (Sacks et al., 2010). Spatial planting data
for maize, soybean, and spring wheat were based on the av-
erage planting date, aggregated from 5 min resolution to 2.8◦

for use in CLM-Crop. PHUs were also based on Sacks et
al. (2010), calculated from the average number of HUs be-
tween the average planting and harvest dates, which were
determined by regional climatology from the CRU data set
(New et al., 1999) for the years 1961–1990. The Crop Calen-
dar Dataset accounts for generalized planting dates over large
regions from the dominant crop cover, using nearest neighbor
extrapolation over regions where data is not available. The
data set does not capture small-scale variability in planting
both spatially and temporally (Sacks et al., 2010); however,
as our resolution is course, we believe that this database is
appropriate for this application. We did not consider double
cropping or crop rotation in CLM-Crop.

2.3 Model simulation

An accelerated spin-up procedure (Thornton and Rosen-
bloom, 2005) was used to build up soil organic carbon lev-
els in CLM-Crop, with natural vegetation only (crop ar-
eas simulated as C3 grass). Once soil carbon and nitro-
gen pools reached steady state, the land use was converted
to include croplands. Our agriculture scenario (hereafter
CROP) was established to simulate current management
and fertilizer practices and represent the agricultural prac-
tices common over the United States during the last decade
(www.usda.gov). We compared these results with a grass-
land scenario (hereafter GRASS) that included the land cover
used in the spin-up (i.e., with crops simulated as C3 grass).
Each scenario was run for three complete cycles of the 1948–
2004 climate data (a total of 171 yr) at an hourly time step to
reach a steady state. The last 57 yr of each simulation (one
cycle of 1948–2004) was included in results that show av-
eraged data. We focused our evaluation on comparisons of
CROP with observations and GRASS. In addition, we con-
sidered four case studies to evaluate the impact of residue
returns and a climate-induced planting date on crop yield and
GPP.
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3 Results

3.1 Model performance compared with observations

3.1.1 CO2 fluxes

For crops, CO2 flux data are available from two sites in
the AmeriFlux network (http://public.ornl.gov/ameriflux):
Bondville, IL (40.01◦ N, 88.29◦ W) and a rain-fed site in
Mead, NE (41.18◦ N, 96.43◦ W). These sites are chosen be-
cause they contain GPP (the rate of carbon captured and
stored for growth in the plant through photosynthesis), net
ecosystem exchange (NEE; GPP minus the total ecosystem
autotrophic and heterotrophic respiration), and LAI data for
a maize–soybean rotation. Although GPP is not directly mea-
sured at AmeriFlux stations, GPP is calculated in the Amer-
iFlux Level 4 data as the difference between ecosystem res-
piration and NEE. Ecosystem respiration is estimated using
Reichstein et al. (2005), and NEE data are gap-filled by us-
ing the artificial neural network method (Papale and Valen-
tini, 2003). In the absence of observations with spring wheat,
we discuss only maize and soybean. Both sites were planted
with maize in 2001 and with soybean in 2002. For compar-
ison purposes, since CLM-Crop is run at a global resolution
of 2.8◦, we chose the grid cell closest to the site. In this case,
the grid cell central coordinates are 40.46◦ N, 87.19◦ W for
Bondville and 40.46◦ N, 95.625◦ W for Mead.

Peak monthly average GPP for maize is observed during
the middle of the growth period, when LAI peaks. CROP
simulates lower GPP than observations for maize during
this time for the two sites; however, GPP estimates later in
the growth season are comparable with measured values at
Bondville and Mead (Fig. 2a, d). The annual total GPP sim-
ulated by CLM-Crop is 1197 g C m−2 yr−1, which is compa-
rable to observations of 1168 g C m−2 yr−1 at Bondville. At
the Mead site, the simulated GPP total of 1199 g C m−2 yr−1

is lower than observed values of 1370 g C m−2 yr−1. CROP-
simulated maize GPP drops shortly after fertilizer applica-
tion is complete, resuming again during the grain fill stage of
the growth period, when nitrogen is remobilized. The drop
in GPP is the result of nitrogen stress at the end of the fer-
tilization period and loss of excess nitrogen due to a high
denitrification factor. Denitrification in CLM-CN accounts
for a 50 % loss of unused nitrogen in the soil. The deni-
trification factor was intended to account for losses of ni-
trogen in a saturated-nitrogen environment, such as one in-
duced by fertilizer inputs. However, since fertilizer is ap-
plied over a 20 day period, rapid loss of most of the fertil-
izer after the early growth phase causes a nitrogen limitation
in maize during the middle growth stages. Because maize
has a higher nitrogen demand than soybean and wheat, loss
of unused fertilizer from denitrification results in significant
nitrogen limitation for growth. During the late growth pe-
riod, remobilization of nitrogen from leaves and stems al-
lows grain access, so GPP increases (and peaks) during the

organ development stage. That this is an artifact introduced
by rapid denitrification in the current version of CLM is
widely recognized. The nitrogen scheme in the model is un-
dergoing a thorough evaluation and reformulation (Tang et
al., 2013). The new nitrogen scheme is expected to circum-
vent the problem with the current formulation, making the
nitrogen availability to maize more uniform and the GPP
calculations closer to observations during the early phase
of the crop growth cycle. NEE (Fig. 2b, e) shows char-
acteristics similar to GPP. Although the timing is not al-
ways synchronized with observations as a result of our use
of fixed values for planting and growth periods, the model
does capture the general trend of NEE during the growth
period for both the Bondville and Mead AmeriFlux sites,
demonstrating the model’s ability to simulate ecosystem res-
piration. The total annual NEE is underestimated by CLM-
Crop; at Bondville, simulated NEE was−322 g C m−2 yr−1

compared to−405 g C m−2 yr−1 observed. At Mead, total
NEE in CLM-Crop was−314 g C m−2 yr−1, but measured
at−545 g C m−2 yr−1.

CROP-simulated GPP for soybean agrees well with ob-
servations at Mead, but it increases early and is too high at
Bondville (Fig. 2g, j). The earlier planting date in the model
causes GPP at the Bondville site to be offset by more than
one month from observations, while the longer growth pe-
riod at Bondville causes modeled GPP to be higher than the
measured value. The annual total simulated GPP at Bondville
for soybean is 1055 g C m−2 yr−1 versus observations of
773 g C m−2 yr−1. Growth period length is well estimated at
the Mead site, and GPP values match observations, although
total annual GPP is overestimated at 904 g C m−2 yr−1 where
observations indicate 798 g C m−2 yr−1. For soybean, simu-
lated GPP is higher than the measured value as a result of
cropping sequence. The lower soybean biomass at the end of
the growth period decreases the amount of decomposition,
and thus nitrogen immobilization, the year following soy-
bean planting. However, in a maize–soybean rotation, maize
residue from the previous year’s crop immobilizes more soil
nitrogen for decomposition, leaving less available for soy-
bean growth. With no rotation in CLM-Crop and no simu-
lation of this phenomenon in the model, more nitrogen be-
comes available for growth. Simulated NEE values for soy-
bean (Fig. 2h, k) are similar to the corresponding GPP val-
ues, however, simulated NEE of−228 g C m−2 yr−1 is over-
estimated compared to observations of−25 g C m−2 yr−1.
CROP NEE is slightly greater than observations at the
Bondville site during the growth season because of higher
GPP, with annual total values of−257 g C m−2 yr−1 versus
observations of−142 g C m−2 yr−1. To introduce crop rota-
tion into the model requires a data set on crop rotation at
the grid scale and a model capability to simulate changes
in land use, which currently are not available. As these im-
provements become available, we expect to introduce crop
rotation into the next model update.
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Fig. 2.Simulated (lines) and observed (circles) monthly averaged gross primary productivity (GPP; g C m−2 day−1), net ecosystem exchange
(NEE; g C m−2 day−1), and LAI (m2 m−2) during 2001 and 2002 for maize and soybean at two sites: Bondville, IL (40.01◦ N, 88.29◦ W),
and Mead, NE (41.18◦ N, 96.43◦ W).

Global average GPP from 2000 through 2004, simulated
by CROP, shows improvement versus GRASS in compari-
son with MODIS satellite data (Zhao et al., 2005), as shown
in Fig. 3. In regions with high crop density, GPP is lower in
CROP than in GRASS, particularly in the US Midwest, west-
ern Brazil, Europe, the United Kingdom, and Asia. Over-
all, crop representation improved the root-mean-squared er-
ror (RMSE) by a small amount, 3 %; locally, however, in re-
gions where croplands are dominant, RMSE shows more sig-
nificant improvement (Table 2). For example, in the United
States, France, and Mexico, the RMSE was about 15 % lower

for CROP than for GRASS. In South Africa, Greece, the
Netherlands, and Turkey, the RMSE for CROP was more
than 10 % lower, while in the United Kingdom, the RMSE
for CROP was 8 % lower.

3.1.2 Leaf area index

Simulated peak LAI for maize and soybean (Fig. 2c, f, i, l) is
generally consistent with observations at both the Mead and
Bondville sites. However, because LAI decline is not simu-
lated in the model, LAI values are higher than observations
late in the growth period. This also allows the GPP to remain
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Fig. 3. Average GPP (g C m−2 yr−1) for the years 2000–2004,
derived from(a) MODIS data (Zhao et al., 2005),(b) CROP, and
(c) GRASS.

high in the late growth stages, producing higher yields than
observed, because more carbon is assimilated in the simula-
tion.

The LAI in the model is based on the amount of carbon
in the leaves and a constant specific leaf area (SLA; the ratio
of leaf area to dry leaf weight) for each crop type; however,
observations show that SLA actually varies throughout the
growth season (Tardieu et al., 1999) and with nitrogen fer-
tilizer application methods (Amanullah et al., 2007), causing
discrepancies between observed and model-simulated LAI.
To allow varying SLA with growth period would be diffi-
cult, because this requires detailed knowledge of how SLA
responds to climate for each crop during each growth phase.
For maize, LAI is overestimated, particularly in the early
growing season, despite having less leaf carbon through-
out the growth period (Fig. 4a). Soybean LAI values for

Table 2.Root-mean-squared error of GPP for selected regions from
CROP and GRASS simulations, as compared with MODIS satellite
data of Zhao et al. (2005).

Country CROP GRASS Percent Change

United States 510.86 581.77 −12.19
France 625.62 751.16 −16.71
Mexico 712.22 855.15 −16.71
Spain 475.86 505.03 −5.78
Italy 809.42 861.61 −6.05
Germany 359.30 381.11 −5.72
South Africa 240.14 266.87 −10.01
Greece 727.64 806.89 −9.82
Netherlands 422.54 478.28 −11.65
Portugal 801.06 845.56 −5.20
Turkey 618.34 684.91 −9.71
United Kingdom 431.07 468.62 −8.01

the Mead site are comparable with observations. For the
Bondville site, soybean LAI values are underestimated de-
spite the high GPP; however, the similarity of simulated leaf
carbon to observations for this site (Fig. 4d) demonstrates the
importance of variable SLA.

3.1.3 Plant carbon

The total carbon distributed in the leaves, stems, and organs
of maize and soybean for the Bondville site is shown in
Fig. 4. Leaf carbon in maize is underestimated by the model,
because nitrogen stress constrains growth in the early to mid-
dle growth phase, in contrast to field observations. Carbon in
the stem is comparable with observations during the emer-
gence stage; however, organ carbon is underestimated by a
factor of two. Because organ development relies heavily on
retranslocated nitrogen from leaves and stems and because
maize was limited by nitrogen stress earlier in the growth
season, the lower organ carbon than observations is not sur-
prising.

Leaf carbon for soybean is overestimated during most of
the growth period because of early planting; however, peak
leaf carbon agrees with observations. High simulated GPP
for soybean caused stem and organ carbon to be overesti-
mated by the model, as compared with field measurements.

Carbon levels for the Mead site were not separated into
crop components, but total carbon in the above-ground
biomass was reported. Our simulated carbon values for maize
and soybean at that rain-fed site are shown in Fig. 5. Peak
estimates of above-ground carbon for maize in the model
are similar to observations but are offset because of nitro-
gen limitation in the early to middle growth stages. When
nitrogen is remobilized for grain development, total carbon
in the plant increases until late in the growth season, be-
cause the lack of LAI decline causes the peak carbon to
occur later in the model than in field measurements. Total
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Fig. 4. Simulated (lines) and observed (circles) leaf, stem, and organ carbon (g C m−2) during 2001 and 2002 for maize and soybean at
Bondville, IL.

soybean above-ground carbon is overestimated by the model.
Although carbon is modeled well in the early growth season,
total plant carbon peaks at higher values versus observations
in the grain fill stage. The early curve and timing of the car-
bon growth are simulated well for soybean, and the peak car-
bon is simulated well for maize in CROP.

3.1.4 Yields

The average yields estimated by CROP for the last 57 yr of
the simulation are shown in Fig. 6 for maize, wheat, and
soybean. Direct comparison of yields with observations is
difficult, because CROP does not include improved technol-
ogy and management practices (such as irrigation) that affect
yield; therefore, our results might differ significantly from
observations in certain regions and do not include the large
advances in yield seen over the last several decades. The re-
sults presented here should be considered a baseline for cal-
culating crop yields in the absence of these additional in-
terventions. These results provide a template for assessing
the impacts of management changes in the future as climate
models become more capable of handling socioeconomic
and external interventions in land management and land use.

Average yearly US crop yields (Fig. 7) for the last 57 yr
of the simulation are 116 bu acre−1 for maize, 66 bu acre−1

for soybean, and 47 bu acre−1 for wheat. Yield variabil-
ity is caused mainly by variations in climate, particu-
larly precipitation. In general, higher rainfall amounts and
more frequent rainfall events allow the model to simulate

higher yields. CROP-simulated average yield for maize is
lower than US Department of Agriculture (USDA) statis-
tics (www.usda.gov), with current production of nearly
165 bu acre−1 due to advances in management and hybrid
technology. Wheat yields in CROP are very similar to cur-
rent reports by the USDA (www.usda.gov), at 44 bu acre−1;
however, soybean yields are overestimated compared to the
USDA’s 45 bu acre−1. Since soybean and spring wheat in the
model do not experience as much nitrogen or water stress as
maize crops, soybean and wheat do not experience a GPP
drop during the early to middle growth phase. Spring wheat
yield averages in Figs. 6b and 7 include all wheat types
in each region, so we focus our discussion on the northern
United States and some western states, where spring wheat
is typically grown.

Simulated US maize yields (Fig. 6a) are comparable with
observations in the central Midwest, where differences be-
tween simulated yield and those reported by Monfreda et
al. (2008) are generally less than 20 %. Yields in the western
states have the highest percent difference, up to 80 % (due to
drier conditions), a result of no irrigation in the model and
the loss of fertilizer due to denitrification. Observations from
the Mead AmeriFlux site demonstrated the importance of ir-
rigation for maize yields, a phenomenon also seen in other
crop models (Bondeau et al., 2007).

Soybean yields simulated for the central states (Fig. 6c)
are generally higher than observations, by a factor of two in
some regions. The absence in CLM-Crop of the LAI decline
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Fig. 5.Simulated (lines) and observed (circles) total plant carbon (g
C m−2) during 2001 and 2002 for maize and soybean at Mead, NE.

during grain fill can cause higher LAI in the late growth sea-
son, which leads to higher GPP. Yields are greatest in Illinois,
Indiana, and Michigan, where crops are grown intensely. In
the western states, yields are lower than observations, like the
maize yields.

Spring wheat yields (Fig. 6b) are also overestimated in
the northern states where typical values are less than 40 bu
acre−1, with simulated yields above 70 bu acre−1. The model
does capture higher yields in the northwestern states that can
exceed 60 bu acre−1. Our comparison with the data of Mon-
freda et al. (2008) is limited, because they did not distinguish
winter and spring wheat.

Global yield spreads compared with those of Monfreda
et al. (2008) are shown in Fig. 8. In general, CROP median
yields are higher than observed yields for all crops, but yields
vary regionally, mostly because the baseline growth model in
CLM-Crop is representative of North America. Globally, the
full range of CROP yields for maize and wheat falls within
the range of observed yields, although the spread of yields
is quite large. Regionally this result is not always true. Yield
has a large dependence on fertilizer rates, both in the model
and in the field. Fertilizer statistics from the Food and Agri-
culture Organization (www.fao.org) reveal a large range in

Fig. 6. Simulated crop yields (bu acre−1) for (a) maize,(b) wheat,
and(c) soybean.

fertilizer use, further increasing the difficulty of comparing
CROP-simulated yields with observations.

Nevertheless, CROP-simulated median yields for most re-
gions fall within the range of observed yields (i.e., maize in
the United States, Argentina, and China; wheat globally and
in the United States, China, and Italy; and soybean in Brazil).
Both soybean and spring wheat are overestimated in the
United States; however, the range of maize and spring wheat
yields simulated by CROP falls within the observed range
of yields. Simulated soybean yields have a greater range
than observations, demonstrating higher simulated variabil-
ity in soybean yield across the United States, and 50 % of
the soybean yields from CROP are higher than the observed
yields (Fig. 8). In Argentina, the range of CROP-simulated
maize production falls within the range of observations; in
South Africa, the range of simulated maize yields has a larger
spread than the observed value, and the median is much
higher than the observed median yield.

Considering crop rotation in the model might improve
the yields in CLM, because soybean, as a legume, has the
ability to fix more nitrogen than do other crop types, thus

www.geosci-model-dev.net/6/495/2013/ Geosci. Model Dev., 6, 495–515, 2013
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Fig. 7. Simulated average US crop yields (bu acre−1) for maize,
wheat, and soybean.

improving performance when rotated with maize or wheat
over long-term cultivation. In addition, having fixed fertil-
izer rates in CLM-Crop will result in higher crop produc-
tion (for example, in Brazil, where farmers typically use little
if any fertilizer). CROP does not perform well in boreal re-
gions such as Canada (Fig. 8) and Russia (not shown). CROP
overestimates yields in these regions for all crop types, al-
though comparisons are difficult, because fertilizer rates in
these countries are much lower than those in the model. In
Argentina, wheat and soybean are overestimated, and soy-
bean simulations have a larger yield range than observed. In
China, CROP underestimates maize yield, with the median
falling just inside the 25 % percentile of observed range as a
result of excessive fertilizer use in this region. However, soy-
bean is grown only in small quantities in China, with smaller
fertilizer rates than are used in CROP, so simulated yields
tend to be overestimated. In Italy, maize is greatly underesti-
mated by CROP, but the course grid cell size of CROP allows
only a few pixels to represent Italy in the model and makes
comparison with observations difficult. CROP overestimates
of Venezuelan yields are also the result of higher fertilizer in
the model than is typically used in cultivation.

3.2 Climate influence on crop yields

3.2.1 Temperature

Temperature has a strong negative correlation coefficient
with yield for all crop types (Fig. 9), consistent with other
measurements (Lobell and Field, 2007) and model simu-
lations (Osborne et al., 2009). The slope of the regression
between the standardized anomalies of yield and tempera-
ture (not shown) is−0.26 for maize,−0.27 for spring wheat,
and−0.63 for soybean. In general, the negative correlation
between temperature and yield is the result of shorter growth
periods caused by warm temperatures. Because plants are ac-
cumulating PHUs faster during higher-temperature episodes,
the total length of the growth period and thus the time for de-
velopment are shorter, lowering the potential for grain devel-
opment. The latitudinally averaged maximum and minimum
temperatures during the growth period are shown to the right
of each graph in Fig. 9. For soybean, the negative correla-
tion coefficient is strongest because of a later planting date
reflected by a warmer growth period, as demonstrated by the
large latitudinal bands with average maximum temperature
exceeding 30◦C. Maize and wheat have a weaker correlation,
and in some cases the correlation coefficient is positive. In
most of the grid cells with the positive temperature and yield
correlation coefficients, minimum and average daily temper-
atures were not sufficient to allow growth, causing the season
to terminate prematurely. Therefore, yield suffered. Compar-
ison with the minimum temperature during the growth sea-
son shows that in these latitudes, the minimum temperature
was below the base temperature, which significantly slowed
development and in some cases stopped it completely.

3.2.2 Precipitation

The correlation coefficient between precipitation and yields
is strongly positive (Fig. 10). The slope of the regression be-
tween the standardized anomalies of yield and precipitation
(not shown) is 0.19 for maize, 0.41 for spring wheat, and 0.38
for soybean. The positive correlation coefficient is strongest
in the western United States, because the rainfall during the
growth period was smallest in that region (Fig. 10). Crops in
the western United States are usually irrigated because of the
lower rainfall amounts; we anticipate that including irrigation
in a future version of the model will improve the variabil-
ity of yield for areas that rely on irrigation. As the average
precipitation during the growth period across the longitude
increases (shown below each graph in Fig. 10), the strength
of the correlation weakens and in some cases becomes nega-
tive (i.e., for maize). We note that the variability and timing
of rainfall (i.e., extreme rainfall events) have a strong influ-
ence on yield variability (Rosenzweig et al., 2002).
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Figure 8. CLM-Crop-simulated (black) and observed (gray; data from Monfreda et al., 1016	

2008) yield (bu acre-1) for maize, wheat, and soybean of selected regions. 1017	

1018	

Fig. 8. CLM-Crop-simulated (black) and observed (gray; data from Monfreda et al., 2008) yields (bu acre−1) for maize, wheat, and soybean
of selected regions.

4 Case studies

4.1 Sensitivity of yield and GPP to residue management

To evaluate the impact of residue management on yield and
productivity, we tested two alternative residue returns (see
Table 3): a high residue return of 70 % (HIGHRES) and a
low residue return of 10 % (LOWRES). The HIGHRES sce-
nario would be typical of sustainable agriculture practices,
minimizing the carbon removed from the field for alternative
use and returning residue to the soil. The LOWRES scenario

represents a society with increased demand of biofuel from
agriculture residues. The amount of residue returned to the
litter pools affects decomposition and soil nutrients in the
below-ground biogeochemistry, which will influence future
growth periods through nutrient availability. This should not
be confused with tillage practices, which are not represented
in the model.

Increasing the amount of residue returned to the litter pool
after harvest has a positive influence on crop yield and GPP,
globally. Likewise, decreasing the residue causes a decrease
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Table 3.Parameter values for the baseline CLM-Crop simulation and the case studies.

Type of Change Scenario Maize Spring Wheat Soybean

Residue Management ( % non-
grain residue returned to litter
pool)

CROP 30 % 30 % 40 %

HIGHRES 70 % 70 % 70 %

LOWRES 10 % 10 % 10 %
Planting Date (10 day running
average temperature threshold
for planting)

CROP NA – fixed NA – fixed NA – fixed

HighPTEMP 22◦C 21◦C 17◦C

LowPTEMP 12◦C 11◦C 7◦C

Fig. 9. Correlation coefficient between temperature and yield for
(a) maize,(b) spring wheat, and(c) soybean. The right half of each
panel shows the latitudinal maximum and minimum temperatures
(◦C) during the growth period for each crop.

in yield and GPP. Globally, for HIGHRES, yield increased
by 9, 8, and 5 % for maize, spring wheat, and soybean, re-
spectively, compared to CROP. GPP likewise increased by 7,
10, and 4 % for maize, spring wheat, and soybean, respec-
tively. Figure 11 shows the percent change in yield and GPP
for all three crop types over the United States, although the
Midwest Corn Belt has a larger increase in yield and GPP for
maize and spring wheat than does the western United States.
Drier conditions in the West could be responsible through a
slowing of decomposition; incorporation of irrigation could
improve results. For LOWRES, global yields and GPP de-
clined by 4 % for maize and wheat and 7 % for soybean com-
pared to CROP. The percent change is higher in the US Mid-
west (Fig. 12), where farming is most concentrated. These
simulations indicate that below-ground processes do have a
strong influence on above-ground processes, particularly re-
lated to the turnover of carbon and nitrogen availability. Re-
sults also demonstrate that high biofuel demands leading to
removal of crop residue for fuel use may result in a decline
in crop productivity and degrade soil fertility over time. We
note, however, that the nitrogen deficiency in the model may
exaggerate the results, especially for the low residue simula-
tion where lack of nutrients affects future soil fertility.

4.2 Impact of variable planting date on yield and GPP

Because planting date is usually determined by farmers’
choice, taking into account temperature, precipitation, and
other conditions favorable for growth, we allowed the model
to determine a planting date adapted to climate conditions
for the current year. In the Agro-IBIS model, planting date
is determined by 10 day running means of the average daily
temperature and the minimum daily temperature. In this
case study, we adopted the Agro-IBIS approach to allow
the model to calculate a planting date by using the same
methods, but bounded by the earliest and latest planting
dates as reported by the Crop Calendar Dataset (Sacks et al.,
2010). If the earliest and latest planting dates were unknown,
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Fig. 10.Correlation coefficient between precipitation and yield for
(a) maize,(b) spring wheat, and(c) soybean. The bottom half of
each panel shows the longitudinal average precipitation (mm) dur-
ing the growth period for each crop.

then planting date was assumed to be fixed. This allows the
model to be applied more appropriately at global scales. We
performed two simulations; the first uses the same temper-
ature thresholds as the Agro-IBIS model (LowPTEMP, Ta-
ble 3), and the second uses an alternative warmer 10 day av-
erage temperature threshold (HighPTEMP, Table 3). We re-
port changes in grid cells that were subject to the new plant-
ing dates and do not include the unchanged grid cells in our
analysis. Comparisons are made against the CROP scenario.

In the LowPTEMP simulation, average planting dates for
all crop types were earlier than the fixed planting dates in
CROP. Maize was planted an average of 23 days earlier,
wheat 5 days earlier, and soybean over 28 days earlier. Glob-
ally, however, harvest dates did not reflect the early plant-
ing; maize and wheat harvest were only 15 days and nearly

10 days earlier, respectively, than in CROP. Except for soy-
bean, the harvest dates demonstrate that even though the
planting date was considerably earlier, the overall result was
a longer growth period. Separating the Northern and South-
ern Hemispheres (NH and SH) revealed a significant differ-
ence in responses. In the SH, planting dates were signifi-
cantly earlier on average than in the NH; for maize, plant-
ing in the NH was on average 18 days earlier, whereas in the
SH planting was nearly 25 days earlier. However, harvest was
14 days earlier in the NH and 17 days earlier in the SH. In
the NH, yield increased slightly (less than 1 %), but in the
SH yield decreased by 11 %. However, for soybean, plant-
ing date was 23 (33) days earlier and harvest was 22 (34)
days earlier in the NH (SH); resulting yields were increased
slightly for both hemispheres. We expect the largest change
in the SH, because the planting temperature thresholds are
based on NH planting practices.

In the United States, maize and soybean were both planted
early; however, the impact on yield and GPP were opposite
– maize yields and GPP decreased, and soybean yields and
GPP increased (Fig. 13). We also found that early planting
resulted in a lower LAI for maize but a higher LAI for soy-
bean. Small LAI slows the rate of carbon assimilation, which
impedes growth and productivity; we conclude that shorter
day length results in less intercepted light for photosynthesis
and therefore growth. To understand soybean response, we
considered a soybean fixation scheme that allows soybean to
fix nitrogen in the absence of sufficient nutrients for growth.
We found that in all cases, nitrogen fixation increased when
soybean was planted early and decreased when soybean was
planted late. We have already shown that nitrogen limitation
occurs after the fertilization period (Sect. 3.1.1); therefore,
these results demonstrate that early planting leads to a nitro-
gen deficiency for crops. Because soybean is able to over-
come nitrogen limitation through additional fixation, soy-
bean growth was not slowed in later growth stages as was
maize. Wheat does not experience much sensitivity to plant-
ing date; although this scenario resulted in a later planting for
wheat, changes in yield and GPP were generally less than a
few percent. Overall, later planting resulted in higher yields,
similarly to the maize response, indicating nitrogen stress.

HighPTEMP also resulted in earlier planting dates glob-
ally for maize and soybean than in CROP: 16 days for soy-
bean and 2 days for maize. Wheat was planted 4 days later.
Harvest dates were also earlier for wheat (2 days) and soy-
bean (about 31 days); maize was harvested 4 days later. The
resulting yields decreased by about 1 % for maize and soy-
bean, respectively, and increased by 7 % for wheat. Again,
significant differences existed between the NH and SH for
all crop types. Planting dates were 2 days earlier for maize in
both hemispheres. Wheat was planted 8 days later in the NH
but 24 days earlier in the SH, and soybean was planted 5 (27)
days earlier in the NH (SH). Maize yields increased in the
NH but decreased in the SH, though soybean experienced
a lower yield in the NH and an increase in the SH. Wheat
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Fig. 11.The percent change in yield (left column) and GPP (right column) for(a, b) maize,(c, d) spring wheat, and(e, f) soybean from a
70 % residue return management practice (HIGHRES).

Fig. 12.The percent change in yield (left column) and GPP (right column) for(a, b) maize,(c, d) spring wheat, and(e, f) soybean from a
10 % residue return management practice (LOWRES).
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Fig. 13.The left column is the change in planting date (days), represented by the difference between LowPTEMP and CROP for(a) maize,
(d) spring wheat, and(g) soybean. The center and right columns are the percent change in crop yield for(b) maize,(e)spring wheat, and(h)
soybean and the GPP for(c) maize,(f) spring wheat, and(i) soybean resulting from new planting dates.

Fig. 14.The left column is the change in planting date (days), represented by the difference between HighPTEMP and CROP for(a) maize,
(d) spring wheat, and(g) soybean. The center and right columns are the percent change in crop yield for(b) maize,(e)spring wheat, and(h)
soybean and the GPP for(c) maize,(f) spring wheat, and(i) soybean resulting from new planting dates.

yields increased in both hemispheres, but the SH experienced
a much larger increase. Again, differences between the two
hemispheres are expected, because planting temperatures are
more appropriate for the NH.

For the United States, planting dates for maize are gener-
ally later than average fixed planting dates in CROP (Fig. 14).
We found that the temperature threshold for maize was too

high and that the model assumed planting on the default last
planting date. The result of later planting was an increase in
crop yield and GPP, as shown in Fig. 14. We believe that this
is again the result of the model treatment of nitrogen. The
LAI (not shown) was larger in HighPTEMP, allowing more
carbon assimilation during grain development for increased
yield. Longer day length likely allowed increased carbon
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assimilation during the fertilizer application period, which
benefited the crop throughout the growth period. Wheat was
planted slightly later, but, like the LowPTEMP condition, it
showed little sensitivity to planting date other than a slight
increase in yields in most areas (Fig. 14). Soybean was still
planted early in the southern United States but was planted
later in the northern United States. The resulting change in
yield is still an increase in the South, but a decrease in yield
occurs with later planting. Soybean fixation (not shown) in-
creased in the South but decreased in the North (where de-
creases in yield occurred). Most of the decreases in the North
were the result of insufficient PHU accumulation to reach
maturity prior to the onset of the cool season resulting in an
automatic harvest.

5 Discussion

Cultivation has serious effects on the terrestrial carbon cycle,
and the consequences of land management for carbon fluxes
have only recently been included in earlier land surface mod-
eling within the CLM framework (Levis et al., 2012). Pre-
vious versions of CLM had either a crude representation
of crops or omitted many traits that are important, such as
fertilizer, soybean fixation, and retranslocation. CLM-Crop,
which can assess the impacts of several crop types on bio-
geochemical cycles, has been evaluated for the United States
by using field measurement data for maize and soybean sys-
tems. Although the model does well in representing appro-
priate responses for agriculture systems, including improv-
ing the global simulated GPP fluxes, remaining inconsisten-
cies include decreased GPP for maize during the middle of
the growth period and overestimated yields for soybean and
wheat. Improvements to the nitrogen scheme in the model,
including a more complex fertilizer application and denitri-
fication factor, might help to correct disagreements between
the model output and observations.

CLM-Crop simulations agree with other crop models in
predicting a negative correlation between yield and temper-
ature and a positive correlation between yield and precipita-
tion. This has important implications, indicating that as cli-
mate shifts, crop yields might be expected to decline. This
result could be amplified when extreme weather events in-
cluding drought, heat waves, and heavy precipitation events
are taken into account, as predicted by the Intergovernmental
Panel on Climate Change (Meehl et al., 2007).

Residue management can have strong implications for
yield and productivity, as shown by CLM-Crop. Increasing
the amount of plant harvested for use as animal bedding,
feed, or biomass fuel can influence below-ground biogeo-
chemistry cycling, which impacts soil quality and therefore
future yields. Because few statistics on residue management
exist, application of this management practice is difficult to
implement; however, the sensitivity of yield to the amount of
residue left on the field as simulated by CLM-Crop demon-

strates that residue is an important consideration for sustain-
able cultivation. As below-ground carbon and nitrogen cy-
cling are improved in CLM, dependence of crop productiv-
ity on nutrient availability from residue management should
decrease, although sensitivity to decomposition and turnover
will still remain.

Both the HighPTEMP and LowPTEMP simulations show
that the model has a high sensitivity to the planting date, be-
cause of the influence of planting date on timing of growth.
The most important development period during crop growth
seems to be in the early stages, when assimilated carbon and
nitrogen will influence the remainder of the growth period,
particularly because the amount of carbon allocated to leaves
decreases with time. Even more notably, the nitrogen cycling
in the model has significant influence on crop development.
Availability of nitrogen during crucial stages of growth sig-
nificantly affects how a plant prospers. Improvements in the
nitrogen cycling and coupling in the model should enhance
nitrogen availability and perhaps limit this sensitivity.

Expanding the model to incorporate other management
practices (tillage, irrigation, etc.) is important for future
model development. Although the crop representation in
CLM-Crop is flexible enough for expansion to a global scale,
rigorous testing is needed to ensure that crop behavior is
consistent with regional observations. Other additions to the
CLM-Crop model should improve the carbon cycling repre-
sentation. The current CLM framework allows natural veg-
etation to change with time; however, managed croplands
as they are treated in this model cannot expand or contract.
Using historical vegetation data to create a transient vegeta-
tion data set with appropriate deforestation/reforestation and
grassland removal rates related to the growth or abandon-
ment of cultivated land use could improve the performance
of CLM-Crop. In addition, our parameter calibration is fo-
cused on crop species grown in the United States; expand-
ing these parameters to capture other cultivars grown more
broadly would improve the model’s ability to capture global
crop productivity. One example is to use fertilizer data sets
to establish spatial fertilizer application by crop type, such as
that developed by Potter et al. (2010).

While the improvements to CLM showed better agreement
with above-ground cycling, we have not considered below-
ground carbon, which is an integral component for proper
consideration of the full carbon cycle in an Earth system
model. Further research is needed to understand the impor-
tance of agro-ecosystems on soil carbon. Soil organic car-
bon loss can vary greatly, depending on management prac-
tices, and including actions such as fertilizer and residue
management in modeling studies is important for simulating
effects on carbon storage. Incorporating crop representation
into CLM is the first step toward evaluating the impacts of
land management within an Earth system model.
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